Thiobacter aerophilum sp. nov., a Thermophilic, Obligately Chemolithoautotrophic, Sulfur-Oxidizing Bacterium from a Hot Spring and Proposal of Thiobacteraceae fam. nov.
<p>Cell morphology and ultrastructure of strain AK1<sup>T</sup>: (<b>a</b>) Electron micrograph showing overall cell morphology and localization of the single flagellum; bar, 400 nm. (<b>b</b>) Ultrathin section showing cell wall structure; bar, 400 nm.</p> "> Figure 2
<p>Time-courses of oxidation of thiosulfate (red), the production of sulfate (green), and concomitant bacterial growth (blue) of strain AK1<sup>T</sup>.</p> "> Figure 3
<p>Maximum likelihood phylogenetic tree based on comparison of 120 conserved proteins and showing the position of the strain AK1<sup>T</sup> (in bold) within the order <span class="html-italic">Burkholderiales</span>. Species are collapsed into family-level clusters (* some members from two different families formed a single cluster). The branch lengths correspond to the number of substitutions per site (see scale) according to the corrections associated with the LG + I + G4 model. The numbers at the nodes indicate the percentage of the corresponding support values. <span class="html-italic">Escherichia coli</span> K-12 was an outgroup.</p> "> Figure 4
<p>An overview of the metabolism of the strain AK1<sup>T</sup> reconstructed from its genome. Abbreviations: 2PGA, 2-phosphoglycerate; 3PGA, 3-phosphoglycerate; AH, aconitate hydratase; BPG, 1,3-bisphosphoglycerate; CS, citrate synthase; cyt, cytochrome; DHAP, dihydroxyacetone phosphate; E4P, erythrose-4-phosphate; F6P, fructose-6-phosphate; FBP, fructose-1,6-bisphosphate; FBPA, fructose-1,6-bisphosphate aldolase; FBPase, fructose-1,6-bisphosphatase; FCC, flavocytochrome <span class="html-italic">c</span> sulfide dehydrogenase; FH, fumarate hydratase; GAP, glyceraldehyde-3-phosphate; GAPHD, glyceraldehyde-3-phosphate dehydrogenase; OGD, 2-oxoglutarate decarboxylase; OGFOR, 2-oxoglutarate:ferredoxin oxidoreductase; IDH, isocitrate dehydrogenase; ME, malic enzyme; PEP, phosphoenolpyruvate; PFOR, pyruvate:ferredoxin oxidoreductase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate mutase; PK, pyruvate kinase; PRK, phosphoribulokinase; R5P, ribose-5-phosphate; rDsr, reverse dissimilatory sulfite reductase complex; RubisCO, ribulose-1,5-bisphosphate carboxylase/oxygenase; Ru5P, ribulose-5-phosphate; RuBP, ribulose-1,5-bisphosphate; RPI, ribose-5-phosphate isomerase; RuPE, ribulose-phosphate 3-epimerase; SBP, sedoheptulose-1,7-bisphosphate; SBPA, sedoheptulose-1,7-bisphosphate aldolase; SBPase, sedoheptulose-1,7-bisphosphatase; SCS, succinyl-CoA synthetase; SDH, succinate dehydrogenase; SoeABC, sulfite:quinone oxidoreductase; SorAB, sulfite: cytochrome <span class="html-italic">c</span> oxidoreductase; Sox complex, sulfur-oxidizing complex; SQR, sulfide:quinone oxidoreductase; SSADH, succinyl-semialdehyde dehydrogenase; TCA cycle, tricarboxylic acid cycle; TK, transketolase; TPI, triosephosphat isomerase; Xu5P, xylulose-5-phosphate.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Isolation
2.2. Phenotypic Characterization
2.3. Analytical Methods
2.4. Chemotaxonomic Analysis
2.5. Genome Sequencing and Assembly, Genome Annotation and Functional Genome Analysis
2.6. Phylogenetic Analysis
3. Results and Discussion
3.1. Morphological and Physiological Properties
3.2. Chemotaxonomic Analysis
3.3. Strain Identification and Phylogenetic Analysis
3.4. Functional Genome Analysis
3.4.1. General Genome Properties
3.4.2. Oxidation of Reduced Sulfur Compounds
3.4.3. Aerobic Respiration
3.4.4. Carbon Metabolism
4. Conclusions
4.1. Description of Thiobacteraceae fam. nov.
4.2. Description of Thiobacter aerophilum sp. nov.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garrity, G.M.; Bell, J.A.; Lilburn, T. Burkholderiales ord. nov. In Bergey’s Manual of Systematics of Archaea and Bacteria; Trujillo, M.E., Dedysh, S., DeVos, P., Hedlund, B., Kӓmpfer, P., Rainey, F.A., Whitman, W.B., Eds.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Spring, S.; Kämpfer, P.; Schleifer, K.H. Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment. Int. J. Syst. Evol. Microbiol. 2001, 51, 1463–1470. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.M.; Kim, J. Limnobacter humi sp. nov., a thiosulfate-oxidizing, heterotrophic bacterium isolated from humus soil, and emended description of the genus Limnobacter Spring et al. 2001. J. Microbiol. 2017, 55, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Jiang, Z.; Wu, Z.; Sheng, Z.; Yang, X.; Sun, J.; Zhang, X.; Yang, Q.; Yu, X.; Yan, J. Limnobacter alexandrii sp. nov., a thiosulfate-oxidizing, heterotrophic and EPS-bearing Burkholderiaceae isolated from cultivable phycosphere microbiota of toxic Alexandrium catenella LZT09. Antonie Leeuwenhoek 2020, 113, 1689–1698. [Google Scholar] [CrossRef] [PubMed]
- Xamxidin, M.; Huang, X.; Yang, X.; Wang, T.; Chen, C.; Wu, M. Limnobacter parvus sp. nov., a thiosulfate-oxidizing bacterium isolated from lake water. Curr. Microbiol. 2022, 80, 39. [Google Scholar] [CrossRef]
- Naruki, M.; Watanabe, A.; Warashina, T.; Morita, T.; Arakawa, K. Complete genome sequence of Limnobacter thiooxidans CS-K2T, isolated from freshwater lake sediments in Bavaria, Germany. Microbiol. Resour. Announc. 2024, 13, e0099223. [Google Scholar] [CrossRef]
- Koh, H.W.; Song, M.S.; Do, K.T.; Kim, H.; Park, S.J. Pusillimonas thiosulfatoxidans sp. nov., a thiosulfate oxidizer isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 2019, 69, 1041–1046. [Google Scholar] [CrossRef]
- Babich, T.L.; Grouzdev, D.S.; Sokolova, D.S.; Tourova, T.P.; Poltaraus, A.B.; Nazina, T.N. Genome analysis of Pollutimonas subterranea gen. nov., sp. nov. and Pollutimonas nitritireducens sp. nov., isolated from nitrate- and radionuclide-contaminated groundwater, and transfer of several Pusillimonas species into three new genera Allopusillimonas, Neopusillimonas, and Mesopusillimonas. Antonie Leeuwenhoek 2023, 116, 109–127. [Google Scholar]
- Moreira, C.; Rainey, F.A.; Nobre, M.F.; da Silva, M.T.; da Costa, M.S. Tepidimonas ignava gen. nov., sp. nov., a new chemolithoheterotrophic and slightly thermophilic member of the beta-Proteobacteria. Int. J. Syst. Evol. Microbiol. 2000, 50, 735–742. [Google Scholar] [CrossRef]
- Freitas, M.; Rainey, F.A.; Nobre, M.F.; Silvestre, A.J.; da Costa, M.S. Tepidimonas aquatica sp. nov., a new slightly thermophilic beta-proteobacterium isolated from a hot water tank. Syst. Appl. Microbiol. 2003, 26, 376–381. [Google Scholar] [CrossRef]
- Albuquerque, L.; Tiago, I.; Veríssimo, A.; da Costa, M.S. Tepidimonas thermarum sp. nov., a new slightly thermophilic betaproteobacterium isolated from the Elisenquelle in Aachen and emended description of the genus Tepidimonas. Syst. Appl. Microbiol. 2006, 29, 450–456. [Google Scholar] [CrossRef]
- Albuquerque, L.; Castelhano, N.; Raposo, P.; Froufe, H.J.C.; Tiago, I.; Severino, R.; Roxo, I.; Gregório, I.; Barroso, C.; Egas, C.; et al. Comparative genome sequence analysis of several species in the genus Tepidimonas and the description of a novel species Tepidimonas charontis sp. nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 1596–1604. [Google Scholar] [CrossRef] [PubMed]
- França, L.; Rainey, F.A.; Nobre, M.F.; da Costa, M.S. Tepidicella xavieri gen. nov., sp. nov., a betaproteobacterium isolated from a hot spring runoff. Int. J. Syst. Evol. Microbiol. 2006, 56, 907–912. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Li, Y.; Hong, S.; Wang, J.; Yu, J.; Mu, B.; Ma, X.; Xue, Y. Tepidicella baoligensis sp. nov., A novel member of betaproteobacterium isolated from an oil reservoir. Curr. Microbiol. 2019, 76, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.K.; Narayan, K.D.; Bandyopadhyay, S.; Nayak, K.C.; Das, S.K. Thiosulfate oxidation by Comamonas sp. S23 isolated from a sulfur spring. Curr. Microbiol. 2009, 58, 516–521. [Google Scholar] [CrossRef]
- Narayan, K.D.; Pandey, S.K.; Das, S.K. Characterization of Comamonas thiooxidans sp. nov., and comparison of thiosulfate oxidation with Comamonas testosteroni and Comamonas composti. Curr. Microbiol. 2010, 61, 248–253. [Google Scholar] [CrossRef]
- Ryu, S.H.; Lee, D.S.; Park, M.; Wang, Q.; Jang, H.H.; Park, W.; Jeon, C.O. Caenimonas koreensis gen. nov., sp. nov., isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 2008, 58, 1064–1068. [Google Scholar] [CrossRef]
- Spring, S.; Jäckel, U.; Wagner, M.; Kämpfer, P. Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 2004, 54, 99–106. [Google Scholar] [CrossRef]
- Baek, K.; Choi, A. Macromonas nakdongensis sp. nov., isolated from freshwater and characterization of bacteriophage BK-30P-the first phage that infects genus Macromonas. Microorganisms 2023, 11, 2237. [Google Scholar] [CrossRef]
- Kämpfer, P.; Schulze, R.; Jäckel, U.; Malik, K.A.; Amann, R.; Spring, S. Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov., isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 2005, 55, 341–344. [Google Scholar] [CrossRef]
- Chung, B.S.; Ryu, S.H.; Park, M.; Jeon, Y.; Chung, Y.R.; Jeon, C.O. Hydrogenophaga caeni sp. nov., isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 2007, 57, 1126–1130. [Google Scholar] [CrossRef]
- Yoon, J.H.; Kang, S.J.; Ryu, S.H.; Jeon, C.O.; Oh, T.K. Hydrogenophaga bisanensis sp. nov., isolated from wastewater of a textile dye works. Int. J. Syst. Evol. Microbiol. 2008, 58, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Baek, C.; Kim, E.; Shin, S.K.; Choi, S.; Yi, H. Hydrogenophaga crassostreae sp. nov., isolated from a Pacific oyster. Int. J. Syst. Evol. Microbiol. 2017, 67, 4045–4049. [Google Scholar] [CrossRef] [PubMed]
- Anandham, R.; Indira Gandhi, P.; Kwon, S.W.; Sa, T.M.; Kim, Y.K.; Jee, H.J. Mixotrophic metabolism in Burkholderia kururiensis subsp. thiooxydans subsp. nov., a facultative chemolithoautotrophic thiosulfate oxidizing bacterium isolated from rhizosphere soil and proposal for classification of the type strain of Burkholderia kururiensis as Burkholderia kururiensis subsp. kururiensis subsp. nov. Arch. Microbiol. 2009, 191, 885–894. [Google Scholar] [PubMed]
- Anandham, R.; Indiragandhi, P.; Kwon, S.W.; Sa, T.M.; Jeon, C.O.; Kim, Y.K.; Jee, H.J. Pandoraea thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soils of sesame (Sesamum indicum L.). Int. J. Syst. Evol. Microbiol. 2010, 60, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Yong, D.; Ee, R.; Lim, Y.L.; Yu, C.Y.; Ang, G.Y.; How, K.Y.; Tee, K.K.; Yin, W.F.; Chan, K.G. Complete genome sequence of Pandoraea thiooxydans DSM 25325(T), a thiosulfate-oxidizing bacterium. J. Biotechnol. 2016, 217, 51–52. [Google Scholar] [CrossRef]
- Hirayama, H.; Takai, K.; Inagaki, F.; Nealson, K.H.; Horikoshi, K. Thiobacter subterraneus gen. nov., sp. nov., an obligately chemolithoautotrophic, thermophilic, sulfur-oxidizing bacterium from a subsurface hot aquifer. Int. J. Syst. Evol. Microbiol. 2005, 55, 467–472. [Google Scholar] [CrossRef]
- London, J.P. Thiobacillus intermedius nov. sp. a novel type of facultative autotroph. Arch. Mikrobiol. 1963, 46, 329–337. [Google Scholar] [CrossRef]
- London, J.; Rittenberg, S.C. Thiobacillus perometabolis nov. sp., a non-autotrophic thiobacillus. Arch. Mikrobiol. 1967, 59, 218–225. [Google Scholar] [CrossRef]
- Mizoguchi, T.; Sato, T.; Okabe, T. New sulfur-oxidizing bacteria capable of growing heterotrophically, Thiobacillus rubellus nov. sp. and Thiobacillus delicatus nov. sp. J. Ferment. Technol. 1976, 54, 181–191. [Google Scholar]
- Katayama-Fujimura, Y.; Kawashima, I.; Tsuzaki, N.; Kuraishi, H. Physiological characteristics of the facultatively chemolithotrophic Thiobacillus species Thiobacillus delicatus nom. rev., emend., Thiobacillus perometabolis, and Thiobacillus intermedius. Int. J. Syst. Bacteriol. 1984, 34, 139–144. [Google Scholar] [CrossRef]
- Katayama, Y.; Uchino, Y.; Wood, A.P.; Kelly, D.P. Confirmation of Thiomonas delicata (formerly Thiobacillus delicatus) as a distinct species of the genus Thiomonas Moreira and Amils 1997 with comments on some species currently assigned to the genus. Int. J. Syst. Evol. Microbiol. 2006, 56, 2553–2557. [Google Scholar] [CrossRef] [PubMed]
- Shooner, F.; Bousquet, J.; Tyagi, R.D. Isolation, phenotypic characterization, and phylogenetic position of a novel, facultatively autotrophic, moderately thermophilic bacterium, Thiobacillus thermosulfatus sp. nov. Int. J. Syst. Bacteriol. 1996, 46, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.K.; Jyoti, V.; Bhadra, B.; Nayak, K.C.; Shivaji, S.; Rainey, F.A.; Das, S.K. Thiomonas bhubaneswarensis sp. nov., an obligately mixotrophic, moderately thermophilic, thiosulfate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 2009, 59, 2171–2175. [Google Scholar] [CrossRef] [PubMed]
- Arsène-Ploetze, F.; Koechler, S.; Marchal, M.; Coppée, J.Y.; Chandler, M.; Bonnefoy, V.; Brochier-Armanet, C.; Barakat, M.; Barbe, V.; Battaglia-Brunet, F.; et al. Structure, function, and evolution of the Thiomonas spp. genome. PLoS Genet. 2010, 6, e1000859. [Google Scholar] [CrossRef] [PubMed]
- Slyemi, D.; Moinier, D.; Brochier-Armanet, C.; Bonnefoy, V.; Johnson, D.B. Characteristics of a phylogenetically ambiguous, arsenic-oxidizing Thiomonas sp., Thiomonas arsenitoxydans strain 3As(T) sp. nov. Arch. Microbiol. 2011, 193, 439–449. [Google Scholar] [CrossRef]
- Vésteinsdóttir, H.; Reynisdóttir, D.B.; Örlygsson, J. Thiomonas islandica sp. nov., a moderately thermophilic, hydrogen- and sulfur-oxidizing betaproteobacterium isolated from a hot spring. Int. J. Syst. Evol. Microbiol. 2011, 61, 132–137. [Google Scholar] [CrossRef]
- Narayan, K.D.; Sabat, S.C.; Das, S.K. Mechanism of electron transport during thiosulfate oxidation in an obligately mixotrophic bacterium Thiomonas bhubaneswarensis strain S10 (DSM 18181T). Appl. Microbiol. Biotechnol. 2017, 101, 1239–1252. [Google Scholar] [CrossRef]
- Wang, Y.N.; Kai, Y.; Wang, L.; Tsang, Y.F.; Fu, X.; Hu, J.; Xie, Y. Key internal factors leading to the variability in CO2 fixation efficiency of different sulfur-oxidizing bacteria during autotrophic cultivation. J. Environ. Manag. 2020, 271, 110957. [Google Scholar] [CrossRef]
- Gridneva, E.; Chernousova, E.; Dubinina, G.; Akimov, V.; Kuever, J.; Detkova, E.; Grabovich, M. Taxonomic investigation of representatives of the genus Sphaerotilus: Descriptions of Sphaerotilus montanus sp. nov., Sphaerotilus hippei sp. nov., Sphaerotilus natans subsp. natans subsp. nov. and Sphaerotilus natans subsp. sulfidivorans subsp. nov., and an emended description of the genus Sphaerotilus. Int. J. Syst. Evol. Microbiol. 2011, 61, 916–925. [Google Scholar]
- Grabovich, M.Y.; Smolyakov, D.D.; Beletsky, A.V.; Mardanov, A.V.; Gureeva, M.V.; Markov, N.D.; Rudenko, T.S.; Ravin, N.V. Reclassification of Sphaerotilus natans subsp. sulfidivorans Gridneva et al. 2011 as Sphaerotilus sulfidivorans sp. nov. and comparative genome analysis of the genus Sphaerotilus. Arch. Microbiol. 2021, 203, 1595–1599. [Google Scholar] [CrossRef]
- Nishida, A.; Thiel, V.; Nakagawa, M.; Ayukawa, S.; Yamamura, M. Effect of light wavelength on hot spring microbial mat biodiversity. PLoS ONE 2018, 13, e0191650. [Google Scholar] [CrossRef] [PubMed]
- Toshchakov, S.V.; Izotova, A.O.; Vinogradova, E.N.; Kachmazov, G.S.; Tuaeva, A.Y.; Abaev, V.T.; Evteeva, M.A.; Gunitseva, N.M.; Korzhenkov, A.A.; Elcheninov, A.G.; et al. Culture-independent survey of thermophilic microbial communities of the North Caucasus. Biology 2021, 10, 1352. [Google Scholar] [CrossRef] [PubMed]
- Kevbrin, V.V.; Zavarzin, G.A. Effect of sulfur compounds on the growth of the halophilic homoacetogenic bacterium Acetohalobium arabaticum. Microbiology 1992, 61, 563–567. [Google Scholar]
- Wolin, E.A.; Wolin, M.J.; Wolfe, R.S. Formation of methane by bacterial extracts. J. Biol. Chem. 1963, 238, 2882–2886. [Google Scholar] [CrossRef] [PubMed]
- Tikhonova, E.N.; Suleimanov, R.Z.; Miroshnikov, K.K.; Oshkin, I.Y.; Belova, S.E.; Danilova, O.V.; Ashikhmin, A.A.; Konopkin, A.A.; But, S.Y.; Khmelenina, V.N.; et al. Methylomonas rapida sp. nov., a novel species of fast-growing, carotenoid-producing obligate methanotrophs with high biotechnological potential. Syst. Appl. Microbiol. 2023, 46, 126398. [Google Scholar] [CrossRef]
- Trueper, H.G.; Schlegel, H.G. Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie Leeuwenhoek 1964, 30, 225–238. [Google Scholar] [CrossRef]
- Slobodkina, G.B.; Merkel, A.Y.; Novikov, A.A.; Bonch-Osmolovskaya, E.A.; Slobodkin, A.I. Pelomicrobium methylotrophicum gen. nov., sp. nov. a moderately thermophilic, facultatively anaerobic, lithoautotrophic and methylotrophic bacterium isolated from a terrestrial mud volcano. Extremophiles 2020, 24, 177–185. [Google Scholar] [CrossRef]
- Slobodkin, A.I.; Rusanov, I.I.; Slobodkina, G.B.; Stroeva, A.R.; Chernyh, N.A.; Pimenov, N.V.; Merkel, A.Y. Diversity, methane oxidation Aactivity, and metabolic potential of microbial communities in terrestrial mud volcanos of the Taman Peninsula. Microorganisms 2024, 12, 1349. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Shi, C.; Huang, Z.; Zhang, Y.; Li, S.; Li, Y.; Ye, J.; Yu, C.; Li, Z.; et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 2018, 7, gix120. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [PubMed]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Parks, D.H.; Chuvochina, M.; Waite, D.W.; Rinke, C.; Skarshewski, A.; Chaumeil, P.-A.; Hugenholtz, P. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 2018, 36, 996–1004. [Google Scholar] [CrossRef]
- Chaumeil, P.-A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk v2: GTDB-Tk v2: Memory friendly classification with the genome taxonomy database. Bioinformatics 2022, 38, 5315–5316. [Google Scholar] [CrossRef]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef] [PubMed]
- Ishii, S.; Ashida, N.; Ohno, H.; Segawa, T.; Yabe, S.; Otsuka, S.; Yokota, A.; Senoo, K. Noviherbaspirillum denitrificans sp. nov., a denitrifying bacterium isolated from rice paddy soil and Noviherbaspirillum autotrophicum sp. nov., a denitrifying, facultatively autotrophic bacterium isolated from rice paddy soil and proposal to reclassify Herbaspirillum massiliense as Noviherbaspirillum massiliense comb. nov. Int. J. Syst. Evol. Microbiol. 2017, 67, 1841–1848. [Google Scholar] [PubMed]
- Li, Z.; Xin, X.; Xiong, B.; Zhao, D.; Zhang, X.; Bi, C. Engineering the Calvin-Benson-Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production. Microb. Cell Fact. 2020, 19, 228. [Google Scholar] [CrossRef]
Characteristic | Strain AK1T | T. subterraneus C55T |
---|---|---|
Isolation source | Terrestrial hot spring | Subsurface geothermal aquifer water |
Cells | rods | rods |
Cell diameter (µm) | 0.3–0.4 | 0.4–0.5 |
Cell length (µm) | 1.0–2.0 | 1.1–1.9 |
Flagellation | polar flagellum | polar flagellum |
Temperature for growth: | ||
Range | 37–55 °C | 35–62 °C |
Optimum | 50 °C | 50–55 °C |
pH for growth: | ||
Range | 4.8–7.0 | 5.2–7.7 |
Optimum | 5.2-5.5 | 6.5–7.0 |
Oxygen for growth: | ||
Range | 1–20% | 2–10% |
Optimum | 10% | 2–5% |
Utilization of electron donors: | ||
Sulfide | + | + |
Sulfur | + | + |
Thiosulfate | + | + |
Carbon source: | ||
CO2 | + | + |
Organic carbon | − | − |
Anaerobic growth | − | − |
Major cellular fatty acids | C16:0, C17:1 Δ, C16:1 ω7c | C16:0, C16:1, C18:0, iso-C18:0, C18:1 |
Respiratory quinone | UQ-8 | ND |
G + C content (mol%) | 64.0 | 66.9 |
Genome size, Mb | 2.55 | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dukat, A.M.; Elcheninov, A.G.; Klyukina, A.A.; Novikov, A.A.; Frolov, E.N. Thiobacter aerophilum sp. nov., a Thermophilic, Obligately Chemolithoautotrophic, Sulfur-Oxidizing Bacterium from a Hot Spring and Proposal of Thiobacteraceae fam. nov. Microorganisms 2024, 12, 2252. https://doi.org/10.3390/microorganisms12112252
Dukat AM, Elcheninov AG, Klyukina AA, Novikov AA, Frolov EN. Thiobacter aerophilum sp. nov., a Thermophilic, Obligately Chemolithoautotrophic, Sulfur-Oxidizing Bacterium from a Hot Spring and Proposal of Thiobacteraceae fam. nov. Microorganisms. 2024; 12(11):2252. https://doi.org/10.3390/microorganisms12112252
Chicago/Turabian StyleDukat, Anna M., Alexander G. Elcheninov, Alexandra A. Klyukina, Andrei A. Novikov, and Evgenii N. Frolov. 2024. "Thiobacter aerophilum sp. nov., a Thermophilic, Obligately Chemolithoautotrophic, Sulfur-Oxidizing Bacterium from a Hot Spring and Proposal of Thiobacteraceae fam. nov." Microorganisms 12, no. 11: 2252. https://doi.org/10.3390/microorganisms12112252