Use of Wireless Sensor Networks for Area-Based Speed Control and Traffic Monitoring
<p>Typical LoRaWAN architecture. (Source: authors’ image based on [<a href="#B51-applsci-14-09243" class="html-bibr">51</a>,<a href="#B52-applsci-14-09243" class="html-bibr">52</a>,<a href="#B53-applsci-14-09243" class="html-bibr">53</a>]).</p> "> Figure 2
<p>Architecture of the proposed solution. (Source: authors’ own image based on [<a href="#B51-applsci-14-09243" class="html-bibr">51</a>,<a href="#B52-applsci-14-09243" class="html-bibr">52</a>,<a href="#B53-applsci-14-09243" class="html-bibr">53</a>]).</p> "> Figure 3
<p>Road system in the Stare Babice commune (source: authors’ own image based on [<a href="#B61-applsci-14-09243" class="html-bibr">61</a>]).</p> "> Figure 4
<p>Topographic map of the Stare Babice commune. (Source: authors’ own image based on [<a href="#B71-applsci-14-09243" class="html-bibr">71</a>]).</p> "> Figure 5
<p>“Area” sub-path attenuation method. (Source: authors’ own image based on [<a href="#B72-applsci-14-09243" class="html-bibr">72</a>]).</p> "> Figure 6
<p>CompleTech ComAnt CAS+ antenna radiation characteristics [<a href="#B73-applsci-14-09243" class="html-bibr">73</a>].</p> "> Figure 7
<p>Impact of h<sub>GW</sub> transmitter station location height (10, 15, 20, and 25 m) on radio coverage.</p> "> Figure 8
<p>Impact of h<sub>EN</sub> receiving antenna height-wise positioning (2, 4, 6, and 8 m).</p> "> Figure 9
<p>Locations of transmitting stations (GWs) and distribution of area boundaries and roads.</p> "> Figure 10
<p>Radio coverage areas and values for six transmitting stations (GWs) within the preset area.</p> "> Figure 11
<p>Areas of radio coverage by individual GW transmitting stations.</p> "> Figure 12
<p>Area radio coverage with a signal exceeding the preset value.</p> ">
Abstract
:1. Introduction
2. State of the Art
- Low energy consumption: Devices can run on batteries for years without the need for replacement or recharging.
- Long range: LPWANs can cover an area with a radius of up to several dozen kilometers.
- Low throughput: LPWANs are optimized to transfer small data volumes, typical of many IoT applications.
- High capacity: The networks can handle a large number of devices within their range.
3. LoRa/LoRaWAN Standard
3.1. LoRaWAN Architecture
- EN (end nodes);
- GW (gateways—base stations and routers);
- NS (network server);
- AS (application server).
3.2. LoRa Radio Interface
- 169 MHz (Asia);
- 433 MHz (Asia);
- 868 MHz (Europe);
- 915 MHz (North America).
- BW (modulation bandwidth) describes the extent of modulation frequency variation;
- SF (spread factor) determines the rate of modulation frequency variation;
- CR (code rate) introduces redundancy while correcting errors that arise during transmission.
- BW {7.8 kHz, 10.4 kHz, 15.6 kHz, 20.8 kHz, 31.25 kHz, 41.7 kHz, 62.5 kHz, 125 kHz, 250 kHz, 500 kHz};
- SF {6, 7, 8, 9, 10, 11, 12};
- CR {4/5, 4/6, 4/7, 4/8}.
4. LoRaWAN Area-Based Speed Control
4.1. LoRaWAN Radio Interface
4.2. Selecting the System Operation Area
4.3. Estimating the Required Number of System Components
5. Radio Coverage Planning
- Demand analysis: Defining the requirements related to network capacity and coverage based on predicted traffic and user numbers.
- Base station location selection: Making decisions regarding the placement of base stations (in the case of cellular networks) or access points (in the case of a Wi-Fi network) to ensure optimal coverage.
- Radio wave propagation modelling: Applying mathematical and computer models to predict radio wave propagation in different environments, taking into account factors such as land relief, buildings, vegetation, and other obstacles.
- Network parameter optimization: Adjusting parameters such as transmitting power, frequency, antenna patterns, and others to minimize interference and ensure consistent coverage.
- Testing and validation: Conducting field tests to verify the propagation model and implementing potential corrections in the coverage plan.
- Redundancy planning: Ensuring that the network can function effectively even in the event of a failure of one or more network elements.
- Compliance with regulations: Ensuring that radio network planning and deployment comply with local regulations regarding radio emissions, band sharing, and security.
- Interference management: Considering existing networks in the area to avoid collisions and interference between systems.
Application of Radio Planning in LoRaWAN Networks
- Gateway location selection: Given the long range of LoRa, selecting optimal gateway locations is critical to ensure the best coverage for end nodes.
- Signal propagation analysis: Due to the long-distance nature of LoRa technology, it is important to understand how signals will propagate in different environments, including urban, rural, and industrial settings.
- Optimizing transmitting power and receiver sensitivity: To balance power consumption and range, coverage planning must consider gateway transmitting power and the sensitivity of receiving equipment.
- Interference management: It is important to manage potential interference in environments with many LoRa or other devices operating on similar frequencies.
- Redundancy planning: To ensure network reliability, coverage planning may involve placing additional gateways to guarantee service continuity in case one of them fails.
- Compliance with regulations: Ensuring compliance with local regulations on radio emissions and band usage is crucial for LoRaWAN networks to meet legal requirements.
6. Radio Coverage of the LoRaWAN Area Speed Control System and Traffic Monitoring
- placement in elevated positions;
- the absence of terrain obstacles;
- the availability of broadband, hard-wired Internet access, with emergency access via the GSM network;
- permanent and emergency power supply sources.
Radio Coverage Simulation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stawowy, M.; Duer, S.; Paś, J.; Wawrzyński, W. Determining Information Quality in ICT Systems. Energies 2021, 14, 5549. [Google Scholar] [CrossRef]
- Gallaugher, J. Information Systems: A Manager’s Guide to Harnessing Technology; FlatWord: Atlanta, GA, USA, 2022; ISBN 978-1-4533-4169-8 (Digital). [Google Scholar]
- Mallach, E.G. Information Systems What Every Business Student Needs to Know, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9780367183530. [Google Scholar]
- Chatti, W. Moving towards environmental sustainability: Information and communication technology (ICT), freight transport, and CO2 emissions. Heliyon 2021, 7, e08190. [Google Scholar] [CrossRef] [PubMed]
- Gössling, S. ICT and transport behavior: A conceptual review. Int. J. Sustain. Transp. 2017, 12, 153–164. [Google Scholar] [CrossRef]
- Oszczypała, M.; Ziółkowski, J.; Małachowski, J.; Lęgas, A. Nash Equilibrium and Stackelberg Approach for Traffic Flow Optimization in Road Transportation Networks—A Case Study of Warsaw. Appl. Sci. 2023, 13, 3085. [Google Scholar] [CrossRef]
- Rodak, A.; Pełka, M. Driver training challenges, barriers and needs arising from ADAS development. Arch. Transp. 2023, 67, 21–34. [Google Scholar] [CrossRef]
- Agarwal, P.; Alam, M.A. Use of ICT for sustainable transportation. IOP Conf. Ser. Earth Environ. Sci. 2018, 150, 012032. [Google Scholar] [CrossRef]
- Tomczuk, P.; Wytrykowska, A.; Chrzanowicz, M. Analysis of Luminance Contrast Values at Illuminated Pedestrian Crossings in Urban Conditions. Energies 2023, 16, 8031. [Google Scholar] [CrossRef]
- Borucka, A.; Pyza, D. Influence of meteorological conditions on road accidents. A model for observations with excess zeros. Eksploat. I Niezawodn.—Maint. Reliab. 2021, 23, 586–592. [Google Scholar] [CrossRef]
- Burdzik, R.; Celiński, I. Estimation of traffic flow using measurements of road surface vibrations. Roads Bridges—Drog. Mosty 2022, 21, 151–165. [Google Scholar] [CrossRef]
- Oskarbski, J.; Kamiński, T.; Kyamakya, K.; Chedjou, J.C.; Żarski, K.; Pędzierska, M. Assessment of the Speed Management Impact on Road Traffic Safety on the Sections of Motorways and Expressways Using Simulation Methods. Sensors 2020, 20, 5057. [Google Scholar] [CrossRef]
- Kasprzyk, Z.; Rychlicki, M. The Use of Bluetooth Standard for Communication Between Vehicles Under Traffic. J. KONBiN 2018, 45, 67–82. [Google Scholar] [CrossRef]
- Tiberio, J.L.L.; Arada, G.P.; Jose, J.A.C. A Study on the LPWAN as a Communication Backbone for Centralized City-wide Traffic Management for Areas with Underdeveloped Road Infrastructure. In Proceedings of the 2022 IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Boracay Island, Philippines, 1 December 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Hattarge, S.; Kekre, A.; Kothari, A. LoRaWAN based GPS tracking of city-buses for smart public transport system. In Proceedings of the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India, 15–17 December 2018. [Google Scholar] [CrossRef]
- Schinschke, J.; Schmietendorf, A. LoRaWAN Coverage Analysis in the Transportation Sector: A Real-World Approach. Eng. Proc. 2022, 27, 73. [Google Scholar] [CrossRef]
- Twahirwa, E.; Rwigema, J.; Datta, R. Design and Deployment of Vehicular Internet of Things for Smart City Applications. Sustainability 2022, 14, 176. [Google Scholar] [CrossRef]
- Seid, S.; Zennaro, M.; Libsie, M.; Pietrosemoli, E.; Manzoni, P. A Low Cost Edge Computing and LoRaWAN Real Time Video Analytics for Road Traffic Monitoring. In Proceedings of the 2020 16th International Conference on Mobility, Sensing and Networking (MSN), Tokyo, Japan, 17–19 December 2020. [Google Scholar] [CrossRef]
- Coulibaly, M.; Errami, A.; Belkhala, S.; Medromi, H. A Live Smart Parking Demonstrator: Architecture, Data Flows, and Deployment. Energies 2021, 14, 1827. [Google Scholar] [CrossRef]
- Kaushik, N.; Bagga, T. Smart Cities Using IoT. In Proceedings of the 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 3–4 September 2021. [Google Scholar] [CrossRef]
- Lima de Paula, I.; Rogier, H.; Van Torre, P. Conformal Integration of Efficient Conductive-Ink-Printed Antennas in Smart Suitcases for LPWAN-Based Luggage Tracking. Sensors 2022, 22, 4077. [Google Scholar] [CrossRef]
- Noto, S.; Gharbaoui, M.; Falcitelli, M.; Martini, B.; Castoldi, P.; Pagano, P. Experimental Evaluation of an IoT-Based Platform for Maritime Transport Services. Appl. Syst. Innov. 2023, 6, 58. [Google Scholar] [CrossRef]
- Le, N.T.; Thwe Chit, M.M.; Truong, T.L.; Siritantikorn, A.; Kongruttanachok, N.; Asdornwised, W.; Chaitusaney, S.; Benjapolakul, W. Deployment of Smart Specimen Transport System Using RFID and NB-IoT Technologies for Hospital Laboratory. Sensors 2023, 23, 546. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, X.; Du, Y.; Guan, P.; Liu, S.; Zhao, L. Design of Air Quality Monitoring System Based on NB-IoT. In Proceedings of the 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 12–14 July 2019. [Google Scholar] [CrossRef]
- Gillespie, J.; da Costa, T.P.; Cama-Moncunill, X.; Cadden, T.; Condell, J.; Cowderoy, T.; Ramsey, E.; Murphy, F.; Kull, M.; Gallagher, R.; et al. Real-Time Anomaly Detection in Cold Chain Transportation Using IoT Technology. Sustainability 2023, 15, 2255. [Google Scholar] [CrossRef]
- Medina-Acosta, G.A.; Zhang, L.; Chen, J.; Uesaka, K.; Wang, Y.; Lundqvist, O.; Bergman, J. 3GPP Release-17 Physical Layer Enhancements for LTE-M and NB-IoT. IEEE Commun. Stand. Mag. 2022, 6, 80–86. [Google Scholar] [CrossRef]
- Salahdine, F.; Aggarwal, S.; Nasipuri, A. Short-Term Traffic Congestion Prediction with Deep Learning for LoRa Networks. In Proceedings of the SoutheastCon 2022, Mobile, AL, USA, 26 March–3 April 2022. [Google Scholar] [CrossRef]
- Wang, X.; Ning, Z.; Hu, X.; Wang, L.; Hu, B.; Cheng, J.; Leung, V.C.M. Optimizing Content Dissemination for Real-Time Traffic Management in Large-Scale Internet of Vehicle Systems. IEEE Trans. Veh. Technol. 2019, 68, 1093–1105. [Google Scholar] [CrossRef]
- Quessada, M.S.; Pereira, R.S.; Revejes, W.; Sartori, B.; Gottsfritz, E.N.; Lieira, D.D.; da Silva, M.A.; Filho, G.P.R.; I Meneguette, R. ITSMEI: An intelligent transport system for monitoring traffic and event information. Int. J. Distrib. Sens. Netw. 2020, 16. [Google Scholar] [CrossRef]
- Bonilla, V.; Campoverde, B.; Yoo, S.G. A Systematic Literature Review of LoRaWAN: Sensors and Applications. Sensors 2023, 23, 8440. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.E.; Ortiz, F.M.; Costa, L.H.M.K.; Foubert, B.; Amadou, I.; Mitton, N. A study of the LoRa signal propagation in forest, urban, and suburban environments. Ann. Telecommun. 2020, 75, 333–351. [Google Scholar] [CrossRef]
- Jhingta, P.; Vasudeva, A.; Sood, M. Applicability of Communication Technologies in Internet of Things: A Review. In Proceedings of the International Conference on Innovative Computing and Communications, Delhi, India, 19–20 February 2022; Gupta, D., Khanna, A., Hassanien, A.E., Anand, S., Jaiswal, A., Eds.; Lecture Notes in Networks and Systems; Springer: Singapore, 2023; Volume 492. [Google Scholar] [CrossRef]
- Aburukba, R.; Al-Ali, A.R.; Riaz, A.H.; Al Nabulsi, A.; Khan, D.; Khan, S.; Amer, M. Fog Computing Approach for Shared Mobility in Smart Cities. Energies 2021, 14, 8174. [Google Scholar] [CrossRef]
- Dobrilović, D.; Brtka, V.; Jotanović, G.; Stojanov, Ž.; Jauševac, G.; Malić, M. The urban traffic noise monitoring system based on LoRaWAN technology. Wirel. Netw. 2022, 28, 441–458. [Google Scholar] [CrossRef]
- Adi, P.D.P.; Purnama, I.; Siregar, A.A.; Juledi, A.P.; Edi, F.; Karim, A.; Wahyu, Y.; Maulana, F.I.; Susilo, S.A.B.; Toni; et al. Performance LoRa Technology for Autonomous Vehicles. In Proceedings of the 2023 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 26 July 2023; pp. 703–709. [Google Scholar] [CrossRef]
- Sánchez Díaz, C.A.; Díaz Lucio, A.S.; Salazar-Cabrera, R.; Pachón de la Cruz, Á.; Madrid Molina, J.M. Prototype of a System for Tracking Transit Service Based on IoV, ITS, and Machine Learning. World Electr. Veh. J. 2023, 14, 261. [Google Scholar] [CrossRef]
- Manzoni, P.; Calafate, C.T.; Cano, J.-C.; Hernández-Orallo, E. Indoor Vehicles Geolocalization Using LoRaWAN. Future Internet 2019, 11, 124. [Google Scholar] [CrossRef]
- Sanchez-Iborra, R.; Bernal-Escobedo, L.; Santa, J. Eco-Efficient Mobility in Smart City Scenarios. Sustainability 2020, 12, 8443. [Google Scholar] [CrossRef]
- de Camargo, E.T.; Spanhol, F.A.; Castro e Souza, Á.R. Deployment of a LoRaWAN network and evaluation of tracking devices in the context of smart cities. J. Internet Serv. Appl. 2021, 12, 8. [Google Scholar] [CrossRef]
- Priya, C.S.; Francis, F.S. A Novel LoRaWAn-based Real-time Traffic Analysis Approach for Vehicle Congestion Estimation. In Proceedings of the 2023 Winter Summit on Smart Computing and Networks (WiSSCoN), Chennai, India, 15–17 March 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Kołodziejska, A.; Krzykowska, K.; Siergiejczyk, M. Comparative analysis of V2V and A2A technologies. J. KONBiN 2018, 45, 345–364. [Google Scholar] [CrossRef]
- Haque, K.F.; Abdelgawad, A.; Yanambaka, V.P.; Yelamarthi, K. LoRa Architecture for V2X Communication: An Experimental Evaluation with Vehicles on the Move. Sensors 2020, 20, 6876. [Google Scholar] [CrossRef] [PubMed]
- Asiain, D.; Antolín, D. LoRa-Based Traffic Flow Detection for Smart-Road. Sensors 2021, 21, 338. [Google Scholar] [CrossRef] [PubMed]
- Lin, L. Low power consumption and reliability of wireless communication network in intelligent parking system. J. Ambient Intell. Hum. Comput. 2021, 12, 1305–1313. [Google Scholar] [CrossRef]
- Tokmakov, D.M.; Asenov, S.M. Autonomous Smart Wireless LoRaWAN Vehicle Parking Sensor. In Proceedings of the 2022 XXXI International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 13–15 September 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Lai, Q.H.; Lai, C.S.; Lai, L.L. Best Practice for Parking Vehicles with Low-power Wide-Area Network. In Smart Energy for Transportation and Health in a Smart City; Wiley-IEEE Press: Hoboken, NJ, USA, 2023; pp. 407–424. [Google Scholar] [CrossRef]
- Puyol, J.L.M.; Baeza, V.M. Bicycle Sharing System Using an IoT Network. In Proceedings of the 2021 Global Congress on Electrical Engineering (GC-ElecEng), Valencia, Spain, 10–12 December 2021. [Google Scholar] [CrossRef]
- Croce, D.; Garlisi, D.; Giuliano, F.; Valvo, A.L.; Mangione, S.; Tinnirello, I. Performance of LoRa for Bike-Sharing Systems. In Proceedings of the 2019 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Torino, Italy, 2–4 July 2019. [Google Scholar] [CrossRef]
- Padma, B. Connected Vehicles using LoRa. In Proceedings of the 2020 7th International Conference on Smart Structures and Systems (ICSSS), Chennai, India, 23–24 July 2020. [Google Scholar] [CrossRef]
- Pinelo, J.; Rocha, A.D.; Arvana, M.; Gonçalves, J.; Cota, N.; Silva, P. Unveiling LoRa’s Oceanic Reach: Assessing the Coverage of the Azores LoRaWAN Network from an Island. Sensors 2023, 23, 7394. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Nasipuri, A. FL-LoRaMAC: A Novel Framework for Enabling On-Device Learning for LoRa-Based IoT Applications. Future Internet 2023, 15, 307. [Google Scholar] [CrossRef]
- Lora Alliance. About LoRa Alliance. 2023. Available online: https://lora-alliance.org/about-lora-alliance (accessed on 5 May 2023).
- Edward, P.; El-Aasser, M.; Ashour, M.; Elshabrawy, T. Interleaved chirp spreading lora as a parallel network to enhance lora capacity. IEEE Internet Things J. 2020, 8, 3864–3874. [Google Scholar] [CrossRef]
- Semtech. LoRa and LoRaWAN: A Technical Overview. Available online: https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan (accessed on 3 November 2023).
- Azmi, N.; Sudin, S.; Kamarudin, L.M.; Zakaria, A.; Visvanathan, R.; Cheik, G.C.; Syed Zakaria, S.M.M.; Alfarhan, K.A.; Badlishah Ahmad, R. Design and Development of Multi-Transceiver Lorafi Board consisting LoRa and ESP8266-Wifi Communication Module. IOP Conf. Series Mater. Sci. Eng. 2018, 318, 012051. [Google Scholar] [CrossRef]
- Borucka, A.; Sobecki, G. A road safety evaluation model in the context of legislative changes. Transp. Probl. 2023, 18, 41–51. [Google Scholar] [CrossRef]
- Krukowicz, T.; Firląg, K.; Chrobot, P. Spatiotemporal Analysis of Road Crashes with Animals in Poland. Sustainability 2022, 14, 1253. [Google Scholar] [CrossRef]
- EU (2019), Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2019/2144. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=PI_COM:Ares(2021)2243084&rid=1 (accessed on 3 November 2023).
- Rychlicki, M.; Kasprzyk, Z.; Rosiński, A. Analysis of Accuracy and Reliability of Different Types of GPS Receivers. Sensors 2020, 20, 6498. [Google Scholar] [CrossRef]
- Sejm Rzeczypospolitej Polskiej. Ustawa z dnia 8 marca 1990 r. o samorządzie gminnym. Dz. U. 1990, 16, 95. [Google Scholar]
- Rząd Rzeczypospolitej Polskiej. Geoportal. 2023. Available online: https://mapy.geoportal.gov.pl (accessed on 3 November 2023).
- Andreadis, A.; Giambene, G.; Zambon, R. Low-Power IoT for Monitoring Unconnected Remote Areas. Sensors 2023, 23, 4481. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Ahmad, S.; Rehmani, M.H.; Hassan, N.U. A Survey on Radio Resource Allocation in Cognitive Radio Sensor Networks. IEEE Commun. Surv. Tutor. 2015, 17, 888–917. [Google Scholar] [CrossRef]
- Chrzan, M.; Pirosz, P.; Paś, J. Transmission system model in the track-vehicle relationship based on Long Term Evolution technology. Arch. Transp. 2023, 66, 89–108. [Google Scholar] [CrossRef]
- Hussain, S.; Brennan, C. An efficient ray tracing method for propagation prediction along a mobile route in urban environments. Radio Sci. 2017, 52, 862–873. [Google Scholar] [CrossRef]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Zwolińska, B.; Tubis, A.A.; Chamier-Gliszczyński, N.; Kostrzewski, M. Personalization of the MES System to the Needs of Highly Variable Production. Sensors 2020, 20, 6484. [Google Scholar] [CrossRef]
- Centenaro, M.; Vangelista, L.; Zanella, A.; Zorzi, M. Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wirel. Commun. 2016, 23, 60–67. [Google Scholar] [CrossRef]
- Piechowiak, M.; Zwierzykowski, P.; Musznicki, B. LoRaWAN Metering Infrastructure Planning in Smart Cities. Appl. Sci. 2023, 13, 8431. [Google Scholar] [CrossRef]
- Fraga-Lamas, P.; Celaya-Echarri, M.; Lopez-Iturri, P.; Castedo, L.; Azpilicueta, L.; Aguirre, E.; Suárez-Albela, M.; Falcone, F.; Fernández-Caramés, T.M. Design and Experimental Validation of a LoRaWAN Fog Computing Based Architecture for IoT Enabled Smart Campus Applications. Sensors 2019, 19, 3287. [Google Scholar] [CrossRef]
- Available online: https://pt-br.topographic-map.com/map-g58vnx/Warszawa/?center=52.26133%2C20.81068&zoom=13 (accessed on 28 December 2023).
- ATDI. Radio Propagation in ATDI Tools, Release number v5.0; Technical Support; ATDI: Washington, DC, USA, 2023. [Google Scholar]
- Technical Documentation CompleTech. Available online: https://completech.fi/files/CAX+.pdf (accessed on 5 January 2024).
- Available online: https://lora-alliance.org/wp-content/uploads/2020/11/lorawan_regional_parameters_v1.0.3reva_0.pdf (accessed on 5 January 2024).
- Available online: https://www.univ-smb.fr/lorawan/wp-content/uploads/2022/01/Book-LoRa-LoRaWAN-and-Internet-of-Things.pdf (accessed on 5 January 2024).
- Kuhnel, K. Develop and Operate Your LoRaWAN IoT Nodes; Elektor International Media B.V.: Susteren, The Netherlands, 2022; ISBN 978-3-89576-495-0. [Google Scholar]
- Petajajarvi, J.; Mikhaylov, K.; Roivainen, A.; Hanninen, T.; Pettissalo, M. On the coverage of LPWANs: Range evaluation and channel attenuation model for LoRa technology. In Proceedings of the 2015 14th International Conference on ITS Telecommunications (ITST), Copenhagen, Denmark, 2–4 December 2015. [Google Scholar] [CrossRef]
- Taha, A.; Feteiha, M.; Abdul, W. Performance Evaluation for LoRa Transceiver. Int. J. Comput. Sci. Softw. Eng. 2019, 8, 2409–4285. [Google Scholar]
R = 1 | R = 2 | R = 3 | R = 4 | R = 5 | R = 6 | R = 7 | R = 8 |
---|---|---|---|---|---|---|---|
21 | 8 | 3 | 2 | 2 | 2 | 1 | 1 |
d = 100 | d = 200 | d = 300 | d = 400 | d = 500 | d = 600 | d = 700 | d = 800 | d = 900 |
---|---|---|---|---|---|---|---|---|
600 | 300 | 200 | 150 | 120 | 100 | 86 | 75 | 67 |
Description: cross-polarized yagi, dual feed, physically phased a quarter wavelength along the boom Frequency: 380–410 MHz, 405–440 MHz, 440–475 MHz, 703–803 MHz, 791–862 MHz, 830–890 MHz, 880–960 MHz Impedance: 50 ohm Gain: 8/8 dBi H -3 dB: 69/68° E -3 dB: 68/65° F/B: 12/12 dB Polarization: circular/slanted Isolation: 30 dB Connector: 2*N-/2*TNC-/2*7/16-female VSWR: <1.5 Radome: UV resistant ABS/FG, RAL 7012, PU foam filling Radiator: copper Passive elements: coated aluminum Attachment: Ø 35–60 mm, aluminum alloy bracket, stainless steel V-bolts and self-locking nuts Lightning protection: DC short-circuited Temperature: −40 °C–+80 °C IP: 67 |
Name | Longitude | Latitude | Antenna [m] | Frequency [MHz] | SF | Tx BW [kHz] | Rx BW [kHz] | Azimuth [deg] | |
---|---|---|---|---|---|---|---|---|---|
1 | GW1 | 20.797360 | 52.264050 | 25.00 | 868.100 | 12 | 125.00 | 125.00 | 270 |
2 | GW2 | 20.844530 | 52.252010 | 25.00 | 868.300 | 12 | 125.00 | 125.00 | 0 |
3 | GW3 | 20.733780 | 52.252850 | 20.00 | 868.300 | 12 | 125.00 | 125.00 | 90 |
4 | GW4 | 20.818210 | 52.248530 | 20.00 | 868.500 | 12 | 125.00 | 125.00 | 0 |
5 | GW5 | 20.877270 | 52.243960 | 20.00 | 868.100 | 12 | 125.00 | 125.00 | 0.00 |
6 | GW6 | 20.742580 | 52.280030 | 20.00 | 868.500 | 12 | 125.00 | 125.00 | 180 |
RRSI | Signal Reception |
---|---|
−60 dBm and better | Excellent |
−70 dBm to −60 dBm | Very good |
−80 dBm to −70 dBm | Good |
−90 dBm to −80 dBm | Satisfactory |
−100 dBm to −90 dBm | Weak |
−110 dBm to −100 dBm | Very weak |
−120 dBm to −110 dBm | Signal absent or almost absent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rychlicki, M.; Kasprzyk, Z.; Pełka, M.; Rosiński, A. Use of Wireless Sensor Networks for Area-Based Speed Control and Traffic Monitoring. Appl. Sci. 2024, 14, 9243. https://doi.org/10.3390/app14209243
Rychlicki M, Kasprzyk Z, Pełka M, Rosiński A. Use of Wireless Sensor Networks for Area-Based Speed Control and Traffic Monitoring. Applied Sciences. 2024; 14(20):9243. https://doi.org/10.3390/app14209243
Chicago/Turabian StyleRychlicki, Mariusz, Zbigniew Kasprzyk, Małgorzata Pełka, and Adam Rosiński. 2024. "Use of Wireless Sensor Networks for Area-Based Speed Control and Traffic Monitoring" Applied Sciences 14, no. 20: 9243. https://doi.org/10.3390/app14209243