WO3 Nanoplates Decorated with Au and SnO2 Nanoparticles for Real-Time Detection of Foodborne Pathogens
<p>(<b>a</b>) The synthesis schematic of XAu/SnO<sub>2</sub>–WO<sub>3</sub> nanoplates. (<b>b</b>,<b>c</b>) HRTEM images. (<b>d</b>) HAADF−STEM image and corresponding EDS elemental mapping results of the 1Au/SnO<sub>2</sub>–WO<sub>3</sub> nanoplates.</p> "> Figure 2
<p>(<b>a</b>) XRD patterns of WO<sub>3</sub> nanoplates, Au–WO<sub>3</sub> nanoplates, SnO<sub>2</sub>–WO<sub>3</sub> nanoplates, and 1Au/SnO<sub>2</sub>–WO<sub>3</sub> nanoplates; XPS spectra of (<b>b</b>) W 4f, (<b>c</b>) Au 4f, (<b>d</b>) Sn 3d, and (<b>e</b>) O 1s; (<b>f</b>) EPR spectra of WO<sub>3</sub> and 1Au/SnO<sub>2</sub>–WO<sub>3</sub> nanoplates.</p> "> Figure 3
<p>(<b>a</b>) Response curves of WO<sub>3</sub> and XAu/SnO<sub>2</sub>–WO<sub>3</sub> nanoplate-based sensors to 25 ppm 3H-2B at different working temperatures. (<b>b</b>) Dynamic response and recovery curves of WO<sub>3</sub> and XAu/SnO<sub>2</sub>–WO<sub>3</sub> nanoplate-based sensors toward different concentrations (1.25, 2.5, 5, 10, 15, and 25 ppm) of 3H-2B at 140 °C. (<b>c</b>) Response curves of WO<sub>3</sub> and XAu/SnO<sub>2</sub>–WO<sub>3</sub> nanoplate-based sensors toward different concentrations of 3H-2B. (<b>d</b>,<b>e</b>) Dynamic response and recovery curves of WO<sub>3</sub> and XAu/SnO<sub>2</sub>–WO<sub>3</sub> nanoplate-based sensors toward 25 ppm 3H-2B. (<b>f</b>) Selectivity tests of WO<sub>3</sub> and XAu/SnO<sub>2</sub>–WO<sub>3</sub> nanoplate-based sensors toward different target gases.</p> "> Figure 4
<p>Schematic of the surface-sensing reaction of 1Au/SnO<sub>2</sub>–WO<sub>3</sub> nanoplates toward 3H-2B and the corresponding band diagram of the sensing mechanism.</p> "> Figure 5
<p>(<b>a</b>) Optical photograph of wireless portable sensor connected to a laptop via ZigBee. (<b>b</b>) Dynamic response and recovery curves displayed on the laptop when the portable sensor was exposed to 25 ppm 3H-2B.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphology of WO3, SnO2–WO3, and XAu/SnO2–WO3 Nanoplates
3.2. Microstructure of WO3, SnO2–WO3, and XAu/SnO2–WO3 Nanoplates
3.3. Gas-Sensing Performance
3.4. Sensing Mechanism
3.5. Wireless Portable Sensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Zhang, Z.; Li, Z.; Song, W.; Yi, J. A chemiresistive-potentiometric multivariate sensor for discriminative gas detection. Nat. Commun. 2023, 14, 3495. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.Y.; Song, Y.G.; Kim, J.E.; Kwon, J.U.; Soh, K.; Kwon, J.Y.; Kang, C.Y.; Yoon, J.H. An artificial olfactory system based on a chemi-memristive device. Adv. Mater. 2023, 35, 2302219. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Cho, M.; Lee, K.; Kang, M.; Park, I. A review of nanostructure-based gas sensors in a power consumption perspective. Sens. Actuators B Chem. 2022, 372, 132612. [Google Scholar] [CrossRef]
- Yang, X.; Deng, Y.; Yang, H.; Liao, Y.; Cheng, X.; Zou, Y.; Wu, L.; Deng, Y. Functionalization of mesoporous semiconductor metal oxides for gas sensing: Recent advances and emerging challenges. Adv. Sci. 2022, 10, 2204810. [Google Scholar] [CrossRef] [PubMed]
- Galstyan, V.; Poli, N.; D’Arco, A.; Macis, S.; Lupi, S.; Comini, E. A novel approach for green synthesis of WO3 nanomaterials and their highly selective chemical sensing properties. J. Mater. Chem. A 2020, 8, 20373–20385. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, J.; Deng, Y.; Ren, Y.; Xie, W.; Deng, Y.; Zou, Y.; Luo, W. Polymerization-induced aggregation approach toward uniform Pd nanoparticle-decorated mesoporous SiO2/WO3 Mmicrospheres for hydrogen sensing. ACS Appl. Mater. Interfaces 2023, 15, 15721–15731. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Zou, Y.; Liu, Y.; Zhou, X.; Ma, J.; Zhao, D.; Wei, G.; Ai, Y.; Xi, S.; Deng, Y. Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nat. Mater. 2020, 19, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Staerz, A.; Somacescu, S.; Epifani, M.; Kida, T.; Weimar, U.; Barsan, N. WO3-based gas sensors: Identifying inherent qualities and understanding the sensing mechanism. ACS Sens. 2020, 5, 1624–1633. [Google Scholar] [CrossRef]
- Zeb, S.; Yang, Z.; Hu, R.; Umair, M.; Naz, S.; Cui, Y.; Qin, C.; Liu, T.; Jiang, X. Electronic structure and oxygen vacancy tuning of Co & Ni co-doped W18O49 nanourchins for efficient TEA gas sensing. Chem. Eng. J. 2023, 465, 142815. [Google Scholar]
- Kaur, N.; Zappa, D.; Maraloiu, V.A.; Comini, E. Novel christmas branched like NiO/NiWO4/WO3 (p-p-n) nanowire heterostructures for chemical sensing. Adv. Funct. Mater. 2021, 31, 2104416. [Google Scholar] [CrossRef]
- Liu, D.; Li, X.; Li, Y.; Yin, S.; Liu, J.; Zhang, J. Fe-functionalized alpha-Fe2O3/ZnO nanocages for ppb-level acetone gas sensing. ACS Appl. Nano Mater. 2022, 5, 5745–5755. [Google Scholar] [CrossRef]
- Dai, T.; Yan, Z.; Li, M.; Han, Y.; Deng, Z.; Wang, S.; Wang, R.; Xu, X.; Shi, L.; Tong, W.; et al. Boosting electrical response toward trace volatile organic compounds molecules via pulsed temperature modulation of Pt anchored WO3 chemiresistor. Small Methods 2022, 6, 2200728. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Zhao, C.; Shen, J.; Wei, J.; Liu, H.; Pan, Y.; Zhao, Y.; Zhu, Y. Hierarchical flower-like WO3 nanospheres decorated with bimetallic Au and Pd for highly sensitive and selective detection of 3-Hydroxy-2-butanone biomarker. ACS Sens. 2023, 8, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Yang, L.; Liu, Z.; Li, Y.; Bai, J.; Liu, F.; Liang, X.; Sun, P.; Lu, G. Fast detection of ppm n-pentanol by PtAu alloy nanocrystals decorated flower-like WO3. Sens. Actuators B Chem. 2022, 317, 132623. [Google Scholar] [CrossRef]
- Zhu, Z.; Xing, X.; Feng, D.; Li, Z.; Tian, Y.; Yang, D. Highly sensitive and fast-response hydrogen sensing of WO3 nanoparticles via palladium reined spillover effect. Nanoscale 2021, 13, 12669–12675. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jung, Y.; Sung, S.-H.; Lee, G.; Kim, J.; Seong, J.; Shim, Y.-S.; Jun, S.C.; Jeon, S. High-performance gas sensor array for indoor air quality monitoring: The role of Au nanoparticles on WO3, SnO2, and NiO-based gas sensors. J. Mater. Chem. A 2021, 9, 1159–1167. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Zhou, X.; Yang, X.; Alharthi, F.A.; Alghamdi, A.A.; Cheng, X.; Deng, Y. Au nanoparticles decorated mesoporous SiO2–WO3 hybrid materials with improved pore connectivity for ultratrace ethanol detection at low operating temperature. Small 2020, 16, 2004772. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Sun, J.; Xu, L.; Zhou, Q.Q.; Chen, X.F.; Zhu, S.D.; Dong, B.; Lu, G.Y.; Song, H.W. Au@ZnO functionalized three-dimensional macroporous WO3: A application of selective H2S gas sensor for exhaled breath biomarker detection. Sens. Actuators B Chem. 2020, 324, 128725. [Google Scholar] [CrossRef]
- Tammanoon, N.; Iwamoto, T.; Ueda, T.; Hyodo, A.; Wisitsoraat, C.; Liewhiran, Y.; Shimizu, Y. Synergistic effects of PdOx–CuOx loadings on methyl mercaptan sensing of porous WO3 microspheres prepared by ultrasonic spray pyrolysis. ACS Appl. Mater. Interfaces 2020, 12, 41728–41739. [Google Scholar] [CrossRef]
- Gao, X.; Liu, H.; Wang, T.; Jiang, Z.; Zhu, Y. Low temperature preservation for perishable ready to eat foods: Not entirely effective for control of L. monocytogenes. Trends Food Sci. Technol. 2023, 124, 104228. [Google Scholar] [CrossRef]
- Listeriosis. Available online: https://www.who.int/news-room/fact-sheets/detail/listeriosis (accessed on 7 April 2024).
- Zhu, Z.; Zheng, L.; Zheng, S.; Chen, J.; Liang, M.; Tian, Y.; Yang, D. Cr doped WO3 nanofibers enriched with surface oxygen vacancies for highly sensitive detection of the 3-hydroxy-2-butanone biomarker. J. Mater. Chem. A 2018, 6, 21419. [Google Scholar] [CrossRef]
- Pereira, E.; Conrad, A.; Tesfai, A.; Palacios, A.; Kandar, R.; Kearney, A.; Locas, A.; Jamieson, F.; Elliot, E.; Otto, M.; et al. Multinational outbreak of Listeria monocytogenes infections linked to enoki mushrooms imported from the Republic of Korea 2016–2020. J. Food Protect. 2023, 86, 100101. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Shen, L.; Zeng, Z.; Sun, M.; Liu, Y.; Liu, S.; Li, C.; Wang, X. A minireview of the methods for Listeria monocytogenes detection. Food Anal. Methods 2018, 11, 215–223. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Yang, J.; Ruan, J.; Sun, C. Microbial volatile organic compounds and their application in microorganism identification in foodstuff. TrAC Trend Anal. Chem. 2016, 78, 1–16. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, Y.; Ma, J.; Cheng, X.; Xie, J.; Xu, P.; Liu, H.; Liu, H.; Zhang, H.; Wu, M.; et al. Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J. Am. Chem. Soc. 2017, 139, 10365–10373. [Google Scholar] [CrossRef]
- Ma, J.H.; Li, Y.Y.; Li, J.C.; Yang, X.; Ren, Y.; Alghamdi, A.A.; Song, G.; Yuan, K.; Deng, Y. Rationally designed dual-mesoporous transition metal oxides/noble metal nanocomposites for fabrication of gas sensors in real-time detection of 3-Hydroxy-2-butanone biomarker. Adv. Funct. Mater. 2021, 32, 2107439. [Google Scholar] [CrossRef]
- Zeb, S.; Cui, Y.; Zhao, H.; Sui, Y.; Yang, Z.; Khan, Z.U.; Ahmad, S.M.; Ikram, M.; Gao, Y.; Jiang, X. Synergistic effect of Au-PdO modified Cu-doped K2W4O13 nanowires for dual selectivity high performance gas sensing. ACS Appl. Mater. Interfaces 2022, 14, 13836–13847. [Google Scholar] [CrossRef]
- Wang, C.; Du, L.; Xing, X.; Feng, D.; Tian, Y.; Li, Z.; Zhao, X.; Yang, D. Radial ZnO nanorods decorating Co3O4 nanoparticles for highly selective and sensitive detection of the 3-hydroxy-2-butanone biomarker. Nanoscale 2022, 14, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Mao, Q.; Jian, L.; Dong, Y.; Zhu, Y. Photodeposition of earth-abundant cocatalysts in photocatalytic water splitting: Methods, functions, and mechanisms. Chin. J. Catal. 2022, 43, 1774–1804. [Google Scholar] [CrossRef]
- Fernando, J.F.; Shortell, M.P.; Noble, C.J.; Harmer, J.R.; Jaatinen, E.A.; Waclawik, E.R. Controlling Au photodeposition on large ZnO nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 14271–14283. [Google Scholar] [CrossRef]
- Bai, S.L.; Li, D.Q.; Han, D.M.; Luo, R.; Chen, A.; Chung, C.L. Preparation, characterization of WO3–SnO2 nanocomposites and their sensing properties for NO2. Sens. Actuators B Chem. 2010, 150, 749–755. [Google Scholar] [CrossRef]
- Cao, P.J.; Huang, Q.G.; Navale, S.T.; Fang, M.; Liu, X.K.; Zeng, Y.X.; Liu, W.J.; Stadler, F.J.; Lu, Y.M. Integration of mesoporous ZnO and Au@ZnO nanospheres into sensing device for the ultrasensitive CH3COCH3 detection down to ppb levels. Appl. Surf. Sci. 2020, 518, 146223. [Google Scholar] [CrossRef]
- Song, X.P.; Xu, Q.; Zhang, T.; Song, B.; Li, C.; Cao, B. Room-temperature, high selectivity and low-ppm-level triethylamine sensor assembled with Au decahedrons-decorated porous α-Fe2O3 nanorods directly grown on flat substrate. Sens. Actuators B Chem. 2018, 268, 170–181. [Google Scholar] [CrossRef]
- Wang, D.; Tian, L.; Li, H.J.; Wan, K.; Yu, X.; Wang, P.; Chen, A.; Wang, X.; Yang, J. Mesoporous ultrathin SnO2 nanosheets in situ modified by graphene oxide for extraordinary formaldehyde detection at low temperatures. ACS Appl. Mater. Interfaces 2019, 11, 12808–12818. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.H.; Ren, Y.A.; Zhou, X.R.; Liu, L.; Zhu, Y.; Cheng, X.; Xu, P.; Li, X.; Deng, Y.; Zhao, D. Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: Gas sensing performance and mechanism study. Adv. Funct. Mater. 2017, 28, 1705268. [Google Scholar] [CrossRef]
- Nayak, A.K.; Ghosh, R.; Santra, S.; Guha, P.K.; Pradhan, D. Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds. Nanoscale 2015, 7, 12460–12473. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Wang, W.; Li, W.; Bai, X.; Zhao, J.; Tse, E.C.M.; Phillips, D.L.; Zhu, Y. Steering electron-hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew. Chem. Int. Ed. 2021, 60, 8236–8242. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Ge, K.; Qi, S.; Chen, Y.; Qiu, J.; Liu, Q. Hydrangea-like mesoporous WO3 nanoflowers with crystalline framework for 3-hydroxy-2-butanone sensing. Anal. Bioanal. Chem. 2020, 412, 8371–8378. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhu, Z.Y.; Zheng, S.Z.; Du, L.; Xing, X.; Feng, D.; Li, S.; Yang, D. Synthesis of zinc oxide-alumina nanocables for detection of 3-hydroxy-2-butanone biomarker. Mater. Lett. 2019, 253, 121–123. [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Wang, C.; Yang, Z.L.; Jin, J. Highly sensitive 3-hydroxy-2-butanone gas sensor based on p-Cr2O3/n-SnO2 binary heterojunction nanofibers. Mater. Lett. 2022, 325, 132856. [Google Scholar] [CrossRef]
- Cai, H.J.; Liu, H.Q.; Ni, T.J.; Pan, Y.; Zhao, Y.; Zhu, Y. Controlled synthesis of Pt doped SnO2 mesoporous hollow nanospheres for highly selective and rapidly detection of 3-Hydroxy-2-Butanone biomarker. Front. Chem. 2019, 7, 843. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Feng, D.L.; Wang, C.; Xing, X.; Du, L.; Zhu, Z.; Huang, X.; Yang, D. Gas sensor detecting 3-Hydroxy-2-butanone biomarkers: Boosted response via decorating Pd nanoparticles onto the 010 facets of BiVO4 decahedrons. ACS Sens. 2020, 5, 2620–2627. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zheng, L.; Zheng, S.; Chen, J.; Xing, X.; Feng, D.; Yang, D. Multichannel pathway-enriched mesoporous NiO nanocuboids for the highly sensitive and selective detection of 3-hydroxy-2-butanone biomarkers. J. Mater. Chem. A 2019, 7, 10456–10463. [Google Scholar] [CrossRef]
- Li, F.; Gao, X.; Wang, R.; Zhang, T. Design of WO3-SnO2 core-shell nanofibers and their enhanced gas sensing performance based on different work function. Appl. Surf. Sci. 2018, 442, 30–37. [Google Scholar] [CrossRef]
- Chen, K.; Xie, W.; Deng, Y.; Han, J.; Zhu, Y.; Sun, J.; Yuan, K.; Wu, L.; Deng, Y. Alkaloid precipitant reaction inspired controllable synthesis of mesoporous tungsten oxide spheres for biomarker sensing. ACS Nano 2023, 17, 15763–15775. [Google Scholar] [CrossRef]
Sensing Materials | T (°C) | τres/τrecov (s) | 3H-2B (ppm) | Response (Ra/Rg) | LOD (ppm) | Ref. |
---|---|---|---|---|---|---|
WO3 | 205 | 25/146 | 25 | 152 | 0.4 | [39] |
ZnO@Al2O3 | 300 | 27/34 | 50 | 37.2 | 10 | [40] |
Cr2O3/SnO2 | 240 | 9/4 | 50 | 280 | 0.02 | [41] |
Pt-doped SnO2 | 250 | 11/20 | 10 | 48.69 | 0.5 | [42] |
Pd–BiVO4 | 200 | 12/8 | 10 | 103.7 | 0.2 | [43] |
M–NiO NCs | 120 | 49/52 | 50 | 302 | 0.5 | [44] |
WO3/Au | 175 | 15/45 | 2.5 | 18.8 | 2.5 | [26] |
1Au/SnO2–WO3 | 140 | 25/11 | 25 | 662 | 1.25 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wu, Z.; Song, X.; Li, D.; Liu, J.; Zhang, J. WO3 Nanoplates Decorated with Au and SnO2 Nanoparticles for Real-Time Detection of Foodborne Pathogens. Nanomaterials 2024, 14, 719. https://doi.org/10.3390/nano14080719
Li X, Wu Z, Song X, Li D, Liu J, Zhang J. WO3 Nanoplates Decorated with Au and SnO2 Nanoparticles for Real-Time Detection of Foodborne Pathogens. Nanomaterials. 2024; 14(8):719. https://doi.org/10.3390/nano14080719
Chicago/Turabian StyleLi, Xueyan, Zeyi Wu, Xiangyu Song, Denghua Li, Jiajia Liu, and Jiatao Zhang. 2024. "WO3 Nanoplates Decorated with Au and SnO2 Nanoparticles for Real-Time Detection of Foodborne Pathogens" Nanomaterials 14, no. 8: 719. https://doi.org/10.3390/nano14080719
APA StyleLi, X., Wu, Z., Song, X., Li, D., Liu, J., & Zhang, J. (2024). WO3 Nanoplates Decorated with Au and SnO2 Nanoparticles for Real-Time Detection of Foodborne Pathogens. Nanomaterials, 14(8), 719. https://doi.org/10.3390/nano14080719