Comparison of the Piezocone Penetrometer (CPTU) and Flat Dilatometer (DMT) Methods for Landslide Characterisation
<p>Locations of investigated landslides [<a href="#B22-geosciences-14-00064" class="html-bibr">22</a>,<a href="#B23-geosciences-14-00064" class="html-bibr">23</a>].</p> "> Figure 2
<p>Investigation flow chart.</p> "> Figure 3
<p>Geological profile of the wider area around the investigation location in Bedekovčina [<a href="#B20-geosciences-14-00064" class="html-bibr">20</a>].</p> "> Figure 4
<p>Different clay samples from the area of the Bedekovčina landslide.</p> "> Figure 5
<p>Plan view of in-situ investigations on the Bedekovčina landslide.</p> "> Figure 6
<p>Situation plan of in-situ investigations on landslides in Kravarsko.</p> "> Figure 7
<p>Groups of <span class="html-italic">c<sub>u</sub></span> profiles measured at the geotechnical test site of soft clays, Bothkennar in Great Britain. The tags are: FV—downhole wing probe; TC—triaxle compression (CKoUC); DSS—triaxle simple shear; TE—triaxle extension [<a href="#B35-geosciences-14-00064" class="html-bibr">35</a>].</p> "> Figure 8
<p>Self-propelled machine for hydraulic pressing of CPTU probe, Pagani TG 63-150.</p> "> Figure 9
<p>Detection of the sliding zone based on the index <span class="html-italic">K<sub>d</sub></span> [<a href="#B41-geosciences-14-00064" class="html-bibr">41</a>].</p> "> Figure 10
<p>Results of DMT-1 investigation—Bedekovčina landslide.</p> "> Figure 11
<p>Results of for DMT-2 investigation—Bedekovčina landslide.</p> "> Figure 12
<p>Overlay of research results obtained by DMT-1 and DMT-2 sounding—Bedekovčina landslide.</p> "> Figure 13
<p>Results of DMT investigation for <span class="html-italic">p</span><sub>0</sub>, <span class="html-italic">p</span><sub>1</sub>, and interpreted data for <span class="html-italic">E<sub>D</sub>:</span> (<b>a</b>) KL8; (<b>b</b>) KL9; (<b>c</b>) KL10.</p> "> Figure 14
<p>Results of DMT investigation on the Kravarsko landslides.</p> "> Figure 15
<p>Prognostic profiles and the analysis of the obtained data by depth in the first group of the investigation area in Bedekovčina: (<b>a</b>) undrained shear strength <span class="html-italic">c<sub>u</sub></span>; (<b>b</b>) over-consolidation ratio <span class="html-italic">OCR</span>; (<b>c</b>) compressibility modulus <span class="html-italic">M</span>; (<b>d</b>) horizontal stress index <span class="html-italic">K<sub>d</sub></span>.</p> "> Figure 15 Cont.
<p>Prognostic profiles and the analysis of the obtained data by depth in the first group of the investigation area in Bedekovčina: (<b>a</b>) undrained shear strength <span class="html-italic">c<sub>u</sub></span>; (<b>b</b>) over-consolidation ratio <span class="html-italic">OCR</span>; (<b>c</b>) compressibility modulus <span class="html-italic">M</span>; (<b>d</b>) horizontal stress index <span class="html-italic">K<sub>d</sub></span>.</p> "> Figure 16
<p>Comparison diagrams of in situ probing results with the obtained values of horizontal displacements on inclinometers: (<b>a</b>) Group 1 data <span class="html-italic">K<sub>d</sub></span>—horizontal displacements; (<b>b</b>) Group 3 data <span class="html-italic">K<sub>d</sub>—</span>horizontal displacements; (<b>c</b>) Group 3 data <span class="html-italic">c<sub>u</sub></span>—horizontal displacements.</p> "> Figure 17
<p>Geotechnical soil profile for KL10 landslide on road DC31 in Kravarsko.</p> "> Figure 18
<p>The relationship between the horizontal stress index <span class="html-italic">K<sub>d</sub></span> and the vertical effective stress <span class="html-italic">σ’<sub>vo</sub></span> on the detected sliding zones.</p> "> Figure 19
<p>The relationship between the undrained shear strength <span class="html-italic">c<sub>u</sub></span> and vertical effective stresses <span class="html-italic">σ’<sub>vo</sub></span> on the detected sliding zones.</p> "> Figure 20
<p>The relationship between the over-consolidation ratio <span class="html-italic">OCR</span> and vertical effective stresses <span class="html-italic">σ′<sub>vo</sub></span> on the detected sliding zones.</p> "> Figure 21
<p>The relationship between the compressibility modulus <span class="html-italic">M</span> and vertical effective stresses <span class="html-italic">σ’<sub>vo</sub></span> on the detected sliding zones.</p> ">
Abstract
:1. Introduction
2. Investigation Area Description and Issue Presentation
2.1. Bedekovčina Landslide
- Lower Pliocene (Pl1)—these deposits consist of clastites characterised by alternating sand, silt, clay, and sandy marl. Blue–grey marls are found in the superpositionally lowest parts of the sequence. They are overlain by well-stratified sandy marls with lenses of powder and clay and, locally, may also contain layers of coal. According to existing data, the thickness of these deposits is 100–450 m [25].
- Plio-Pleistocene (Pl,Q)—fluvial-type deposits at the transition between the Pliocene and the Quaternary are discordant to older Pliocene deposits. The contact with the older Pliocene deposits is tectonic, and in some cases, the boundary is erosional. Regarding lithology, there are dusty sands and sands with clay lenses. The location of Bedekovčina cemetery is located exactly in these deposits.
- Holocene (al)—alluvial deposits are present along the Krapina river. Among the geological materials, unbound clasts predominate, the granulometric composition of which varies from gravel, sand and dust to clay.
2.2. Kravarsko Landslide
3. Research Methodology
3.1. Penetration Theory of Piezocone Penetrometer
3.2. Penetration Theory of Flat Dilatometer
3.3. Inclinometer Observations
4. Prognostic Profiles Based on In Situ Geotechnical Probing Results
5. Verification of In Situ Probe Results with Displacements on Inclinometers
6. Data Analysis
6.1. Analysis of the Horizontal Stress Index
6.2. Analysis of the Undrained Shear Strength Parameter
6.3. Analysis of the Over-Consolidation Ratio
6.4. Analysis of the Compressibility Modulus
7. Conclusions
- For the results of the DMT probe, a higher parameter sensitivity is generally obtained, closer to the expected range values, and the standard deviation (deviation from the arithmetic mean) is smaller.
- The observed trend of the regression direction in the mentioned correlations has a negative direction coefficient for all considered parameters. From the above, it can be concluded that the detection of changes within the soil disturbed by sliding is more pronounced in the case of deeper sliding zones.
- The measured parameters on deeper sliding zones fit more into the expected value ranges. This can be explained by the fact that almost every geotechnical investigated soil shows over-consolidated characteristics in the shallower layers. The described characteristic dominantly affects the results of static penetration at lower depths, i.e., at smaller amounts of vertical effective stresses.
- The value of the effective vertical stress in sliding zones does not exceed 50 kPa, i.e., σ′vo ≤ 50 kPa. This means that the parameters measured by in situ penetration on the slip surface in the presented cases do not detect the slip surface within the expected parameter ranges. In the paper, the problematic case of shallow slips in the soil is particularly highlighted. Then, there are specific phenomena of high levels of groundwater or seepage water. It is shown that in such a case, the vertical effective stresses are extremely small.
- The reorientation of soil particles caused by sliding primarily affects the lateral stresses in the soil. Regarding the stresses in the soil, the conducted research showed that in situ static penetrations do not detect soil over-consolidation in shallower layers.
- It is confirmed that the horizontal stress index Kd is the parameter that best detects the sliding zones. However, the results show that the range of the expected value of the Kd index on the sliding zone can be extended. The range mentioned in the literature is Kd = 1.8–2.0. From the results of this paper, it is clear that the upper limit should definitely be raised. Figure 18 shows the linear regression of the results for Kd from Table 1, and it is concluded that the upper value should be increased by 0.5 to the range of Kd = 1.8–2.5. Another important conclusion can be drawn by looking at Figure 18. As the test depth increases (the vertical effective stress), the deviation of the measured Kd values from the shown regression line decreases. This means that various surface disturbances on the landslide influence the measured Kd values at lower depths.
- It was shown that the detection sensitivity of the Kd index is also influenced by over-consolidation in shallow soil layers. However, the results of this research show that caution should be exercised when establishing a relationship between Kd and OCR. A value of Kd = 2 corresponds to OCR = 1 only when testing normally consolidated clay. The surrounding soil significantly influences OCR, and in the zone of soil reorientation within the layer of the sliding surface, it reacts according to the type of material and the sliding process on the surface itself. Therefore, on landslides in which significant movements have already occurred, the clay in the sliding zone is completely disturbed (crushed), so the obtained values for OCR are much higher (OCR = 3–6) and can be unrealistically high (OCR > 10). From the above, it can be concluded that the measurement of the OCR coefficient by the DMT and CPTU methods cannot be a parameter for detecting a sliding zone.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruden, D.M. A Simple Definition of a Landslide. Bull. Int. Assoc. Eng. Geol. 1991, 43, 27–29. [Google Scholar] [CrossRef]
- Turner, A.K.; Schuster, R.L. Landslides: Investigation and Mitigation (Report 247); National Academy Press: Washington, DC, USA, 1996. [Google Scholar]
- Mihalić Arbanas, S.; Arbanas, Ž.; Krkač, M.; Bernat Gazibara, S.; Vivoda Prodan, M.; Đomlija, P.; Jagodnik, V.; Dugonjić Jovančević, S.; Sečanj, M.; Peranić, J. Landslide risk reduction in Croatia: Scientific research in the framework of the WCoE 2014–2017, IPL-173, IPL-184, ICL ABN. In Advancing Culture of Living with Landslide, Proceedings of 4th World Landslide Forum, Ljubljana, Slovenija, 2017; Sassa, K., Mikoš, M., Yin, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- European Commision. Joint Research Centre. Lessons Learnt from Landslide Disasters in Europe. Available online: https://esdac.jrc.ec.europa.eu/ESDB_Archive/eusoils_docs/other/eur20558EN.pdf (accessed on 3 May 2023).
- Van Den Eeckhaut, M.; Hervas, J.; Jaedicke, C.; Malet, J.P.; Montanarella, L.; Nadim, F. Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 2012, 9, 357–369. [Google Scholar] [CrossRef]
- Gunther, A.; Van den Eeckhaut, M.; Malet, J.P.; Reichenbach, P.; Hervas, J. Climatephysiographically differentiated pan-european landslide susceptibility assessment using spatial multi-criteria evaluation and transnational landslide information. Geomorphology 2014, 224, 69–85. [Google Scholar] [CrossRef]
- Haque, U.; Blum, P.; da Silva, P.H.; Andersen, P.; Pilz, J.; Chalov, S.R.; Malet, J.P.; Auflič, M.J.; Andres, N.; Poyiadji, E.; et al. Fatal landslides in Europe. Landslides 2016, 12, 1545–1554. [Google Scholar] [CrossRef]
- Jordanova, G.; Gariano, S.L.; Melillo, M.; Peruccacci, S.; Brunetti, M.T.; Jemec Auflič, M. Determination of Empirical Rainfall Thresholds for Shallow Landslides in Slovenia Using an Automatic Tool. Water 2020, 12, 1449. [Google Scholar] [CrossRef]
- Corsini, A.; Borgatti, L. Mountain Landslides: Monitoring, Modeling, and Mitigation. Geosciences 2019, 9, 365. [Google Scholar] [CrossRef]
- Tofani, V.; Bicocchi, G.; Rossi, G.; Segoni, S.; D’Ambrosio, M.; Casagli, N.; Catani, F. Soil characterization for shallow land-slides modeling: A case study in the Northern Apennines (Central Italy). Landslides 2017, 14, 755–770. [Google Scholar] [CrossRef]
- Pilecka, E.; Szwarkowski, D.; Stanisz, J.; Blockus, M. Analysis of a Landslide on a Railway Track Using Laser Scanning and FEM Numerical Modelling. Appl. Sci. 2022, 12, 7574. [Google Scholar] [CrossRef]
- Bogard, T.A.; Greco, R. Landslide hydrology: From hydrology to pore pressure. WIREs Water 2016, 3, 439–459. [Google Scholar] [CrossRef]
- Schuster, R.L.; Highland, L.M. Socioeconomic and Environmental Impacts of Landslides in the Western Hemisphere; Open-File Report 01-276; U.S. Geological Survey: Denver, CO, USA, 2001. Available online: https://pubs.usgs.gov/of/2001/0276/report.pdf (accessed on 9 May 2023).
- Sim, K.B.; Lee, M.L.; Wong, S.Y. A review of landslide acceptable risk and tolerable risk. Geoenviron. Disasters 2022, 9, 3. [Google Scholar] [CrossRef]
- Miklin, L.; Podolszki, L.; Gulam, V.; Markotić, I. The Impact of Climate Changes on Slope Stability and Landslide Conditioning Factors: An Example from Kravarsko, Croatia. Remote Sens. 2022, 14, 1794. [Google Scholar] [CrossRef]
- Grabar, K.; Strelec, S.; Špiranec, M.; Dodigović, F. CPT—DMT Correlations on Regional Soils from Croatia. Sensors 2022, 22, 934. [Google Scholar] [CrossRef]
- Špiranec, M.; Grabar, K.; Strelec, S. Determination slip surface in situ by dilatometer (DMT) test (“Kd method”). In Proceedings of the 7th conference of Croatian Geotechnical Society with international participation, Varaždin, Croatia, 10–12 November 2016. [Google Scholar]
- Strelec, S.; Mesec, J.; Grabar, K.; Jug, J. Implementation of in-situ and geophysical investigation methods (ERT and MASW) with the purpose to determine 2D profile of landslide. Acta Montan. Slovaca 2017, 22, 345–358. [Google Scholar]
- Rocha, B.P.; Yacoub, J.D.; Fernandes, J.B.; Rodrigues, R.A.; Giacheti, H.L. Geotechnical site characterization by DMT and laboratory tests on an unsaturated tropical soil site for slope stability analysis. Soils Rocks 2023, 46, e2023005123. [Google Scholar] [CrossRef]
- Potvin, J.J.; Woeller, D.; Sharp, J.; Take, W.A. Stratigraphic profiling, slip surface detection, and assessment of remolding in sensitive clay landslides using the CPT. Can. Geotech. J. 2021, 59, 1146–1160. [Google Scholar] [CrossRef]
- Totani, G.; Marchetti, S.; Paola, M.; Calabrese, M. Use of in-situ flat dilatometer (DMT) for ground characterization in the stability analysis of slope. In Proceedings of the XIV International Conference on Soil Mechanics and Foundation Engineering, Hamburg, Germany, 6–12 September 1997; Balkema: Rotterdam, The Netherlands, 1997; Volume 1, pp. 607–610, ISBN 90-5410-891-6. [Google Scholar]
- Google Maps. Municipality Bedekovčina and Kravarsko. Available online: https://www.google.com/maps (accessed on 9 May 2023).
- Hrvatska.eu. Zemlja i Ljudi. Politički Ustroj. Županije. Available online: https://croatia.eu/index.php?view=article&id=30&lang=1 (accessed on 8 May 2023).
- Hrvatski Geološki Institut; Zavod za Mineralne Sirovine. Rudarsko-Geološka Studija Krapinsko-Zagorske Županije. Zagreb. 2016. Available online: https://kzz.hr/sadrzaj/dokumenti/izvjesca-o-radu/2016/10.%20Rudarsko-geoloska-studija-KZZ.pdf (accessed on 3 May 2023).
- Aničić, B.; Muriša, M. Osnovna Geološka Karta SFRJ List Rogatec, M 1:100000, L 33–68 [Base Geological Map Page Rogatec]; Geološki zavod: Ljubljana, Slovenia; i geološki zavod Zagreb: Zagreb, Croatia, 1985; pp. 1971–1981. [Google Scholar]
- Pikija, M. Osnovna Geološka Karta SFRJ List Sisak, M: 1: 100 000, L 33–93 [Base Geological Map Page Sisak]; Geološki zavod Zagreb: Zagreb, Croatia, 1975–1976. [Google Scholar]
- Juraić Mucko, J.; Mucko, I. ARHITEKTONSKI ATELIER DESET d.o.o. za Arhitekturu i Urbanizam Zagreb. Prostorni Plan Uređenja Općine Kravarsko. Plan br. 0301. Available online: https://www.kravarsko.hr/download/Obrazlozenje.pdf (accessed on 10 May 2023).
- HRN EN ISO 22476-1; Geotehničko Istraživanje i Ispitivanje—Terensko Ispitivanje—1. Dio: Ispitivanje Električnim Statičkim Prodiranjem Bez Mjerenja Pornog Tlaka i s Mjerenjem Pornog Tlaka (-). Available online: https://www.iso.org/standard/57728.html (accessed on 23 November 2023).
- Schneider, J.A.; Randolph, M.F.; Mayne, P.W.; Ramsey, N.R. Analysis of Factors Influencing Soil Classification Using Normalized Piezocone Tip Resistance and Pore Pressure Parameters. J. Geotech. Geoenviron. Eng. 2008, 134, 1569–1586. [Google Scholar] [CrossRef]
- Robertson, P.K.; Cabal, K.L. Guide to Cone Penetration Testing for Geotechnical Engineering, 6th ed.; Gregg Drilling & Testing, Inc.: Signal Hill, CA, USA, 2015; pp. 38–71. [Google Scholar]
- Mayne, P.W. Evaluating effective stress parameters and undrained shear strength of soft-firm clays from CPT and DMT. Aust. Geomech. J. 2016, 51, 27–55. [Google Scholar]
- Lunne, T.; Christoffersen, H.P.; Tjelta, T.I. Engineering use of piezocone data in North Sea clays. In Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, CA, USA, 12–16 August 1985; Volume 2, pp. 907–912. [Google Scholar]
- Mayne, P.W.; Peuchen, J. CPTu bearing factor Nkt for undrained strength evaluation in clays. In Proceedings of the Fourth International Symposium on Cone Penetration Testing (CPT’18), Delft, The Netherlands, 21–23 June 2018. [Google Scholar]
- Hight, D.W.; Mcmillan, F.; Powell, J.J.M.; Jardine, R.J.; Allenou, C.P. Some characteristics of London Clay. In Proceedings of the 1st International Workshop on Characterisation and Engineering Properties of Natural Soils, Singapore, 29 November–1 December 2006; Tan, T.S., Phoon, K.K., Hight, K.W., Leroueil, S., Balkema, A.A., Eds.; Swets & Zeitlinge: Lisse, The Netherlands, 2023; pp. 851–907. [Google Scholar]
- Bagheri, M.; Rezania, M. Geological and Geotechnical Characteristics of London Clay from the Isle of Sheppey. Geotech. Geol. Eng. 2021, 39, 1701–1713. [Google Scholar] [CrossRef]
- Robertson, P.K. Interpretation of Cone Penetration Tests a Unified Approach. Can. Geotech. J. 2009, 46, 1337–1355. [Google Scholar] [CrossRef]
- Mayne, P.W.; Kemper, J.B. Profiling OCR in Stiff Clays by CPT and SPT. Geotech. Test. J. 1998, 11, 139–147. [Google Scholar] [CrossRef]
- Lunne, T.; Robertson, P.K.; Powell, J. Cone Penetration Testing in Geotechnical Practice. Soil Mech. Found. Eng. 1997, 46, 237. [Google Scholar] [CrossRef]
- HRN EN ISO 22476-11:2017; Geotehničko Istraživanje i Ispitivanje—Terensko Ispitivanje—11. Dio: Ispitivanje Plosnatim Dilatometrom. 2017. Available online: https://www.iso.org/standard/66434.html (accessed on 23 November 2023).
- Marchetti, S. The Flat Dilatometer: Design Applications. Keynote Lecture. In Proceedings of the 3rd International Geotechnical Engineering Conference, Colombo, Sri Lanka, 10–11 August 2020; Cairo University: Giza, Egypt, 2020; pp. 421–448. [Google Scholar]
- Totani, G.; Marchetti, S.; Monaco, P.; Calabrese, M. Use of the Flat Dilatometer Test (DMT) in Geotechnical Design; In situ; Faculty of Engineering, University of L’Aquila: L’Aquila, Italy, 2001. [Google Scholar]
- Löfroth, H. Undrained shear strength in clay slopes—Influence of Stress Conditions. A Model and Field Test Study. Ph.D. Thesis, Swedish Geotechnical Institute, Göteborg, Sweden, 2008. Available online: https://www.researchgate.net/publication/321528042 (accessed on 10 May 2023).
- Marchetti, S. In Situ Tests by Flat Dilatometer. J. Geotech. Eng. Div. 1980, 106, 299–321. [Google Scholar] [CrossRef]
- Vassallo, R.; Calcaterra, S.; D’Agostino, N.; De Rosa, J.; Di Maio, C.; Gambino, P. Long-Term Displacement Monitoring of Slow Earthflows by Inclinometers and GPS, and Wide Area Surveillance by COSMO-SkyMed Data. Geosciences 2020, 10, 171. [Google Scholar] [CrossRef]
- Larson, W.E.; Blake, G.R.; Allmaras, R.R.; Voorhees, W.B.; Gupta, S.C. Mechanics and Related Processes in Structured Agricultural Soils; NATO Applied Science; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989; Volume 172, p. 273. [Google Scholar]
Data Group | Location | Sliding Zone Depth (m) | GWL (m) | σ′v0 (kPa) | CPTU DMT cu (kPa) | CPTU DMT OCR (-) | CPTU DMT M (MPa) | DMT Kd (-) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Group 1 | Bedekovčina | 2.8 | 0.5 | 24.0 | 23.0 | 19.0 | 10.0 | 4.8 | 8.0 | 8.4 | 2.4 |
5.6 | 0.5 | 17.7 | 55.0 | 70.0 | 9.8 | 10.2 | 13.0 | 23.0 | 2.2 | ||
Group 2 | Bedekovčina | 6.0 | 0.5 | 17.7 | 47.0 | 25.0 | 7.5 | 3.1 | 16.5 | 11.4 | 3.5 |
8.2 | 0.5 | 16.7 | 26.0 | 28.0 | 3.5 | 2.5 | 8.0 | 9.3 | 3.7 | ||
Group 3 | DC31, KL8 | 2.0 | 2.2 | 33.0 | - | 33.0 | - | 6.0 | - | 2.9 | 1.7 |
Group 4 | DC31, KL9 | 2.2 | 2.3 | 37.0 | - | 13.0 | - | 2.0 | - | 18.0 | 2.8 |
3.2 | 2.3 | 45.0 | - | 44.0 | - | 7.1 | - | 44.0 | 3.8 | ||
Group 5 | DC31, KL10 | 3.0 | 6.8 | 50.0 | - | 50.0 | - | 7.0 | - | 18.0 | 4.2 |
5.4 | 6.8 | 92.0 | - | 40.0 | - | 2.4 | - | 13.4 | 2.2 | ||
7.2 | 6.8 | 120.0 | - | 20.0 | - | 0.8 | - | 4.9 | 1.6 | ||
Group 6 | DC31, KL11 | 3.8 | 3.0 | 66.0 | - | 21.0 | - | 14.0 | - | 8.1 | 1.7 |
Total Number of Samples, N | Mean Value of Data Set, | Sample Standard Deviation, “s” | Expected Range of Correct Result (Extended) | Parameter Sensitivity on the Total Data Sample | Sample Sensitivity, σ′vo > 60 kPa |
---|---|---|---|---|---|
11 | 2.75 | 0.94 | 1.8–2.5 | ≅60% | 100% |
Total Number of Samples, N | Mean Value of Data Set, | Sample Standard Deviation, “s” | Expected Range of Correct Result | Sample Sensitivity | |||||
---|---|---|---|---|---|---|---|---|---|
DMT | CPTU | DMT | CPTU | DMT | CPTU | DMT | CPTU | DMT | CPTU |
11.0 | 4.0 | 32.27 | 37.75 | 15.14 | 15.69 | 5.0–40.0 | 5.0–40.0 | ≅70% | ≅50% |
Total Number of Samples, N | Mean Value of Data Set, | Sample Standard Deviation, “s” | Expected Range of Correct Result | Sample Sensitivity | |||||
---|---|---|---|---|---|---|---|---|---|
DMT | CPTU | DMT | CPTU | DMT | CPTU | DMT | CPTU | DMT | CPTU |
11.0 | 4.0 | 4.59 | 7.70 | 2.95 | 3.02 | 1.0–4.0 | 1.0–4.0 | ≅45% | ≅25% |
Total Number of Samples, N | Mean Value of Data Set, | Sample Standard Deviation, “s” | Expected Range of Correct Result | Sample Sensitivity | |||||
---|---|---|---|---|---|---|---|---|---|
DMT | CPTU | DMT | CPTU | DMT | CPTU | DMT | CPTU | DMT | CPTU |
11.0 | 4.0 | 11.74 | 11.37 | 6.35 | 4.20 | 1.0–8.0 | 1.0–8.0 | ≅35% | ≅50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabar, K.; Jug, J.; Bek, A.; Strelec, S. Comparison of the Piezocone Penetrometer (CPTU) and Flat Dilatometer (DMT) Methods for Landslide Characterisation. Geosciences 2024, 14, 64. https://doi.org/10.3390/geosciences14030064
Grabar K, Jug J, Bek A, Strelec S. Comparison of the Piezocone Penetrometer (CPTU) and Flat Dilatometer (DMT) Methods for Landslide Characterisation. Geosciences. 2024; 14(3):64. https://doi.org/10.3390/geosciences14030064
Chicago/Turabian StyleGrabar, Kristijan, Jasmin Jug, Anja Bek, and Stjepan Strelec. 2024. "Comparison of the Piezocone Penetrometer (CPTU) and Flat Dilatometer (DMT) Methods for Landslide Characterisation" Geosciences 14, no. 3: 64. https://doi.org/10.3390/geosciences14030064