Overview of the Research Status of Intelligent Water Conservancy Technology System
<p>Progress of smart water conservancy digital twin.</p> "> Figure 2
<p>Overall framework of intelligent water conservancy.</p> "> Figure 3
<p>Triangle model of water conservancy twin “cloud–edge–end”.</p> "> Figure 4
<p>Basic construction process of knowledge graph.</p> ">
Abstract
:1. Introduction
2. Smart Water Conservancy System Based on Digital Twin
3. Status Quo of Key Technologies of Smart Water Conservancy
3.1. “Sky, Air, Land and Water” Integrated Monitoring Technology
3.2. Big Data and Artificial Intelligence Technology
3.3. Cloud Network Convergence Architecture Based on Digital Twin
3.4. Digital Twin Platform Technology
3.4.1. Data Backplane Construction
3.4.2. Construction of Digital Twin Scenarios Integrating BIM and GIS
3.4.3. Digital Twin Water Model Platform Technology
3.5. Knowledge Graph
3.6. Security Technology Based on Blockchain
4. Application Status
4.1. Water Security
4.2. Water Resources
4.3. Water Conservancy Project
5. Challenges and Countermeasures
5.1. Data Issues and Privacy Security
5.2. Technology Integration and Talent Innovation
5.3. Standardization and Normalization
6. Summary and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mirdashtvan, M.; Najafinejad, A.; Malekian, A.; Sa’doddin, A. Sustainable Water Supply and Demand Management in Semi-arid Regions: Optimizing Water Resources Allocation Based on RCPs Scenarios. Water Resour. Manag. 2021, 35, 5307–5324. [Google Scholar] [CrossRef]
- Water Europe. The Value of Water: Towards a Water-Smart Society; Water Europe: Brussels, Belgium, 2023. [Google Scholar]
- Damman, S.; Schmuck, A.; Oliveira, R.; Koop, S.H.A.; Almeida, M.D.; Alegre, H.; Ugarelli, R.M. Towards a water-smart society: Progress in linking theory and practice. Util. Policy 2023, 85, 101674. [Google Scholar] [CrossRef]
- Jiang, Y.-z.; Ye, Y.-t.; Wang, H. Smart basin and its prospects for application. Syst. Eng.-Theory Pract. 2011, 31, 1174–1181. [Google Scholar]
- Jiang, Y.-z.; Ye, Y.-t.; Wang, H. Discussion on Intelligent Regulation Technology Architecture for River Basin Based on Internet of Things. Water Resour. Informatiz. 2010, 28, 1–5+10. [Google Scholar]
- Wang, Z.-j.; Sun, W.-x.; Shi, Y.-j.; Yan, D.-c. Digital twins stimulate new quality productive forces and digital economy in water conservancy. China Water Resour. 2024, 75, 1–6. [Google Scholar]
- Botín-Sanabria, D.M.; Mihaita, A.S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; Ramírez-Mendoza, R.A.; Lozoya-Santos, J.D. Digital Twin Technology Challenges and Applications: A Comprehensive Review. Remote Sens. 2022, 14, 1335. [Google Scholar] [CrossRef]
- Ye, Y.-t.; Jiang, Y.-z.; Liang, L.-l.; Zhao, H.-l.; Gu, J.-j.; Dong, J.-p.; Cao, Y.; Duan, H. Digital twin watershed: New infrastructure and new paradigm of future watershed governance and management. Adv. Water Sci. 2022, 33, 683–704. [Google Scholar]
- Tao, F.; Xiao, B.; Qi, Q.L.; Cheng, J.F.; Ji, P. Digital twin modeling. J. Manuf. Syst. 2022, 64, 372–389. [Google Scholar] [CrossRef]
- Liu, C.-j.; Lyu, J.; Ren, M.-l.; Chen, S.; Zhang, X.-l.; Song, W.-l.; Zhang, D.-w. Research and application of digital twin intelligent flood prevention system in Huaihe River Basin. China Flood Drought Manag. 2022, 32, 47–53. [Google Scholar]
- Chen, J.; Liu, W.-z.; Wu, H.; Li, S.-n.; Yan, L. Smart surveying and mapping:fundament alissues and research agenda. Acta Geod. Cartogr. Sin. 2021, 50, 995–1005. [Google Scholar]
- Huang, B.; Zhao, Y.-q. Research Status and Prospect of Spatiotemporal Fusion of Multi-source Satellite Remote Sensing Imagery. Acta Geod. Cartogr. Sin. 2017, 46, 1492–1499. [Google Scholar]
- Zhang, L.; Zhang, H.; Liu, C.-k.; Zhu, X.-z. Research and application of key technologies for 3D simulation of water conservancy digital twin platform. Yangtze River 2023, 54, 9–18. [Google Scholar]
- Tang, W.-j.; Shen, S.-h.; Yang, H.-l.; Yuan, Y.; Niu, G.-l. Practices of Applying Key Technologies of Digital Twin Water Conservancy to the Jiangya and Zaoshi Project as an Example. J. Yangtze River Sci. Res. Inst. 2024, 41, 172–179. [Google Scholar]
- Ye, Y.-t.; Liang, L.-l.; Cao, Y.; Jiang, Y.-z.; Wang, J.-h.; Gong, J.-g. A Real-time and Efficient Method of Visual Simulation of Flood Routing in River Basin. J. Basic Sci. Eng. 2020, 28, 271–286. [Google Scholar]
- Li, S.-p.; Liu, Z.-q.; Zhang, B.; Zheng, M.; Chen, Y.-z. Digital Twin Water Conservancy Project System. CN Patent CN116776491A, 19 September 2023. [Google Scholar]
- Pan, Y.-t.; Ning, H.-y. Research on the application of the “four pre” intelligent water conservancy platform for flood control based on digital twin. China Water Transp. 2024, 24, 99–101. [Google Scholar]
- Li, Y.; Huang, S.-f.; Zang, W.-b.; Gao, Z.-g. Discussion on flood control application technology of digital twin basin based on virtual geographic environment. Natl. Remote Sens. Bull. 2024, 28, 1330–1339. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H. Research on standard specification system of digital twin watershed. In Proceedings of the 2023 China Water Conservancy Academic Congress, Zhengzhou, China, 4 November 2023; p. 6. [Google Scholar]
- Li, W.-z. Connotation, architecture and model of digital twin basin. China Water Resour. 2022, 20, 25–27. [Google Scholar]
- Xu, J.; Xu, J.; Wei, S.-q.; Zhao, B.-c.; Xiao, X.; Li, G.-z. Application Prospects of Block Chain Technology in Construction of lntelligent Water Conservancy System. J. Yangtze River Sci. Res. Inst. 2023, 40, 150–154+163. [Google Scholar]
- Sun, S.-y.; Yu, J.-s.; Yang, H.-f.; Liu, Y.-m. Research on water conservancy modernization system based on intelligent brain. China Water Resour. 2020, 71, 52–55. [Google Scholar]
- Lian, B.; Wei, Z.-c.; Zhao, J.-j. Review on key technologies and applications of smart water conservancy. Water Resour Informatiz. 2021, 39, 6–18+31. [Google Scholar]
- Ye, Y.-t.; Jiang, Y.-z.; Cao, Y.; Shang, Y.-z.; Gu, J.-j.; Dong, J.-p.; Huang, J.-x.; Guan, H.-z. Smart water conservancy theory system and digital twin watershed virtual model research summary. China Water Resour. 2024, 75, 41–51. [Google Scholar]
- Niu, W.-j.; Feng, B.-f.; Xu, Y.-s.; Qin, H. Real-time prediction method of watershed hydrology based on digital twin. In Proceedings of the 11th Information Forum on Flood Control and Drought Relief, Hefei, China, 14 April 2021; p. 9. [Google Scholar]
- Zhan, Q.-z.; Chen, Z.-x.; Zhang, C.; Zou, X. Interpretation of Technical Guideline for Development of Digital Twin of Hydraulic Engineering (Trial). Water Resour. Informatiz. 2022, 40, 1–5. [Google Scholar]
- Xie, W.-j.; Li, J.-h.; Li, X.-y.; He, T.; Zhao, X.-z. Interpretation of Technical Guideline for Development of Digital Twin of River Basins (Trial). Water Resour. Informatiz. 2022, 40, 6–12. [Google Scholar]
- Gong, J.-y.; Zhang, X.; Xiang, L.-g.; Chen, N.-c. Progress and applications for integrated sensing and intelligent decision in smart city. Acta Geod. Cartogr. Sin. 2019, 48, 1482–1497. [Google Scholar]
- Ye, Y.-t.; Jiang, Y.-z.; Cao, Y.; Huang, J.-x.; Guan, H.-z.; Gu, J.-j.; Dong, J.-p. Research on Standard System of Smart Water Conservancy with Digital Twin Water Conservancy as the Core. J. N. China Univ. Water Resour. Electr. Power (Nat. Sci. Ed.) 2023, 44, 1–16. [Google Scholar]
- Wu, Y.-r. Empowering smart water with remote sensing technology: Issues, challenges and suggestions. China Water Resour. 2024, 75, 1–8. [Google Scholar]
- Chen, L.; Li, J.-x. Application of satellite remote sensing in ice flood monitoring of the Ningxia and Mongolia reaches of the Yellow River. Disaster Reduct. China 2023, 33, 20–22. [Google Scholar]
- Zhang, X.-l.; Zhu, Y.; Cul, Z.-h. Analysis of the River Regime Evolution in the Braided Reach in Lower Yellow River Based on Remote Sensing lmages. China Rural Water Hydropower 2023, 65, 146–152. [Google Scholar]
- Lang, B.; Hu, M.-z.; Ma, L.; He, G.-h.; Yang, S.-y.; Lin, Z.-r. Intelligent Water Conservancy Remote Monitoring Method Based on Internet of Thing. CN Patent CN115081157B, 6 January 2023. [Google Scholar]
- Tadros, C.N.; Shehata, N.; Mokhtar, B. Unsupervised Learning-Based WSN Clustering for Efficient Environmental Pollution Monitoring. Sensors 2023, 23, 5733. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.-c.; Xiao, C.-j.; Li, L.-x. Key Technologies and Applications of Satellite and Sensor Web-coupled Real-time Dynamic Web Geographic Information System. Acta Geod. Cartogr. Sin. 2017, 46, 1698–1704. [Google Scholar]
- Li, W.-z. Research on system architecture and key technologies of digital twin basin. China Water Resour. 2022, 73, 25–29. [Google Scholar] [CrossRef]
- Ji, H.W.; Luo, X.Q.; Zhou, Y.J. Landslide data mosaicking based on an airborne laser point cloud and multi-beam sonar images. J. Mt. Sci. 2020, 17, 2068–2080. [Google Scholar] [CrossRef]
- Cai, L.; Yu, F.; Liu, S.-j. A New Sensing System of Water Conservancy based on the Inteligent Edge loT Terminal. Haihe Water Resour. 2023, 42, 110–113. [Google Scholar]
- Wang, W.; Liu, Y.-s.; Liao, J.; Cai, Y.-x. Key Technology and Architecture of Digital Twin. Des. Tech. Posts Telecommun. 2021, 64, 10–14. [Google Scholar]
- Zhou, Y.-n. Countermeasures and influence of Big Data on the Development of the Logistics Supply Chain innovation Strategy. China J. Commer. 2023, 32, 96–98. [Google Scholar]
- Abdulhalık, O.; Faruk, E.Ö. A survey on applications of machine learning algorithms in water quality assessment and water supply and management. Water Supply 2023, 23, 895–922. [Google Scholar]
- Farzana, S.Z.; Paudyal, D.R.; Chadalavada, S.; Alam, M.J. Prediction of Water Quality in Reservoirs: A Comparative Assessment of Machine Learning and Deep Learning Approaches in the Case of Toowoomba, Queensland, Australia. Geosciences 2023, 13, 293. [Google Scholar] [CrossRef]
- Ghanim, A.A.J.; Shaf, A.; Ali, T.; Zafar, M.; Areeq, A.M.A.; Alyami, S.H.; Irfan, M.; Rahman, S. An Improved Flood Susceptibility Assessment in Jeddah, Saudi Arabia, Using Advanced Machine Learning Techniques. Water 2023, 15, 2511. [Google Scholar] [CrossRef]
- Maryam, I.; Mahmudul, H.M.; Fernando, B.L.; Kent, M.; Zoran, K. A novel machine learning application: Water quality resilience prediction Model. Sci. Total Environ. 2021, 768, 144459. [Google Scholar]
- Asaly, S.; Gottlieb, L.A.; Yair, Y.; Price, C.; Reuveni, Y. Predicting Eastern Mediterranean Flash Floods Using Support Vector Machines with Precipitable Water Vapor, Pressure, and Lightning Data. Remote Sens. 2023, 15, 2916. [Google Scholar] [CrossRef]
- Cai, H.; Zhang, C.; Xu, J.; Wang, F.; Xiao, L.; Huang, S.; Zhang, Y. Water Quality Prediction Based on the KF-LSTM Encoder-Decoder Network: A Case Study with Missing Data Collection. Water 2023, 15, 2542. [Google Scholar] [CrossRef]
- Rao, X.-k.; Ma, R.; Zhang, L.; Liu, J. Research and design of smart river basin platform driven by Digital Twins. Express Water Resour. Hydropower Inf. 2022, 43, 117–123. [Google Scholar] [CrossRef]
- Ministry of Water Resources of the People’s Republic of China. Ministry of Water Resources deploys digital twin river basin construction work. China Water Resour. 2022, 73, 5. [Google Scholar]
- Zhou, C.; Tang, H.-h.; Li, Q.; Luo, B.; Feng, K.-l. Technology and application of digital twin modeling platform of water conservancy business. Yangtze River 2022, 53, 203–208. [Google Scholar]
- Ministry of Water Resources of the People’s Republic of China. The Ministry of Water Resources conducted a technical review of the digital twin river basin construction technical outline and other documents. Yellow River 2022, 44, 2. [Google Scholar]
- Lu, G.; Chen, C.-y.; Huang, Z.-l.; Huang, Z.-y. Research on intelligent cloud native architecture and key technologies for cloud and network integration. Telecommun. Sci. 2020, 36, 67–74. [Google Scholar]
- Zhang, X. Research and implementation of the lBN for cloud-network convergence service of operators. Telecommun. Sci. 2021, 37, 136–141. [Google Scholar]
- Shi, F. View of the technical innovationiof cloud-network convergence. Telecommun. Sci. 2020, 36, 63–70. [Google Scholar]
- Huang, T.; Liu, J.; Wang, S.; Zhang, C.; Liu, Y.-j. Survey of the future network technology and trend. J. Commun. 2021, 42, 130–150. [Google Scholar]
- Duan, R.-f.; Huo, J.-w.; Zhang, Q.; Zhang, Y.-j. Research on cloud-network convergence architecture for digital twin watersheds. Water Resour. Informatiz. 2023, 41, 35–40. [Google Scholar]
- Zhang, Z.; Niu, R. Application research of Data baseboard construction in Water Conservancy digital twin. In Proceedings of the 2023 China Water Conservancy Academic Congress, Zhengzhou, China, 4 November 2023; p. 8. [Google Scholar]
- Wei, M.; Yang, L.; Zhang, T. Research and application of construction method of water-land integrated 3D river channel mode. Yangtze River 2023, 54, 68–71. [Google Scholar]
- Bai, J.-y.; Li, C.-l.; Wu, X.-s.; Li, H.; Guo, J.; Dai, Y.-y. Water Conservancy Digital Twinning Bottom Plate Generation and Elastic Updating Method Based on Multi-Source Data. CN Patent CN115272597A, 1 November 2022. [Google Scholar]
- Song, Y.-c. Research on Digital Twin Construction of Hydraulic Engineering Based on BIM+GIS. Master’s Thesis, North China University of Water Resources and Electric Power, Zhengzhou, China, 2024. [Google Scholar]
- Cai, Y.; Cheng, J.-g.; Zeng, Y.; Zhang, A.-z. Accelerate to build smart water system with the function of “four pres”. China Water Resour. 2021, 72, 2–5. [Google Scholar]
- Li, G.-y. Constructing Digital Twin River Basins to Promote the High-Quality Water Development in the New Stage. Water Resour. Dev. Manag. 2022, 8, 3–5. [Google Scholar]
- Feng, J.; Zhang, J.-r.; Wu, Y.-r.; Wang, W.-p.; Zhou, S.-y.; Lu, J.-m.; Tang, B. Constructing Digital Twinning Watershed Intelligent Body Driven by Knowledge. CN Patent CN115544266A, 30 December 2022. [Google Scholar]
- Xia, R.-l.; Feng, X.-k.; He, M.-m.; Wu, H.-t. Research on Cloud Service Platform for Hvdraulic Numerical Stimulation based on Model Standardization. Water Resour. Informatiz. 2015, 33, 1–7. [Google Scholar]
- Qiu, Y.-g.; Duan, H.-t.; Xie, H.; Ding, X.-k.; Jiao, Y.-q. Design and development of a web-based interactive twin platform for watershed management. Trans. GIS 2022, 26, 1299–1317. [Google Scholar] [CrossRef]
- Tang, H.-h.; Huang, L.-y.; Zhang, Z.-d.; Feng, K.-l. Key construction technology of water conservancy business model for digital twin. Yangtze River 2024, 55, 1–5+20. [Google Scholar]
- Wang, M.; Wang, H.-f.; Li, B.-h.; Zhao, X.; Wang, X. Survey on Key Technologies of New Generation Knowledge Graph. J. Comput. Res. Dev. 2022, 59, 1947–1965. [Google Scholar]
- Li, W.-x. Research on the Construction of Knowledge Map in Futures Field. Master’s Thesis, Zhengzhou University, Zhengzhou, China, 2022. [Google Scholar]
- Zeng, X.-l.; Zhang, G. Research and application of knowledge map based on resource integration and sharing of Yellow River. Yellow River 2021, 43, 282–284. [Google Scholar]
- Liu, J.-h.; Yue, M.-r. Knowledge Map Analysis of Ecological Protection and High-Quality Development Research of the Yellow River Basin. Yellow River 2021, 43, 7–12+23. [Google Scholar]
- Gao, F.-n.; Gao, X.-t.; Cao, S.; Zhu, X.-r.; Si, C.-y.; Hu, W. Construction of water conservancy knowledge graph for intelligent search application. Jiangsu Water Resour. 2021, 25, 59–64. [Google Scholar]
- Feng, J.; Xu, X.; Lu, J.-m. Construction and Application of Water Conservancy Information Knowledge Graph. Comput. Mod. 2019, 35, 35–40. [Google Scholar]
- Li, W.; Li, S.-y. Design of Digital Twin Basin Knowledge Platform based on Large Language Model and Knowledge Graph. Haihe Water Resour. 2023, 42, 75–78. [Google Scholar]
- Hou, Z.-j.; Zhang, Z.-b.; Qin, J.-h.; Jiang, Z.-q. Construction and application of knowledge map in intelligent water conservancy project. In Proceedings of the 2022 China Water Conservancy Academic Conference (2022 Annual Conference of Chinese Hydraulic Society), Beijing, China, 8 November 2022; p. 7. [Google Scholar]
- Liu, W.-z.; Chen, J.; Zhai, X.; Li, R.; Wang, X.-p.; Zhao, Y.; Zhu, X.-l.; Xu, Z.; Zhao, T.-t.; Peng, Y.-l.; et al. Research progress and application of spatiotemporal knowledge center. Acta Geod. Cartogr. Sin. 2021, 50, 1183–1193. [Google Scholar]
- Cavalieri, S.; Gambadoro, S. Digital Twin of a Water Supply System Using the Asset Administration Shell. Sensors 2024, 24, 1360. [Google Scholar] [CrossRef]
- Zhang, J.-h.; Zan, H.-y.; Ou, J.-l.; Yan, Z.-y.; Zhang, K.-l. Knowledge Annotation Platform-based Knowledge Graph for Water Conservancy Hub Projects Construction and Application. Comput. Sci. 2024, 51, 1–16. [Google Scholar]
- Zhang, J.-h.; Huang, X.-y.; Gui, M.-y.; Zan, H.-y.; Zhang, K.-l. Building and Application of Water Conservancy Knowledge Graph for Digital Twin Project. Yellow River 2024, 46, 121–124+130. [Google Scholar]
- Chang, B.; Zhao, J.; Zhou, Y.; Tang, L.; Wang, H.; Fan, G.; Xu, H.; Cheng, X.; Lu, H.; Zhu, S. Water Conservancy Digital Twin Simulation Method Based on Blockchain Technology. CN Patent CN117350010A, 5 January 2024. [Google Scholar]
- Xu, J.; Xu, J.; Zhao, B.-c.; Li, G.-z.; Xiao, X.; Zhang, S.-y.; Fu, J.-l.; Wang, L.-h.; Cheng, X.-j.; Zheng, X.-d. Method for Simulating Water Conservancy Digital Twinning Based on Block Chain. CN Patent CN115688491B, 10 March 2023. [Google Scholar]
- Park, D.; You, H.J. A Digital Twin Dam and Watershed Management Platform. Water 2023, 15, 2106. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, J.-r.; Wang, W.-p.; Wu, Y.-r.; Lu, J.-m.; Liu, X.-y.; Yan, R.-h.; Ni, T.-y.; Lin, J. Method for Optimizing Online Flood Forecast Model Parameter Driven by Knowledge and Data Fusion. CN Patent CN116776581A, 19 September 2023. [Google Scholar]
- Qu, J.-l.; Wang, X.-h.; Cai, J.-k.; Fang, A.-y.; Yin, X.-m. Method for Detecting Data Quality in Real Time Based on Streaming Calculation. CN Patent CN116701363A, 5 September 2023. [Google Scholar]
- Wang, Q.; Xu, Y.-h.; Feng, J.-l.; Xu, Z.-j.; Zhu, B.-l. Digital Twin-Based Intelligent Water Conservancy Pre-Warning Management System. CN Patent CN115547016B, 14 March 2023. [Google Scholar]
- Du, Z.-z.; Gao, Y.; Wan, J.-z.; Han, K. Intelligent management method of river engineering based on Digital Twin technology. China Water Resour. 2020, 71, 60–62. [Google Scholar]
- Liu, H.; Shi, S.-h.; Fan, P.; Gu, W.-h.; Qiu, F.-q.; Sha, M.; Pan, Y.-q.; Qian, F.; Sun, Y.-f.; Wu, J.-w.; et al. Rapid Construction Method of Intelligent Water Conservancy Digital Twin Model Applied to Reservoir. CN Patent CN117372201A, 9 January 2024. [Google Scholar]
- Xie, M.-x.; Wang, X.-m.; Chen, S.-f.; Luo, W.; Liu, Z.-j.; Pei, Y.-d.; You, P.-l.; Guo, X.; Liu, Y.; Ning, R.-b. Method for Constructing Digital Twinning Water Net Tetrahedron Model. CN Patent CN115964875B, 7 May 2024. [Google Scholar]
- Tang, H.-w.; Lu, Y.-h.; Xiao, Y.; Xu, D.; Gao, C.-s.; Ran, Q.-h.; Yuan, S.-y.; Ye, F.; Zhou, Y. Branch Point Processing Method for Digital Twin Water Network Data Driving. CN Patent CN117933143A, 26 April 2024. [Google Scholar]
- Gao, W.; Tan, H.; Pei, Y.; Liao, J.; Liu, Z.; Peng, Y.; Luo, W.; Chen, S.; Wang, X.; Xie, M. Water Network Navigation System for Providing Water Network Plannin. CN Patent CN116186183B, 2 January 2024. [Google Scholar]
- Wu, T.; Xu, J.; Li, G.-z.; Zhang, S.-y.; Wang, L.-h.; Zheng, X.-d.; Li, L.; Li, D.; Fan, G.-q.; Xiong, B.-f. Digital Twin Based Water Conservancy Project Intelligent Monitoring Method. CN Patent CN117131671A, 28 November 2023. [Google Scholar]
- Li, S.-p.; Liu, Z.-q.; Zhang, B.; Zheng, M.; Chen, Y.-z.; Cheng, W.-y.; Shi, B.; Li, Y.-h. System for monitoring running safety of digital twinning water conservancy projec. CN Patent CN115688227B, 9 June 2023. [Google Scholar]
- Ye, S.; Yao, Z.-l.; Luo, F.; Wang, Y.; Li, Z.; Yang, H.-l.; Li, Q.; Chen, M.; Liao, B.-c.; Gu, M.-l.; et al. Method for Intelligently Inspecting Water Conservancy Project Based on BIM and Knowledge Ma. CN Patent CN117575579B, 9 April 2024. [Google Scholar]
- Yu, X.-y.; Yang, D.-f.; Ou, L.-l.; Zhou, L.-b.; Wei, Y.; Feng, Y.-j. Method for Rapidly Constructing Reservoir Smart Hydraulic Digital Twinning Model. CN Patent CN115131498A, 30 September 2022. [Google Scholar]
- Xie, Z.-d.; Yang, S.-q.; Wang, N.; Tan, Z.-x.; Lin, Z.-g.; Yu, L.-q.; Wang, L.; Li, H.-l.; Wang, X.-p.; Tao, Y.-b. Method for Manufacturing Water Conservancy and Hydropower Engineering Reporting System Based on Digital Twinning. CN Patent CN116069851A, 5 May 2023. [Google Scholar]
- Jiang, Y.-z.; Ye, Y.-t.; Zhao, H.-l. Research on connotation and features, basic architecture and standard system hydrological big data for SmartWater conservancy. Water Resour. Informatiz. 2019, 37, 6–19. [Google Scholar]
- Cao, Y.; Ye, Y.-t.; Liang, L.-l.; Jiang, Y.-z.; Zhao, H.-l.; Wang, H. Optimization design of the precipitation wireless sensor network node for high mountain basin. Syst. Eng.-Theory Pract. 2018, 38, 2168–2176. [Google Scholar]
- Zhu, Q.; Zhang, L.-g.; Ding, Y.-l.; Hu, H.; Ge, X.-m.; Liu, M.-w.; Wang, W. From real 3D modeling to digital twin modeling. Acta Geod. Cartogr. Sin. 2022, 51, 1040–1049. [Google Scholar]
- Tao, F.; Ma, X.; Hu, T.-l.; Huang, Z.-g.; Cheng, J.-f.; Qi, Q.-l.; Zhang, M.; Liu, W.-r.; Zhang, H.; Wang, S.-g.; et al. Research on digital twin standard system. Comput. Integr. Manuf. Syst. 2019, 25, 2405–2418. [Google Scholar]
- Li, Z.-j.; Zhang, W.; Wang, Y.-n. Prospect of Water conservancy modernization in 2035. Water Resour. Dev. Res. 2021, 21, 19–22. [Google Scholar]
- Wang, M.-g.; Li, B.; Tang, X.-w. Research on the critical path of the development and evolution of technical standard Alliance—Taking TD Alliance as an example. Manag. Mod. 2015, 35, 98–100. [Google Scholar]
- Wang, P.-j.; Kua, Y. Research on Development Situation and Reform Path of Municipal Local Standards-Based on the Background of Standardization Work Reform. China Stand. 2018, 61, 121–126. [Google Scholar]
- Qian, F.; Cheng, J.-g.; Xia, R.-l.; Ding, Y.-k.; Xie, W.-j.; Lu, J.-m.; Li, B. A preliminary exploration of the construction ideas, framework, and application scenarios of water conservancy large models. China Water Resour. 2024, 75, 9–19. [Google Scholar]
System Name | System Content |
---|---|
Digital twin hydraulic engineering system [16] | Physical layer, data layer, service logic layer, user interaction layer |
Application research of the “Four Pre-stages” intelligent water conservancy platform for flood control based on digital twin [17] | Data baseboard construction, perception system construction, digital twin model construction, intelligent decision and optimization |
Digital twin river basin flood control application technology framework [18] | Resource layer, data layer, twin layer, application layer |
Research on standard specification system of digital twin watershed [19] | Basic commonality, information infrastructure, digital twin platform, business application, security, construction, operation and maintenance |
Digital twin basin architecture [20] | ABCDMEETS (Artificial intelligence, big data, cloud computing, digital twin, Digital Mainline, model systems engineering, air–Earth integrated network, edge computing, Internet of Things, simulation) digital twin basin architecture |
Intelligent water conservancy Integrated Management Platform [21] | Physical layer, blockchain layer, interface layer, application layer, regulatory layer |
Architecture of water conservancy modernization [22] | Big perception stereo system, big network interconnection system, big data cloud center system, brain fusion system, big application system |
Smart water system framework [23] | Perception layer, network layer, knowledge layer, application layer |
Theoretical framework of intelligent water network [24] | Construction and key technologies of water physical network, water information network and water management network |
Real-time runoff prediction system based on digital twin [25] | Physical layer, perception layer, transmission layer, digital layer, decision layer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Ma, Z.; Li, J.; Li, W.; Li, Y.; Yang, J. Overview of the Research Status of Intelligent Water Conservancy Technology System. Appl. Sci. 2024, 14, 7809. https://doi.org/10.3390/app14177809
Li Q, Ma Z, Li J, Li W, Li Y, Yang J. Overview of the Research Status of Intelligent Water Conservancy Technology System. Applied Sciences. 2024; 14(17):7809. https://doi.org/10.3390/app14177809
Chicago/Turabian StyleLi, Qinghua, Zifei Ma, Jing Li, Wengang Li, Yang Li, and Juan Yang. 2024. "Overview of the Research Status of Intelligent Water Conservancy Technology System" Applied Sciences 14, no. 17: 7809. https://doi.org/10.3390/app14177809
APA StyleLi, Q., Ma, Z., Li, J., Li, W., Li, Y., & Yang, J. (2024). Overview of the Research Status of Intelligent Water Conservancy Technology System. Applied Sciences, 14(17), 7809. https://doi.org/10.3390/app14177809