Rainwater: Harvesting and Storage through a Flexible Storage System to Enhance Agricultural Resilience
<p>Satellite image of the area at different scales.</p> "> Figure 2
<p>(<b>a</b>) Schematic view of the FWSS. Numbers refer to the main components of both systems: (1) ditch and seasonal water stream, (2) loading system (including electric pump, pipes, and connections), (3) water storage system, (4) electric pump for water delivery, (5) water usage (e.g., irrigation system). (<b>b</b>) (A) Detail of the water extraction point; (B) automated extraction pump; (C) newly installed FWSS front view; (D) FWSS partially full.</p> "> Figure 3
<p>Average monthly rainfall and temperatures of the area during the study period.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Meteorological Data
2.3. Flexible Water Storage System (FWSS)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ouatiki, H.; Boudhar, A.; Ouhinou, A.; Arioua, A.; Hssaisoune, M.; Bouamri, H.; Benabdelouahab, T. Trend Analysis of Rainfall and Drought over the Oum Er-Rbia River Basin in Morocco during 1970–2010. Arab. J. Geosci. 2019, 12, 128. [Google Scholar] [CrossRef]
- Ngigi, A.N.; Magu, M.M.; Muendo, B.M. Occurrence of Antibiotics Residues in Hospital Wastewater, Wastewater Treatment Plant, and in Surface Water in Nairobi County, Kenya. Environ. Monit. Assess. 2020, 192, 8. [Google Scholar] [CrossRef] [PubMed]
- Benabdelouahab, T.; Gadouali, F.; Boudhar, A.; Lebrini, Y.; Hadria, R.; Salhi, A. Analysis and Trends of Rainfall Amounts and Extreme Events in the Western Mediterranean Region. Theor. Appl. Climatol. 2020, 141, 309–320. [Google Scholar] [CrossRef]
- Bruins, H.J.; Jongmans, T.; van der Plicht, J. Ancient Runoff Farming and Soil Aggradation in Terraced Wadi Fields (Negev, Israel): Obliteration of Sedimentary Strata by Ants, Scorpions and Humans. Quat. Int. 2020, 545, 87–101. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Giorgi, F. Climate Change Hotspots in the CMIP5 Global Climate Model Ensemble. Clim. Chang. 2012, 114, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Diffenbaugh, N.S.; Pal, J.S.; Giorgi, F.; Gao, X. Heat Stress Intensification in the Mediterranean Climate Change Hotspot. Geophys. Res. Lett. 2007, 34, L11706. [Google Scholar] [CrossRef]
- Goubanova, K.; Li, L. Extremes in Temperature and Precipitation around the Mediterranean Basin in an Ensemble of Future Climate Scenario Simulations. Glob. Planet. Chang. 2007, 57, 27–42. [Google Scholar] [CrossRef]
- Beaumont, L.J.; Pitman, A.; Perkins, S.; Zimmermann, N.E.; Yoccoz, N.G.; Thuiller, W. Impacts of Climate Change on the World’s Most Exceptional Ecoregions. Proc. Natl. Acad. Sci. USA 2011, 108, 2306–2311. [Google Scholar] [CrossRef]
- Kyselý, J.; Beguería, S.; Beranová, R.; Gaál, L.; López-Moreno, J.I. Different Patterns of Climate Change Scenarios for Short-Term and Multi-Day Precipitation Extremes in the Mediterranean. Glob. Planet. Chang. 2012, 98, 63–72. [Google Scholar] [CrossRef]
- Toreti, A.; Bavera, D.; Cammalleri, C.; Cota, T.; De Jager, A.; Deus, R.; Di Ciollo, C.; Maetens, W.; Magni, D.; Masante, D.; et al. Drought in Western Mediterranean February 2022; EUR 31026 EN; Publications Office of the European Union: Luxembourg, 2022; ISBN 978-92-76-49493-5. [Google Scholar] [CrossRef]
- Füssel, H.-M.; Klein, R.J.T. Climate Change Vulnerability Assessments: An Evolution of Conceptual Thinking. Clim. Chang. 2006, 75, 301–329. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S. Climate Change and Interconnected Risks to Sustainable Development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Peleg, N.; Bartov, M.; Morin, E. CMIP5-predicted Climate Shifts over the East Mediterranean: Implications for the Transition Region between Mediterranean and Semi-arid Climates. Int. J. Climatol. 2015, 35, 2144–2153. [Google Scholar] [CrossRef]
- Pisano, A.; Marullo, S.; Artale, V.; Falcini, F.; Yang, C.; Leonelli, F.E.; Santoleri, R.; Buongiorno Nardelli, B. New Evidence of Mediterranean Climate Change and Variability from Sea Surface Temperature Observations. Remote Sens. 2020, 12, 132. [Google Scholar] [CrossRef]
- Uribe, I.O.; Mosquera-Corral, A.; Rodicio, J.L.; Esplugas, S. Advanced Technologies for Water Treatment and Reuse. AIChE J. 2015, 61, 3146–3158. [Google Scholar] [CrossRef]
- Politi, N.; Vlachogiannis, D.; Sfetsos, A.; Nastos, P.T.; Dalezios, N.R. High Resolution Future Projections of Drought Characteristics in Greece Based on SPI and SPEI Indices. Atmosphere 2022, 13, 1468. [Google Scholar] [CrossRef]
- del Pozo, A.; Brunel-Saldias, N.; Engler, A.; Ortega-Farias, S.; Acevedo-Opazo, C.; Lobos, G.A.; Jara-Rojas, R.; Molina-Montenegro, M.A. Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs). Sustainability 2019, 11, 2769. [Google Scholar] [CrossRef]
- Setter, T.L.; Waters, I. Review of Prospects for Germplasm Improvement for Waterlogging Tolerance in Wheat, Barley and Oats. Plant Soil 2003, 253, 1–34. [Google Scholar] [CrossRef]
- Parsons, P.A. The Metabolic Cost of Multiple Environmental Stresses: Implications for Climatic Change and Conservation. Trends Ecol. Evol. 1990, 5, 315–317. [Google Scholar] [CrossRef]
- Wilcox, J.; Nasiri, F.; Bell, S.; Rahaman, M.S. Urban Water Reuse: A Triple Bottom Line Assessment Framework and Review. Sustain. Cities Soc. 2016, 27, 448–456. [Google Scholar] [CrossRef]
- Baldi, M.; Amin, D.; Al Zayed, I.S.; Dalu, G. Climatology and Dynamical Evolution of Extreme Rainfall Events in the Sinai Peninsula—Egypt. Sustainability 2020, 12, 6186. [Google Scholar] [CrossRef]
- Krishna, R.S.; Mishra, J.; Ighalo, J.O. Rising Demand for Rain Water Harvesting System in the World: A Case Study of Joda Town, India. World Sci. News 2020, 146, 47–59. [Google Scholar]
- Pari, L.; Suardi, A.; Stefanoni, W.; Latterini, F.; Palmieri, N. Economic and Environmental Assessment of Two Different Rain Water Harvesting Systems for Agriculture. Sustainability 2021, 13, 3871. [Google Scholar] [CrossRef]
- Pari, L.; Stefanoni, W.; Bergonzoli, S.; Cozzolino, L.; Lazar, S.; Pari, R.; Tonolo, A. Innovative water harvesting system to CATCH runoff and drainage water in agriculture fields. In Proceedings of the European Biomass Conference and Exhibition Proceedings, Bologna, Italy, 5–8 June 2023; pp. 445–453. [Google Scholar]
- Ayob, S.; Rahmat, S.N. Rainwater Harvesting (RWH) and Groundwater Potential as Alternatives Water Resources in Malaysia: A Review. MATEC Web Conf. 2017, 103, 04020. [Google Scholar] [CrossRef]
- Zarikos, I.; Politi, N.; Gounaris, N.; Karozis, S.; Vlachogiannis, D.; Sfetsos, A. Quantifying the Long-Term Performance of Rainwater Harvesting in Cyclades, Greece. Water 2023, 15, 3038. [Google Scholar] [CrossRef]
- Ammar, A.; Riksen, M.; Ouessar, M.; Ritsema, C. Identification of Suitable Sites for Rainwater Harvesting Structures in Arid and Semi-Arid Regions: A Review. Int. Soil Water Conserv. Res. 2016, 4, 108–120. [Google Scholar] [CrossRef]
- Khanal, G.; Thapa, A.; Devkota, N.; Paudel, U.R. A Review on Harvesting and Harnessing Rainwater: An Alternative Strategy to Cope with Drinking Water Scarcity. Water Supply 2020, 20, 2951–2963. [Google Scholar] [CrossRef]
- Yannopoulos, S.; Giannopoulou, I.; Kaiafa-Saropoulou, M. Investigation of the Current Situation and Prospects for the Development of Rainwater Harvesting as a Tool to Confront Water Scarcity Worldwide. Water 2019, 11, 2168. [Google Scholar] [CrossRef]
- Binyam, A.Y.; Desale, K.A. Rainwater Harvesting: An Option for Dry Land Agriculture in Arid and Semi-Arid Ethiopia. Int. J. Water Resour. Environ. Eng. 2015, 7, 17–28. [Google Scholar] [CrossRef]
- Vema, V.; Sudheer, K.P.; Chaubey, I. Fuzzy Inference System for Site Suitability Evaluation of Water Harvesting Structures in Rainfed Regions. Agric. Water Manag. 2019, 218, 82–93. [Google Scholar] [CrossRef]
- Balooni, K.; Kalro, A.H.; Kamalamma, A.G. Community Initiatives in Building and Managing Temporary Check-Dams across Seasonal Streams for Water Harvesting in South India. Agric. Water Manag. 2008, 95, 1314–1322. [Google Scholar] [CrossRef]
- Wang, W.; Straffelini, E.; Tarolli, P. Steep-Slope Viticulture: The Effectiveness of Micro-Water Storage in Improving the Resilience to Weather Extremes. Agric. Water Manag. 2023, 286, 108398. [Google Scholar] [CrossRef]
- Yuan, S.; Li, Z.; Chen, L.; Li, P.; Zhang, Z.; Zhang, J.; Wang, A.; Yu, K. Effects of a Check Dam System on the Runoff Generation and Concentration Processes of a Catchment on the Loess Plateau. Int. Soil Water Conserv. Res. 2022, 10, 86–98. [Google Scholar] [CrossRef]
- Straffelini, E.; Tarolli, P. Climate Change-Induced Aridity Is Affecting Agriculture in Northeast Italy. Agric. Syst. 2023, 208, 103647. [Google Scholar] [CrossRef]
- Akangle Panme, F.; Narayan Sethi, L. Estimation of Crop Water Requirements and Irrigation Scheduling for Major Crops Grown in India’s North-Eastern Region. Curr. Appl. Sci. Technol. 2022, 23, 10-55003. [Google Scholar] [CrossRef]
- Akkamis, M.; Caliskan, S. Responses of Yield, Quality and Water Use Efficiency of Potato Grown under Different Drip Irrigation and Nitrogen Levels. Sci. Rep. 2023, 13, 9911. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2018; Available online: http://faostat.fao.org (accessed on 27 November 2023).
Year | January | February | March | April | May | June | July | August | September | October | November | December | Tot |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rain (mm) 2020 | 14.8 | 20 | 26 | 25.4 | 21.4 | 22.6 | 1.6 | 55 | 69.6 | 79.4 | 59.2 | 186.6 | 581.6 |
Rain (mm) 2021 | 195.6 | 54.6 | 47.2 | 58.6 | 14.4 | 25.4 | 5.4 | 1.2 | 0.6 | 1.4 | 10.8 | 47.5 | 462.7 |
Rain (mm) 2022 | 21.8 | 28.6 | 27.8 | 27.4 | 22.4 | 24.4 | 46.2 | 19.2 | 98 | 17.2 | 99.4 | 123.7 | 556.1 |
Year | Amount of Water Collected (m3) |
---|---|
2020 | 907 |
2021 | 721 |
2022 | 867 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pari, L.; Cozzolino, L.; Bergonzoli, S. Rainwater: Harvesting and Storage through a Flexible Storage System to Enhance Agricultural Resilience. Agriculture 2023, 13, 2289. https://doi.org/10.3390/agriculture13122289
Pari L, Cozzolino L, Bergonzoli S. Rainwater: Harvesting and Storage through a Flexible Storage System to Enhance Agricultural Resilience. Agriculture. 2023; 13(12):2289. https://doi.org/10.3390/agriculture13122289
Chicago/Turabian StylePari, Luigi, Luca Cozzolino, and Simone Bergonzoli. 2023. "Rainwater: Harvesting and Storage through a Flexible Storage System to Enhance Agricultural Resilience" Agriculture 13, no. 12: 2289. https://doi.org/10.3390/agriculture13122289
APA StylePari, L., Cozzolino, L., & Bergonzoli, S. (2023). Rainwater: Harvesting and Storage through a Flexible Storage System to Enhance Agricultural Resilience. Agriculture, 13(12), 2289. https://doi.org/10.3390/agriculture13122289