An Analysis of Land-Use and Land-Cover Change in the Zhujiang–Xijiang Economic Belt, China, from 1990 to 2017
<p>Location of the study area and its eleven municipalities.</p> "> Figure 2
<p>Land use maps in 1990, 2000, and 2017.</p> "> Figure 3
<p>Net change in land-use and land-cover from 1990 to 2017. (<b>a</b>) 1990–2000. (<b>b</b>) 2000–2017.</p> "> Figure 4
<p>Map of the net change in six land-use types from 1990 to 2000 and 2000 to 2017.</p> "> Figure 5
<p>The spatial pattern of land-use and land-cover change (LUCC) in the Zhujiang–Xijiang Economic Belt (ZXEB). (<b>top</b>): 1990–2000, (<b>bottom</b>): 2000–2017.</p> "> Figure 6
<p>Built-up land expansion in the ZXEB from 1990 to 2017.</p> "> Figure 7
<p>Map of built-up land expansion from 1990 to 2017.</p> "> Figure 8
<p>Urban expansion in eleven prefecture-level cities in the ZXEB (1990, 2000, and 2017). Note: Guangzhou and Foshan are connected.</p> "> Figure 9
<p>Moran’s <span class="html-italic">I</span> of land-use/cover of study area during 1990 and 2005. Note: unused land was ignored as a result of it being the smallest area (less than 0.01% of total area), (<b>a</b>) Moran’s <span class="html-italic">I</span> of cropland, woodland, grassland and water body, (<b>b</b>) Moran’s <span class="html-italic">I</span> of urban land, rural settlements, infrastructure areas and built-up land.</p> "> Figure 10
<p>Population and gross domestic product (GDP) change from 1994 to 2015. (<b>a</b>) Total population in ZXEB from 1994–2015. (<b>b</b>) GDP in the Zhujiang–Xijiang Economic Belt (ZXEB) from 1994–2015.</p> "> Figure 11
<p>Proportion of sub-class of built-up land change in 1990, 2000, and 2017.</p> "> Figure 12
<p>Urban and rural per capita net income.</p> "> Figure 13
<p>The linkage between policy, socioeconomic, rural–urban migration, and urbanization.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methods
2.3.1. Transition Matrix
2.3.2. Markov Modeling of Land-Use and Land-Cover Change
2.3.3. Detection of Spatial Autocorrelation
3. Results
3.1. The LUCC Pattern in 1990, 2000, and 2017
3.2. The Temporal and Spatial Variation Trends of LUCC Since 1990
3.3. Built-up Land Expansion Since 1990
4. Discussion
4.1. The Spatial Autocorrelation of Land Use and Drivers Analysis in ZXEB
4.2. The Socioeconomic Driving Forces of Urbanization
4.3. Rural–Urban Migration and Peri-Urban Development
4.4. Policy Driving Force of Urbanization
5. Conclusions
- (1)
- Woodland was the dominant land-use type in ZXEB, cropland increased, and woodland decreased dramatically in both periods. In the two periods, 1990–2000 and 2000–2017, woodland was found to be the most stable land-use type, and land-use activities have become stronger compared with the past.
- (2)
- Built-up land expansion was the major land-use conversion process in the two periods and most built-up land increases came from cropland and woodland. Both the urban land and rural settlements have increased in area; however, the proportion of rural settlements in built-up land has decreased since 2000.
- (3)
- The spatial autocorrelation of all land-use types in ZXEB was related highly and the modes of land-use change have changed mainly because of the change in socioeconomics, rural–urban migration, and policies.
- (4)
- Both GDP and total population have increased dramatically from 1994 to 2015, and directly caused urbanization; while rural–urban migration has led to urbanization and its process, as well as accelerated the peri-urban development.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; Jiang, N. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Shi, G.; Jiang, N.; Yao, L. Land Use and Cover Change during the Rapid Economic Growth Period from 1990 to 2010: A Case Study of Shanghai. Sustainability 2018, 10, 426. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Diouf, A.; Lambin, E.F. Monitoring land-cover changes in semi-arid regions: remote sensing data and field observations in the Ferlo, Senegal. J. Arid Environ. 2001, 48, 129–148. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of Land-Use and Land-Cover Change in Tropical Regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Zhuang, D.; Zhang, Z.; Deng, X. Study on spatial pattern of land-use change in China during 1995–2000. Sci. China Ser. Earth Sci. 2003, 46, 373–384. [Google Scholar]
- Bajocco, S.; De Angelis, A.; Perini, L.; Ferrara, A.; Salvati, L. The impact of land use/land cover changes on land degradation dynamics: a Mediterranean case study. Environ. Manag. 2012, 49, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Maitima, J.M.; Mugatha, S.M.; Reid, R.S.; Gachimbi, L.N.; Majule, A.; Lyaruu, H.; Pomery, D.; Mathai, S.; Mugisha, S. The linkages between land use change, land degradation and biodiversity across East Africa. Afr. J. Environ. Sci. Technol. 2009, 3, 310–325. [Google Scholar]
- Yang, D.; Kanae, S.; Oki, T.; Koike, T.; Musiake, K. Global potential soil erosion with reference to land use and climate changes. Hydrol. Process. 2003, 17, 2913–2928. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.C.; Ho, S.P. China’s land resources and land-use change: insights from the 1996 land survey. Land Use Policy 2003, 20, 87–107. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Hu, Y. Regional differences of China’s urban expansion from late 20th to early 21st century based on remote sensing information. Chin. Geogr. Sci. 2012, 22, 1–14. [Google Scholar] [CrossRef]
- Batunacun; Nendel, C.; Hu, Y.; Lakes, T. Land-use change and land degradation on the Mongolian Plateau from 1975 to 2015—A case study from Xilingol, China. Land Degrad. Dev. 2018, 29, 1595–1606. [Google Scholar] [CrossRef]
- Song, C.; Zhang, Y. Forest Cover in China from 1949 to 2006. In Reforesting Landscapes; Nagendra, H., Southworth, J., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2009; Volume 10, pp. 341–356. ISBN 978-1-4020-9655-6. [Google Scholar]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Guo, Q. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, J.; Dong, J.; Chi, W.; Zhang, C. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban Plan. 2016, 145, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.C.S. Reproducing Spaces of Chinese Urbanisation: New City-based and Land-centred Urban Transformation. Urban Stud. 2007, 44, 1827–1855. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Ge, J.; Tateishi, R.; Tang, C.; Liang, Y.; Huang, Z. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landsc. Urban Plan. 2006, 75, 69–80. [Google Scholar] [CrossRef]
- He, C.; Huang, Z.; Wang, R. Land use change and economic growth in urban China: A structural equation analysis. Urban Stud. 2014, 51, 2880–2898. [Google Scholar] [CrossRef]
- Elmqvist, T.; Fragkias, M.; Goodness, J.; Güneralp, B.; Marcotullio, P.J.; McDonald, R.I.; Parnell, S.; Schewenius, M.; Sendstad, M.; Seto, K.C.; et al. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment, 1st ed.; Springer Netherlands: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-7087-4. [Google Scholar]
- World Urbanization Prospects—Population Division—United Nations. Available online: https://esa.un.org/unpd/wup/ (accessed on 14 August 2018).
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Economic Growth and the Expansion of Urban Land in China. Urban Stud. 2010, 47, 813–843. [Google Scholar] [CrossRef]
- Ho, S.P.S.; George, C.S. Lin Non-Agricultural Land Use in Post-Reform China. China Q. 2004, 758–781. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Zhang, J.; Li, Z. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Growth, population and industrialization, and urban land expansion of China. J. Urban Econ. 2008, 63, 96–115. [Google Scholar] [CrossRef]
- Liu, J.; Zhan, J.; Deng, X. Spatio-temporal patterns and driving forces of urban land expansion in China during the economic reform era. Ambio 2005, 34, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. Rapid urbanization in China: A real challenge to soil protection and food security. CATENA 2007, 69, 1–15. [Google Scholar] [CrossRef]
- Tang, C.-S.; Shi, B.; Gao, L.; Daniels, J.L.; Jiang, H.-T.; Liu, C. Urbanization effect on soil temperature in Nanjing, China. Energy Build. 2011, 43, 3090–3098. [Google Scholar] [CrossRef]
- Hall, R.I.; Leavitt, P.R.; Quinlan, R.; Dixit, A.S.; Smol, J.P. Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol. Oceanogr. 1999, 44, 739–756. [Google Scholar] [CrossRef] [Green Version]
- Development Plan for Zhujiang-Xijiang Economic Belt. 2013. Available online: http://img.thupdi.com/news/2015/08/1440492277635777 (accessed on 30 August 2013).
- Huang, G.; Jiang, Y. Urbanization and Socioeconomic Development in Inner Mongolia in 2000 and 2010: A GIS Analysis. Sustainability 2017, 9, 235. [Google Scholar] [CrossRef]
- Bai, X.; Chen, J.; Shi, P. Landscape Urbanization and Economic Growth in China: Positive Feedbacks and Sustainability Dilemmas. Environ. Sci. Technol. 2012, 46, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Radhakrishnan, N.; Mathew, S. Land use change modelling using a Markov model and remote sensing. Geomat. Nat. Hazards Risk 2014, 5, 145–156. [Google Scholar] [CrossRef]
- Muller, M.R.; Middleton, J. A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landsc. Ecol. 1994, 9, 151–157. [Google Scholar]
- Tang, J.; Wang, L.; Yao, Z. Spatio-temporal urban landscape change analysis using the Markov chain model and a modified genetic algorithm. Int. J. Remote Sens. 2007, 28, 3255–3271. [Google Scholar] [CrossRef]
- Lopez, E.; Bocco, G.; Mendoza, M.; Duhau, E. Predicting land-cover and land-use change in the urban fringe A case in Morelia city, Mexico. Landsc. Urban Plan. 2001, 55, 271–285. [Google Scholar] [CrossRef]
- Biondini, M.; Kandus, P. Transition matrix analysis of land-cover change in the accretion area of the Lower Delta of the Paraná River (Argentina) reveals two succession pathways. Wetlands 2006, 26, 981–991. [Google Scholar] [CrossRef]
- Weng, Q. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J. Environ. Manag. 2002, 64, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Li, P.; Fan, J. Regional Ecological Vulnerability Assessment of the Guangxi Xijiang River Economic Belt in Southwest China with VSD Model. J. Resour. Ecol. 2014, 5, 163–170. [Google Scholar] [CrossRef]
- Liu, J.Y.; Zhuang, D.F.; Zhang, Z.X.; Gao, Z.; Deng, X. The Establishment of Land-use Spatial-temporal Database and Its Relative Studies in China. J. Geo-Inf. Sci. 2012, 4, 3–7. (In Chinese) [Google Scholar]
- Zhan, J.Y.; Deng, X.Z.; Jiang, O.; Shi, N.N. The Application of System Dynamics and CLUE-S Model in Land Use Change Dynamic Simulation: A Case Study in Taips County, Inner Mongolia of China. In Proceedings of the Conference on System Science, Management Science & System Dynamics, Shanghai, China, 19–21 October 2007; pp. 2781–2790. Available online: https://www.researchgate.net/publication/228986766_The_Application_of_System_Dynamics_and_CLUE-S_Model_in_Land_Use_Change_Dynamic_Simulation_a_Case_Study_in_Taips_County_Inner_Mongolia_of_China (accessed on 5 October 2016).
- Zheng, Y.; Xu, Z.; Kemp, D.; Akahashi, T.; Jones, R. Modeling Optimal Grazing Management for Grassland Rehabilitation on the Typical Steppe: A Case Study in Taipusi Banner, Inner Mongolia, China. Philipp. Agric. Sci. 2011, 93, 420–428. [Google Scholar]
- National Bureau of Statistics of China. Available online: http://www.stats.gov.cn/english/ (accessed on 11 June 2018).
- Houet, T.; Hubert-Moy, L. Modeling and projecting land-use and land-cover changes with Cellular Automaton in considering landscape trajectories. EARSeL EProceedings Eur. Assoc. Remote Sens. Lab. 2006, 5, 63–76. [Google Scholar]
- Bell, E.J. Markov analysis of land use change—an application of stochastic processes to remotely sensed data. Socioecon. Plan. Sci. 1974, 8, 311–316. [Google Scholar] [CrossRef]
- Cheng, Z.; Cao, S. Markov Processes in Modeling Land Use and Land Cover Change in Tibetan Platau. In Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 24–26 June 2011; pp. 457–459. [Google Scholar]
- Niu, L.; Luo, W.; Jiang, M.; Lu, N. Land-Use Degree and Spatial Autocorrelation Analysis in Kunming City Based on Big Data. In Proceedings of the 2018 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Xiamen, China, 25– 26 January 2018; pp. 97–100. [Google Scholar]
- GeoDa on Github. Available online: https://geodacenter.github.io/ (accessed on 27 August 2018).
- Overmars, K.P.; de Koning, G.H.J.; Veldkamp, A. Spatial autocorrelation in multi-scale land use models. Ecol. Model. 2003, 164, 257–270. [Google Scholar] [CrossRef] [Green Version]
- Meyer, W.B.; Turner, B.L., II. Human Population Growth and Global Land-Use/Cover Change. Annu. Rev. Ecol. Syst. 1992, 23, 39–61. [Google Scholar] [CrossRef]
- Xie, Z.F.; Wang, Q. Spatial Autocorrelation Analysis of Land Use Intensity in Guangzhou City. Trop. Geogr. 2009, 29, 129–133. [Google Scholar]
- Zhang, K.H.; Song, S. Rural–urban migration and urbanization in China: Evidence from time-series and cross-section analyses. China Econ. Rev. 2003, 14, 386–400. [Google Scholar] [CrossRef]
- Xiao, W.; Zhao, G. Agricultural land and rural-urban migration in China: A new pattern. Land Use Policy 2018, 74, 142–150. [Google Scholar] [CrossRef]
- Gallin, B. Contesting Citizenship in Urban China: Peasant Migrants, the State, and the Logic of the Market. China Rev. Int. 2001, 8, 220–223. [Google Scholar] [CrossRef]
- Wu, F. Housing in Chinese Urban Villages: The Dwellers, Conditions and Tenancy Informality. Hous. Stud. 2016, 31, 852–870. [Google Scholar] [CrossRef]
- Zhao, P. Urban-rural transition in China’s metropolises: New trends in peri-urbanisation in Beijing. Int. Dev. Plan. Rev. 2012, 34, 269–294. [Google Scholar] [CrossRef]
- Pribadi, D.O.; Pauleit, S. The dynamics of peri-urban agriculture during rapid urbanization of Jabodetabek Metropolitan Area. Land Use Policy 2015, 48, 13–24. [Google Scholar] [CrossRef]
- Liu, Y.; He, S.; Wu, F.; Webster, C. Urban villages under China’s rapid urbanization: Unregulated assets and transitional neighbourhoods. Habitat Int. 2010, 34, 135–144. [Google Scholar] [CrossRef]
- Wandl, A.; Magoni, M. Sustainable Planning of Peri-Urban Areas: Introduction to the Special Issue. Plan. Pract. Res. 2017, 32, 1–3. [Google Scholar] [CrossRef]
- Ge, B.; Tian, L. Characteristics and driving forces of peri-urban areas: the case of shanghai, China. In Proceedings of the 2011 5th International Association for China Planning Conference, Beijing, China, 17–19 June 2011; pp. 1–7. [Google Scholar]
- Kleemann, J.; Inkoom, J.N.; Thiel, M.; Shankar, S.; Lautenbach, S.; Fürst, C. Peri-urban land use pattern and its relation to land use planning in Ghana, West Africa. Landsc. Urban Plan. 2017, 165, 280–294. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Schneider, A.; Mertes, C.M. Expansion and growth in Chinese cities, 1978–2010. Environ. Res. Lett. 2014, 9, 024008. [Google Scholar] [CrossRef] [Green Version]
- Land Conversion in Transitional China. Available online: http://edepot.wur.nl/14504 (accessed on 1 October 2009).
- Mourao, P.R.; Martinho, V.D. Discussing structural breaks in the Portuguese regulation on forest fires—An economic approach. Land Use Policy 2016, 54, 460–478. [Google Scholar] [CrossRef]
Classes | Code | Description |
---|---|---|
Cropland | 1 | Land for growing crops. |
Woodland | 2 | Land for growing trees, arbor, shrubs, bamboo, and forestry use. |
Grassland | 3 | Land for herbaceous plants. |
Water bodies | 4 | Natural water areas, including constructed reservoirs as well as water reservations and irrigation facilities. |
Unused land | 6 | Land that is not put into practical use or that is difficult to use. |
Built-up land | 5 | Human settlements in urban and rural areas as well as factories and transportation facilities. |
Urban land | 51 | Built-up areas used for urban settlements |
Rural settlements | 52 | Land used for small towns or village settlements. |
Infrastructure areas | 53 | Land used for factories, quarries, mining, and oil fields outside cities, as well as land for roads and other transportation infrastructure |
Cropland | Woodland | Grassland | Water Body | Built-Up Land | Unused Land | Losses | ||
---|---|---|---|---|---|---|---|---|
1990–2000 | Cropland | 38,936.19 | 49.77 | 3.27 | 396.47 | 542.02 | 0.01 | 991.54 |
Woodland | 92.23 | 104,364.36 | 119.25 | 20.78 | 53.29 | 0.00 | 285.55 | |
Grassland | 42.73 | 470.11 | 11,577.32 | 5.15 | 9.19 | 0.00 | 527.18 | |
Water body | 55.69 | 2.00 | 0.47 | 3824.41 | 43.59 | 0.09 | 101.85 | |
Built-up land | 0.00 | 0.00 | 0.00 | 0.00 | 3930.47 | 0.00 | 0.00 | |
Unused land | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 24.48 | 0.03 | |
Gains | 190.66 | 521.88 | 123.00 | 422.42 | 648.09 | 0.10 | 1906.16 |
Cropland | Woodland | Grassland | Water Body | Built-Up Land | Unused Land | ||
---|---|---|---|---|---|---|---|
1990–2000 | Cropland | 0.9752 | 0.0012 | 0.0001 | 0.0099 | 0.0136 | 0.0000 |
Woodland | 0.0009 | 0.9973 | 0.0011 | 0.0002 | 0.0005 | 0.0000 | |
Grassland | 0.0035 | 0.0388 | 0.9564 | 0.0004 | 0.0008 | 0.0000 | |
Water body | 0.0142 | 0.0005 | 0.0001 | 0.9741 | 0.0111 | 0.0000 | |
Built-up land | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | |
Unused land | 0.0000 | 0.0000 | 0.0000 | 0.0012 | 0.0000 | 0.9988 |
Cropland | Woodland | Grassland | Water Body | Built-Up Land | Unused Land | Losses | ||
---|---|---|---|---|---|---|---|---|
2000–2017 | Cropland | 37,526.41 | 157.99 | 12.86 | 131.98 | 1296.82 | 0.82 | 1600.46 |
Woodland | 81.47 | 103,935.64 | 293.33 | 48.21 | 526.45 | 3.01 | 952.48 | |
Grassland | 4.26 | 248.41 | 11,345.65 | 17.23 | 84.78 | 0.04 | 354.73 | |
Water body | 33.94 | 6.95 | 36.22 | 3901.20 | 266.68 | 1.89 | 345.68 | |
Built-up land | 0.00 | 0.00 | 0.00 | 0.00 | 4578.57 | 0.00 | 0.00 | |
Unused land | 0.02 | 0.42 | 0.02 | 0.42 | 1.55 | 22.16 | 2.43 | |
Gains | 119.70 | 413.77 | 342.42 | 197.85 | 2176.28 | 5.77 | 3255.78 |
Cropland | Woodland | Grassland | Water Body | Built-Up Land | Unused Land | ||
---|---|---|---|---|---|---|---|
2000–2017 | Cropland | 0.9591 | 0.0040 | 0.0003 | 0.0034 | 0.0331 | 0.0000 |
Woodland | 0.0008 | 0.9909 | 0.0028 | 0.0005 | 0.0050 | 0.0000 | |
Grassland | 0.0004 | 0.0212 | 0.9697 | 0.0015 | 0.0072 | 0.0000 | |
Water body | 0.0080 | 0.0016 | 0.0085 | 0.9186 | 0.0628 | 0.0004 | |
Built-up land | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | |
Unused land | 0.0008 | 0.0171 | 0.0008 | 0.0171 | 0.0630 | 0.9012 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Batunacun. An Analysis of Land-Use and Land-Cover Change in the Zhujiang–Xijiang Economic Belt, China, from 1990 to 2017. Appl. Sci. 2018, 8, 1524. https://doi.org/10.3390/app8091524
Hu Y, Batunacun. An Analysis of Land-Use and Land-Cover Change in the Zhujiang–Xijiang Economic Belt, China, from 1990 to 2017. Applied Sciences. 2018; 8(9):1524. https://doi.org/10.3390/app8091524
Chicago/Turabian StyleHu, Yunfeng, and Batunacun. 2018. "An Analysis of Land-Use and Land-Cover Change in the Zhujiang–Xijiang Economic Belt, China, from 1990 to 2017" Applied Sciences 8, no. 9: 1524. https://doi.org/10.3390/app8091524
APA StyleHu, Y., & Batunacun. (2018). An Analysis of Land-Use and Land-Cover Change in the Zhujiang–Xijiang Economic Belt, China, from 1990 to 2017. Applied Sciences, 8(9), 1524. https://doi.org/10.3390/app8091524