Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Buried interface molecular hybrid for inverted perovskite solar cells

Abstract

Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better power conversion efficiency and operational stability compared with the normal device structure. Specifically, power conversion efficiencies of the inverted perovskite solar cells have exceeded 25% owing to the development of improved self-assembled molecules1,2,3,4,5 and passivation strategies6,7,8. However, poor wettability and agglomeration of self-assembled molecules9,10,11,12 cause interfacial losses, impeding further improvement in the power conversion efficiency and stability. Here we report a molecular hybrid at the buried interface in inverted perovskite solar cells that co-assembled the popular self-assembled molecule [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with the multiple aromatic carboxylic acid 4,4′,4″-nitrilotribenzoic acid (NA) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted perovskite solar cells demonstrated a record certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving one of the highest certified power conversion efficiencies for inverted mini-modules at 22.74% (aperture area 11.1 cm2). Our device also maintained 96.1% of its initial power conversion efficiency after more than 2,400 h of 1-sun operation in ambient air.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Computational simulations of the heterojunction of the HSL.
Fig. 2: The morphology and structure at the perovskite–substrate region.
Fig. 3: Reducing interfacial energy loss.
Fig. 4: Photovoltaic performance of devices.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Zhang, S. et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Li, Z. et al. Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science 382, 284–289 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Liu, S., Biju, V. P., Qi, Y., Chen, W. & Liu, Z. Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia Mater. 15, 27 (2023).

    Article  ADS  Google Scholar 

  6. Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Liang, Z. et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Hossain, K. et al. Resolving the hydrophobicity of the Me-4PACz hole transport layer for inverted perovskite solar cells with efficiency >20%. ACS Energy Lett. 8, 3860–3867 (2023).

    Article  CAS  Google Scholar 

  10. Pitaro, M. et al. Tuning the surface energy of hole transport layers based on carbazole self-assembled monolayers for highly efficient Sn/Pb perovskite solar cells. Adv. Funct. Mater. 2023, 2306571 (2023).

    Article  Google Scholar 

  11. Al-Ashouri, A. et al. Wettability improvement of a carbazole-based hole-selective monolayer for reproducible perovskite solar cells. ACS Energy Lett. 8, 898–900 (2023).

    Article  CAS  Google Scholar 

  12. Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289–294 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Yu, S. et al. Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science 382, 1399–1404 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Luo, C. et al. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photon. 17, 856–864 (2023).

    Article  ADS  CAS  Google Scholar 

  15. Chang, X. et al. Two-second-annealed 2D/3D perovskite films with graded energy funnels and toughened heterointerfaces for efficient and durable solar cells. Angew. Chem. Int. Ed. 62, e202309292 (2023).

    Article  ADS  CAS  Google Scholar 

  16. Wang, H. et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv. Mater. 31, 1904408 (2019).

    Article  CAS  Google Scholar 

  17. Liu, S. et al. Effective passivation with size-matched alkyldiammonium iodide for high-performance inverted perovskite solar cells. Adv. Funct. Mater. 32, 2205009 (2022).

    Article  CAS  Google Scholar 

  18. Zheng, Z. et al. Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%. Adv. Mater. 34, 2109879 (2022).

    Article  CAS  Google Scholar 

  19. Gao, Y. et al. Elimination of unstable residual lead iodide near the buried interface for the stability improvement of perovskite solar cells. Energy Environ. Sci. 16, 2295–2303 (2023).

    Article  CAS  Google Scholar 

  20. Li, L. et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717 (2022).

    Article  CAS  Google Scholar 

  21. Stolterfoht, M. et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12, 2778–2788 (2019).

    Article  CAS  Google Scholar 

  22. Yang, B. et al. A universal ligand for lead coordination and tailored crystal growth in perovskite solar cells. Energy Environ. Sci. 17, 1549–1558 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suo, J. et al. Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. Nat. Energy 9, 143–153 (2024).

    Article  ADS  Google Scholar 

  24. Zhao, Y. et al. Molecular interaction regulates the performance and longevity of defect passivation for metal halide perovskite solar cells. J. Am. Chem. Soc. 142, 20071–20079 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Q. et al. Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 105, 163508–163513 (2014).

    Article  ADS  Google Scholar 

  26. Li, F. et al. Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photon. 17, 478–484 (2023).

    Article  ADS  CAS  Google Scholar 

  27. Mariotti, S. et al. Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science 381, 63–69 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Ma, C. & Park, N.-G. A realistic methodology for 30% efficient perovskite solar cells. Chem 6, 1254–1264 (2020).

    Article  CAS  Google Scholar 

  29. Rühle, S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016).

    Article  ADS  Google Scholar 

  30. Chu, X. et al. Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency. Nat. Energy 8, 372–380 (2023).

    Article  ADS  CAS  Google Scholar 

  31. Chen, S. et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Wu, S. et al. A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10, 1161 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  33. Chen, R. et al. Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat. Energy 8, 839–849 (2023).

    Article  ADS  CAS  Google Scholar 

  34. Thompson, A. P. et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article  CAS  Google Scholar 

  35. Verlet, L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967).

    Article  ADS  CAS  Google Scholar 

  36. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  ADS  Google Scholar 

  37. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 1695–1697 (1985).

  38. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  PubMed  Google Scholar 

  39. Seijas-Bellido, J. A. et al. Transferable classical force field for pure and mixed metal halide perovskites parameterized from first-principles. J. Chem. Inf. Model. 62, 6423–6435 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mayo, S. L., Olafson, B. D. & Goddard, W. A. DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990).

    Article  CAS  Google Scholar 

  41. Bayly, C. I., Cieplak, P., Cornell, W. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993).

    Article  CAS  Google Scholar 

  42. Neese, F. Software update: the ORCA program system—version 5.0. Wires. Comput. Mol. Sci. 12, e1606 (2022).

    Article  Google Scholar 

  43. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A.III & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Article  CAS  Google Scholar 

  44. Kanhaiya, K. et al. Accurate force fields for atomistic simulations of oxides, hydroxides, and organic hybrid materials up to the micrometer scale. J. Chem. Theory Comput. 19, 8293–8322 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Analytical and Testing Center of HUST for the support of facilities for sample measurements. We thank the Center for Computational Science and Engineering at Southern University of Science and Technology and Hoffmann Institute of Advanced Materials at Shenzhen Polytechnic University for providing the computing resources. We acknowledge the financial support from the National Key Research and Development Project from the Ministry of Science and Technology of China (2021YFB3800104), the National Natural Science Foundation of China (52002140, U20A20252), the Young Elite Scientists Sponsorship Program by CAST, the Natural Science Foundation of Hubei Province (2022CFA093), the Self-determined and Innovative Research Funds of HUST (2020kfyXJJS008), the China Postdoctoral Science Foundation (2023M731172) and the Innovation Project of Optics Valley Laboratory (OVL2021BG008). H.J.S. thanks the Horizon Europe research and innovation program of the European Union (grant agreement no. 101075330 of the NEXUS project) and the Engineering and Physical Science Research Council (EPSRC) (grant no. EP/V010840/1) for the financial support. N.-G.P. acknowledges the financial support from the National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) under contract NRF-2021R1A3B1076723 (Research Leader Program), NRF-2022M3J1A1085280 (Carbon Neutral Technology Program) and RS-2023-00259096 (GRDC Cooperative Hub).

Author information

Authors and Affiliations

Authors

Contributions

W.C., N.-G.P., Z.L. and S. Liu conceived the project; S. Liu, Z.S., R.C. and Y. Zhang fabricated the devices; S. Liu, W.X., Z.S., Y. Zhang, R.C., J.W., F.R., Q.Z. and H.R. carried out the material and device characterizations; S.H. and M.K.-C. conducted the modelling of PLQE dependent on light intensity (two-trap-level SRH model) under the supervision of H.J.S.; S. Li, H.L. and L.Q. carried out the GIXRD measurements; Y.J. and W.H. carried out the GIWAXS measurements; R.C., Y. Zhang, J.W., F.R., Q.Z., H.R., Y.J., W.H. and Y.G. provided suggestions for writing the paper; W.X. performed the DFT calculations under the supervision of Y. Zhao; X.L. performed the DFT calculations under the supervision of J.L. and Y. Zhang; J.L. performed the molecular dynamics simulations and analysed all computational data; S. Liu, J.L., Z.S., R.C., B.X., Z.L. and W.C. analysed all experimental data; and S. Liu, J.L., W.X., R.C., Z.S. and Y. Zhang prepared the paper under the supervision of Z.L., N.-G.P. and W.C. All authors revised and proofread the written paper.

Corresponding authors

Correspondence to Zonghao Liu, Nam-Gyu Park or Wei Chen.

Ethics declarations

Competing interests

H.J.S. is a co-founder and the Chief Scientific Officer of Oxford PV, a company commercializing perovskite solar cells.

Peer review

Peer review information

Nature thanks Antonio Abate, Eric Diau and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Notes 1–12, Supplementary Figs. 1–51, Supplementary Tables 1–12 and Supplementary References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Li, J., Xiao, W. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07723-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing