Study on the Mechanical Properties of Polyurethane-Cement Mortar Containing Nanosilica: RSM and Machine Learning Approach
<p>Particle distribution curve of aggregates used.</p> "> Figure 2
<p>Systematic illustration of the mixing process and testing program.</p> "> Figure 3
<p>CCD framework.</p> "> Figure 4
<p>Architecture of the ANN model.</p> "> Figure 5
<p>The methodology of the developed model.</p> "> Figure 6
<p>Hyperparameter tuning process.</p> "> Figure 7
<p>Compressive strength of PUCM modified with nano silica.</p> "> Figure 8
<p>Flexural strength of PUCM modified with nano silica.</p> "> Figure 9
<p>Relationship between actual and predicted values using CCD/RSM model for (<b>a</b>) flexural strength and (<b>b</b>) compressive strength.</p> "> Figure 10
<p>Three-dimensional plots for the simultaneous effect of PU binder and NS in the PUCM for: (<b>a</b>) Flexural strength and (<b>b</b>) compressive strength.</p> "> Figure 11
<p>Two-dimensional plots for the simultaneous effect of PU binder and NS in the PUCM for (<b>a</b>) flexural strength and (<b>b</b>) compressive strength.</p> "> Figure 12
<p>Optimized mechanical properties of PU–cement mortar.</p> "> Figure 13
<p>Pearson correlation matrix.</p> "> Figure 14
<p>Variation in and frequency distribution of (<b>a</b>) compressive strength and (<b>b</b>) flexural strength.</p> "> Figure 15
<p>Scatter plot between the experimental and predicted flexural strength for (<b>a</b>) ANN and (<b>b</b>) GPR.</p> "> Figure 15 Cont.
<p>Scatter plot between the experimental and predicted flexural strength for (<b>a</b>) ANN and (<b>b</b>) GPR.</p> "> Figure 16
<p>(<b>a</b>) Taylor diagram and (<b>b</b>) box plots.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
PU Binder
2.2. Mix Proportion and Specimen Preparation
2.3. Methods
Mechanical Properties Test
2.4. Response Surface Methodology
2.5. Artificial Intelligence-Based Model
2.5.1. ANN
2.5.2. GPR
2.6. Hyperparameter Turning and Cross-Validation
2.7. Performance Evaluation
3. Results and Discussions
3.1. Compressive Strength of PU–Cement Mortar
3.2. Flexural Strength of PU–Cement Mortar
3.3. Result of RSM/CCD Analysis
3.3.1. ANOVA Result
3.3.2. Optimization of the PUCM Mixtures
3.4. Result of AI-Based Model
Sensitivity Analysis of Input Variables
4. Conclusions
- The mechanical properties of PUCM remarkably decreased with increases in PU binder content, more pronounced in the compressive strength values. However, some part of the lost strength was mitigated due to the reinforcing effect of NS particles. The compressive strength of the PUCM25-0 specimen was 31.34 MPa, which appeared to be the lowest strength among all the mixes.
- The RSM/CCD developed models evaluated the mechanical properties of PUCM, involving the PU binder and NS material as the independent variable with high accuracy, with R2 values of 0.8760 and 0.9469 for the flexural and compressive strength, respectively. The optimized PUCM mixture can be achieved by introducing 3.5% PU binder and 2.93% NS particles by weight of cement.
- Artificial intelligence models were developed to predict the flexural strength of the PUCM. The performance of the machine learning algorithms was tested using performance indicators such as R2, MAE, MSE, and RMSE. The GPR algorithm outperformed the ANN with higher R2 and lower MAE values in the training and testing phases. The GPR can predict flexural strength with 90% accuracy, while ANN can predict it with 75% accuracy. The Taylor diagram and box plots also confirmed that GPR outperforms the ANN model.
- The macro properties of the polyurethane–cement mortar were explored extensively. However, the finding showed that polyurethane binder significantly affected the mechanical properties of the cementitious-based composite, particularly compressive strength. Therefore, the mechanism development behind these behaviors and how the PU binder affects the reaction kinetics are essential, and may likely change the microstructure of cement mortar, something which has not been explained. Thus, this requires future research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, X.; Xie, Y.; Long, G.; Zeng, X.; Li, J.; Yao, L.; Jiang, W.; Pan, Z. DEM analysis of the effect of interface transition zone on dynamic splitting tensile behavior of high-strength concrete based on multi-phase model. Cem. Concr. Res. 2021, 149, 106577. [Google Scholar] [CrossRef]
- Gao, Y.; Romero, P.; Zhang, H.; Huang, M.; Lai, F. Unsaturated polyester resin concrete: A review. Constr. Build. Mater. 2019, 228, 116709. [Google Scholar] [CrossRef]
- Verdolotti, L.; Lavorgna, M.; Di Maio, E.; Iannace, S. Hydration-induced reinforcement of rigid polyurethane-cement foams: The effect of the co-continuous morphology on the thermal-oxidative stability. Polym. Degrad. Stab. 2013, 98, 64–72. [Google Scholar] [CrossRef]
- Sanches, A.O.; Teixeira, G.F.; Zaghete, M.A.; Longo, E.; Malmonge, J.A.; Silva, M.J.; Sakamoto, W.K. Influence of polymer insertion on the dielectric, piezoelectric and acoustic properties of 1-0-3 polyurethane/cement-based piezo composite. Mater. Res. Bull. 2019, 119, 110541. [Google Scholar] [CrossRef]
- Hussain, H.K.; Liu, G.W.; Yong, Y.W. Experimental study to investigate mechanical properties of new material polyurethane–cement composite (PUC). Constr. Build. Mater. 2014, 50, 200–208. [Google Scholar] [CrossRef]
- Al-kahtani, M.S.M.; Zhu, H.; Ibrahim, Y.E.; Haruna, S.I. Experimental study on the strength and durability-related properties of ordinary Portland and rapid hardening Portland cement mortar containing polyurethane binder. Case Stud. Constr. Mater. 2022, 17, e01530. [Google Scholar] [CrossRef]
- Haruna, S.I.; Zhu, H.; Ibrahim, Y.E.; Shao, J.; Adamu, M.; Ahmed, O.S. Impact resistance and flexural behavior of U-shaped concrete specimen retrofitted with polyurethane grout. Case Stud. Constr. Mater. 2023, 19, e02547. [Google Scholar] [CrossRef]
- Karbhari, V.M.; Eckel, D.A.; Tunis, G.C., III. Strengthening of concrete column stubs through resin infused composite wraps. J. Thermoplast. Compos. Mater. 1993, 6, 92–107. [Google Scholar] [CrossRef]
- Reis, J.M.L.; Ferreira, A.J.M. Assessment of fracture properties of epoxy polymer concrete reinforced with short carbon and glass fibers. Constr. Build. Mater. 2004, 18, 523–528. [Google Scholar] [CrossRef]
- Shao, J.; Zhu, H.; Zuo, X.; Lei, W.; Mirgan, S.; Liang, J.; Duan, F. Effect of waste rubber particles on the mechanical performance and deformation properties of epoxy concrete for repair. Constr. Build. Mater. 2020, 241, 118008. [Google Scholar] [CrossRef]
- Afzal, A.; Kausar, A.; Siddiq, M. Role of polymeric composite in civil engineering applications: A review. Polym. Technol. Mater. 2020, 59, 1023–1040. [Google Scholar] [CrossRef]
- Ibrahim Haruna, S.; Zhu, H.; Jiang, W.; Shao, J. Evaluation of impact resistance properties of polyurethane-based polymer concrete for the repair of runway subjected to repeated drop-weight impact test. Constr. Build. Mater. 2021, 309, 125152. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Khan, T.; Syamsir, A.; Supian, A.B.M. Synthetic and natural fiber-reinforced polymer matrix composites for advanced applications. Materials 2022, 15, 6030. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Pang, H.; Huang, J.; Zhao, H.; Liao, B. Synthesis and characterization of ground glass fiber reinforced polyurethane-based polymer concrete as a cementitious runway repair material. Constr. Build. Mater. 2020, 242, 117221. [Google Scholar] [CrossRef]
- Wu, K.; Zhu, H.; Ibrahim, Y.E.; Jiang, W.; Haruna, S.I.; Shao, J.; Adamu, M. Performance evaluation of bond strength and fiber type on the mechanical properties of polyurethane-based polymer mortar. Case Stud. Constr. Mater. 2023, 18, e02114. [Google Scholar] [CrossRef]
- Sarva, S.S.; Deschanel, S.; Boyce, M.C.; Chen, W. Stress–strain behavior of a polyurea and a polyurethane from low to high strain rates. Polymer 2007, 48, 2208–2213. [Google Scholar] [CrossRef]
- Gallu, R.; Méchin, F.; Dalmas, F.; Gérard, J.-F.; Perrin, R.; Loup, F. Rheology-morphology relationships of new polymer-modified bitumen based on thermoplastic polyurethanes (TPU). Constr. Build. Mater. 2020, 259, 120404. [Google Scholar] [CrossRef]
- Grujicic, M.; Pandurangan, B.; He, T.; Cheeseman, B.A.; Yen, C.-F.; Randow, C.L. Computational investigation of impact energy absorption capability of polyurea coatings via deformation-induced glass transition. Mater. Sci. Eng. A 2010, 527, 7741–7751. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Chen, S. Study on dynamic viscoelastic properties and constitutive model of non-water reacted polyurethane grouting materials. Measurement 2021, 176, 109115. [Google Scholar] [CrossRef]
- Choi, H.J.; Kim, J.H. Static and dynamic comfort properties of polyurethane foams including a flexible amine crosslinker. J. Ind. Eng. Chem. 2020, 90, 260–265. [Google Scholar] [CrossRef]
- Mounanga, P.; Gbongbon, W.; Poullain, P.; Turcry, P. Proportioning and characterization of lightweight concrete mixtures made with rigid polyurethane foam wastes. Cem. Concr. Compos. 2008, 30, 806–814. [Google Scholar] [CrossRef]
- ACI Committee 548. 548.6R-96: Polymer Concrete-Structural Applications. State-of-the-Art Report; American Concrete Institute: Farmington Hills, MI, USA, 1996; pp. 1–23. [Google Scholar]
- Harith, I.K. Study on polyurethane foamed concrete for use in structural applications. Case Stud. Constr. Mater. 2018, 8, 79–86. [Google Scholar] [CrossRef]
- Jia, Z.; Jia, D.; Sun, Q.; Wang, Y.; Ding, H. Preparation and mechanical-fatigue properties of elastic polyurethane concrete composites. Materials 2021, 14, 3839. [Google Scholar] [CrossRef] [PubMed]
- Nikoukalam, M.T.; Sideris, P. Experimental characterization and constitutive modeling of polyurethanes for structural applications, accounting for damage, hysteresis, loading rate and long term effects. Eng. Struct. 2019, 198, 109462. [Google Scholar] [CrossRef]
- Tang, J.; Liu, J.; Yu, C.; Wang, R. Influence of cationic polyurethane on mechanical properties of cement based materials and its hydration mechanism. Constr. Build. Mater. 2017, 137, 494–504. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, N.; Zhang, H. In-Situ polymerization and characterization of poly (ε-caprolactone) urethane/SiO2 nanocomposites. J. Phys. Conf. Ser. 2009, 188, 012025. [Google Scholar] [CrossRef]
- Alshahrani, H.; Sebaey, T.A.; Awd Allah, M.M.; Abd El-baky, M.A. Multi-response optimization of crashworthy performance of perforated thin walled tubes. J. Compos. Mater. 2023, 57, 1579–1597. [Google Scholar] [CrossRef]
- Abba, S.I.; Elkiran, G. Effluent prediction of chemical oxygen demand from the astewater treatment plant using artificial neural network application. Procedia Comput. Sci. 2017, 120, 156–163. [Google Scholar] [CrossRef]
- Haruna, S.I.; Malami, S.I.; Adamu, M.; Usman, A.G.; Farouk, A.I.B.; Ali, S.I.A.; Abba, S.I. Compressive Strength of Self-Compacting Concrete Modified with Rice Husk Ash and Calcium Carbide Waste Modeling: A Feasibility of Emerging Emotional Intelligent Model (EANN) versus Traditional FFNN. Arab. J. Sci. Eng. 2021, 46, 11207–11222. [Google Scholar] [CrossRef]
- Abba, S.I.; Benaafi, M.; Usman, A.G.; Aljundi, I.H. Sandstone groundwater salinization modelling using physicochemical variables in Southern Saudi Arabia: Application of novel data intelligent algorithms. Ain Shams Eng. J. 2023, 14, 101894. [Google Scholar] [CrossRef]
- Adamu, M.; Haruna, S.I.; Malami, S.I.; Ibrahim, M.N.; Abba, S.I.; Ibrahim, Y.E. Prediction of compressive strength of concrete incorporated with jujube seed as partial replacement of coarse aggregate: A feasibility of Hammerstein–Wiener model versus support vector machine. Model. Earth Syst. Environ. 2022, 8, 3435–3445. [Google Scholar] [CrossRef]
- Ehsani, M.; Moghadas Nejad, F.; Hajikarimi, P. Developing an optimized faulting prediction model in Jointed Plain Concrete Pavement using artificial neural networks and random forest methods. Int. J. Pavement Eng. 2022, 24, 2057975. [Google Scholar] [CrossRef]
- Lee, T.-S.; Chiu, C.-C.; Chou, Y.-C.; Lu, C.-J. Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Comput. Stat. Data Anal. 2006, 50, 1113–1130. [Google Scholar] [CrossRef]
- Chou, J.-S.; Tsai, C.-F. Concrete compressive strength analysis using a combined classification and regression technique. Autom. Constr. 2012, 24, 52–60. [Google Scholar] [CrossRef]
- Kooshkaki, A.; Eskandari-Naddaf, H. Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by multi-objective ANN modeling. Constr. Build. Mater. 2019, 212, 176–191. [Google Scholar] [CrossRef]
- Ahmad, A.; Ostrowski, K.A.; Maślak, M.; Farooq, F.; Mehmood, I.; Nafees, A. Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature. Mater. 2021, 14, 4222. [Google Scholar] [CrossRef] [PubMed]
- Rupasinghe, M.; Mendis, P.; Ngo, T.; Nguyen, T.N.; Sofi, M. Compressive strength prediction of nano-silica incorporated cement systems based on a multiscale approach. Mater. Des. 2017, 115, 379–392. [Google Scholar] [CrossRef]
- Gao, H.; Sun, Q. Study on Fatigue Test and Life Prediction of Polyurethane Cement Composite (PUC) under High or Low Temperature Conditions. Adv. Mater. Sci. Eng. 2020, 2020, 2398064. [Google Scholar] [CrossRef]
- Diaconescu, R.-M.; Barbuta, M.; Harja, M. Prediction of properties of polymer concrete composite with tire rubber using neural networks. Mater. Sci. Eng. B 2013, 178, 1259–1267. [Google Scholar] [CrossRef]
- Marinela, B.; Rodica-Mariana, D.; Maria, H. Using Neural Networks for Prediction of Properties of Polymer Concrete with Fly Ash. J. Mater. Civ. Eng. 2012, 24, 523–528. [Google Scholar] [CrossRef]
- Unnikrishna Pillai, U.; Anand, K.B. Performance evaluation of polyurethane-nano silica modified cement mortar. Mater. Today Proc. 2021, 46, 4788–4794. [Google Scholar] [CrossRef]
- Barbhuiya, G.H.; Moiz, M.A.; Hasan, S.D.; Zaheer, M.M. Effects of the nanosilica addition on cement concrete: A review. Mater. Today Proc. 2020, 32, 560–566. [Google Scholar] [CrossRef]
- Li, M.; Sun, J.; Li, L.; Meng, L.; Wang, S.; Wei, J.; Mao, J. Effect of nanosilica on fiber pullout behavior and mechanical properties of strain hardening ultra-high performance concrete. Constr. Build. Mater. 2023, 367, 130255. [Google Scholar] [CrossRef]
- Demir, M.M.; Yilgor, I.; Yilgor, E.; Erman, B. Electrospinning of polyurethane fibers. Polymer 2002, 43, 3303–3309. [Google Scholar] [CrossRef]
- DL/T5126-2001; Test Code on Polymer-Modified Cement Martor. National Standard of China: Beijing, China, 2001.
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Ghaffari, A.; Abdollahi, H.; Khoshayand, M.; Bozchalooi, I.; Dadgar, A.; Rafiee-Tehrani, M. Performance comparison of neural network training algorithms in modeling of bimodal drug delivery. Int. J. Pharm. 2006, 327, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim Bibi Farouk, A.; Zhu, J.; Ding, J.; Haruna, S.I. Prediction and uncertainty quantification of ultimate bond strength between UHPC and reinforcing steel bar using a hybrid machine learning approach. Constr. Build. Mater. 2022, 345, 128360. [Google Scholar] [CrossRef]
- Omran, B.A.; Chen, Q.; Jin, R. Comparison of data mining techniques for predicting compressive strength of environmentally friendly concrete. J. Comput. Civ. Eng. 2016, 30, 4016029. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Huang, C.-C.; Roy, A.F. Van Predicting project success in construction using an evolutionary Gaussian process inference model. J. Civ. Eng. Manag. 2013, 19, S202–S211. [Google Scholar] [CrossRef]
- Pal, M.; Deswal, S. Modelling pile capacity using Gaussian process regression. Comput. Geotech. 2010, 37, 942–947. [Google Scholar] [CrossRef]
- Williams, C.K.; Rasmussen, C.E. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Gouda, S.G.; Hussein, Z.; Luo, S.; Yuan, Q. Model selection for accurate daily global solar radiation prediction in China. J. Clean. Prod. 2019, 221, 132–144. [Google Scholar] [CrossRef]
- Farouk, A.I.B.; Jinsong, Z. Prediction of Interface Bond Strength Between Ultra-High-Performance Concrete (UHPC) and Normal Strength Concrete (NSC) Using a Machine Learning Approach. Arab. J. Sci. Eng. 2022, 47, 5337–5363. [Google Scholar] [CrossRef]
- Haruna, S.I.; Ibrahim, Y.E.; Han, Z.; Farouk, A.I.B. Flexural Response of Concrete Specimen Retrofitted with PU Grout Material: Experimental and Numerical Modeling. Polymers 2023, 15, 4114. [Google Scholar] [CrossRef] [PubMed]
- Adamu, M.; Mohammed, B.S.; Shahir Liew, M. Mechanical properties and performance of high volume fly ash roller compacted concrete containing crumb rubber and nano silica. Constr. Build. Mater. 2018, 171, 521–538. [Google Scholar] [CrossRef]
- Nourani, V.; Sharghi, Z.A.E. Sensitivity analysis and ensemble artificial intelligence-based model for short-term prediction of NO2 concentration. Int. J. Environ. Sci. Technol. 2021, 18, 2703–2722. [Google Scholar] [CrossRef]
Material | Oxides | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | SO3 | TiO2 | LOI | |
Cement | 23.270 | 4.410 | 2.450 | 62.850 | 1.420 | 0.480 | 0.210 | 2.570 | 0.080 | 1.820 |
PU Binder | Viscosity (CPS) | Appearance | Curing Age (h) | Tension Property (MPa) | |
---|---|---|---|---|---|
Initial | Final | ||||
Polyol | 35,000 | Grey white sticky | - | - | - |
PAPI | 250 | Brown transparent | - | - | - |
PU binder | - | - | 3.5 | 72 | 5.5 |
S/N | Mixture ID | Cement | PU Binder | NS | Sand | Water | Superplasticizer |
---|---|---|---|---|---|---|---|
1 | PUCM0-0 | 702 | 0.00 | 0.00 | 1404 | 175.5 | 14.04 |
2 | PUCM10-0 | 702 | 70.2 | 0.00 | 1404 | 175.5 | 14.04 |
3 | PUCM10-1 | 702 | 70.2 | 7.02 | 1404 | 175.5 | 14.04 |
4 | PUCM10-2 | 702 | 70.2 | 14.04 | 1404 | 175.5 | 14.04 |
5 | PUCM10-3 | 702 | 70.2 | 21.06 | 1404 | 175.5 | 14.04 |
6 | PUCM15-0 | 702 | 105.3 | 0.00 | 1404 | 175.5 | 14.04 |
7 | PUCM15-1 | 702 | 105.3 | 7.02 | 1404 | 175.5 | 14.04 |
8 | PUCM15-2 | 702 | 105.3 | 14.04 | 1404 | 175.5 | 14.04 |
9 | PUCM15-3 | 702 | 105.3 | 21.06 | 1404 | 175.5 | 14.04 |
10 | PUCM25-0 | 702 | 175.5 | 0.00 | 1404 | 175.5 | 14.04 |
11 | PUCM25-1 | 702 | 175.5 | 7.02 | 1404 | 175.5 | 14.04 |
12 | PUCM25-2 | 702 | 175.5 | 14.04 | 1404 | 175.5 | 14.04 |
13 | PUCM25-3 | 702 | 175.5 | 21.06 | 1404 | 175.5 | 14.04 |
Matric | Equation | Description |
---|---|---|
R2 | R2 is a commonly used performance metric to describe how well a model predicts a given variable. Its value ranges from 0 to 1. When R2 is near to 1, high prediction accuracy is attained [54,55]. | |
MSE | The statistical error demonstrating the model’s performance. The MSE value was very near to zero, which indicates excellent prediction accuracy. | |
RMSE | The difference between the predicted value and the observed value is indicated by RMSE. When the RMSE value approaches 0, better performance is achieved. | |
MAE | MAE revealed the mean absolute error value between the predicted and observed value. It has a range between 0 < MAE < ∞. |
Run | Coded Value | Responses | ||
---|---|---|---|---|
PU Binder | NS | Flexural Strength (MPa) | Compressive Strength (MPa) | |
1 | 0 | 0 | 13.8 | 49.77 |
2 | 0 | 0 | 13.8 | 49.77 |
3 | −1 | 1 | 15.13 | 49.77 |
4 | −1 | 0 | 14.23 | 50.9 |
5 | 0 | 1 | 14.77 | 53.36 |
6 | 0 | −1 | 13.6 | 51.06 |
7 | 0 | 0 | 13.8 | 49.77 |
8 | −1 | −1 | 11.6 | 33.5 |
9 | 0 | 0 | 13.8 | 49.77 |
10 | 1 | 1 | 11.57 | 38.63 |
11 | 1 | 0 | 13.34 | 36.1 |
12 | 1 | −1 | 11.34 | 33.5 |
13 | 0 | 0 | 13.8 | 49.77 |
Response | Variable | Sum of Squares | DF | Mean Square | F-Value | p-Value | Significant |
---|---|---|---|---|---|---|---|
Flexural strength | Model | 15.09 | 7 | 2.16 | 5.04 | 0.0468 | significant |
PU binder | 0.3961 | 1 | 0.3961 | 0.9270 | 0.3799 | ||
NS | 0.6845 | 1 | 0.6845 | 1.60 | 0.2614 | ||
PU binder × NS | 2.72 | 1 | 2.72 | 6.37 | 0.0529 | ||
PU binder2 | 2.06 | 1 | 2.06 | 4.83 | 0.0793 | ||
NS2 | 0.5963 | 1 | 0.5963 | 1.40 | 0.2906 | ||
Compressive strength | Model | 618.80 | 7 | 88.40 | 12.75 | 0.0064 | significant |
PU binder | 109.52 | 1 | 109.52 | 15.80 | 0.0106 | ||
NS | 2.64 | 1 | 2.64 | 0.3815 | 0.5639 | ||
PU Binder × NS | 31.02 | 1 | 31.02 | 4.47 | 0.0880 | ||
PU binder2 | 259.48 | 1 | 259.48 | 37.42 | 0.0017 | ||
NS2 | 2.67 | 1 | 2.67 | 0.3847 | 0.5623 | ||
PU2 × NS | 23.52 | 1 | 23.52 | 3.39 | 0.1249 | ||
PU × NS2 | 28.40 | 1 | 28.40 | 4.10 | 0.0989 |
Response | R2 | Adj. R2 | Pred. R2 | Mean | Std. Dev. | COV. (%) | AP |
---|---|---|---|---|---|---|---|
Flexural strength | 0.8760 | 0.7023 | 0.6413 | 13.43 | 0.6536 | 4.87 | 7.3913 |
Compressive strength | 0.9469 | 0.8727 | 5.1647 | 45.87 | 2.63 | 5.75 | 8.3932 |
Variables | Symbol | Goal | Lower Limit | Upper Limit |
---|---|---|---|---|
PU binder (%) | PU | In range | 0 | 25 |
Nano silica (%) | NS | In range | 0 | 3 |
Flexural strength (MPa) | ft | Maximize | 11.34 | 15.13 |
Compressive strength (MPa) | fc | Maximize | 33.5 | 53.36 |
PU Binder (%) | NS (%) | Flexural Strength (MPa) | Compressive Strength (MPa) | Desirability (%) |
---|---|---|---|---|
3.50 | 2.93 | 15.13 | 52.21 | 97.1 |
Parameters | Description | Symbol | Unit | Max | Min | Mean | STD | Skew. | Kurt. |
---|---|---|---|---|---|---|---|---|---|
Input 1 | Curing age | C | d | 7.00 | 28 | 17.04 | 10.56 | −2.05 | 0.089 |
Input 2 | PU binder content | PU | % | 0.00 | 25.0 | 13.69 | 10.31 | −1.48 | −0.30 |
Input 3 | Compressive strength | fc | MPa | 21.80 | 71.6 | 40.61 | 12.70 | −0.65 | 0.636 |
Input 4 | Flow ability | F | mm | 90.00 | 230 | 178.6 | 61.68 | −1.41 | −0.74 |
Output | Flexural strength | ft | Mpa | 8.400 | 15.9 | 12.13 | 1.833 | −0.98 | 0.001 |
Model | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
MSE | RMSE | MAE | R2 | MSE | RMSE | MAE | R2 | |
ANN | 0.775 | 0.880 | 0.744 | 0.761 | 0.785 | 0.886 | 0.723 | 0.749 |
GPR | 0.237 | 0.487 | 0.411 | 0.938 | 0.316 | 0.562 | 0.451 | 0.895 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-kahtani, M.S.M.; Zhu, H.; Ibrahim, Y.E.; Haruna, S.I.; Al-qahtani, S.S.M. Study on the Mechanical Properties of Polyurethane-Cement Mortar Containing Nanosilica: RSM and Machine Learning Approach. Appl. Sci. 2023, 13, 13348. https://doi.org/10.3390/app132413348
Al-kahtani MSM, Zhu H, Ibrahim YE, Haruna SI, Al-qahtani SSM. Study on the Mechanical Properties of Polyurethane-Cement Mortar Containing Nanosilica: RSM and Machine Learning Approach. Applied Sciences. 2023; 13(24):13348. https://doi.org/10.3390/app132413348
Chicago/Turabian StyleAl-kahtani, M. S. M., Han Zhu, Yasser E. Ibrahim, S. I. Haruna, and S. S. M. Al-qahtani. 2023. "Study on the Mechanical Properties of Polyurethane-Cement Mortar Containing Nanosilica: RSM and Machine Learning Approach" Applied Sciences 13, no. 24: 13348. https://doi.org/10.3390/app132413348
APA StyleAl-kahtani, M. S. M., Zhu, H., Ibrahim, Y. E., Haruna, S. I., & Al-qahtani, S. S. M. (2023). Study on the Mechanical Properties of Polyurethane-Cement Mortar Containing Nanosilica: RSM and Machine Learning Approach. Applied Sciences, 13(24), 13348. https://doi.org/10.3390/app132413348