Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Characteristics of a phylogenetically ambiguous, arsenic-oxidizing Thiomonas sp., Thiomonas arsenitoxydans strain 3AsT sp. nov

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A moderately acidophilic, facultative chemoautotrophic, As(III)-oxidizing Thiomonas sp. (strain 3AsT) was previously shown, on the basis of comparative 16S rRNA gene sequences, to be closely related to both Tm. perometabolis DSM 18570T and Tm. intermedia DSM 18155T. While it had shared many physiological traits with Tm. intermedia T, a mean DNA–DNA hybridization value (DDHV) of 47.2% confirmed that strain 3AsT was not a strain of Tm. intermedia, though the situation with regard to Tm. perometabolis (DDHV previously determined as 72%) was more ambiguous. A comparative physiological and chemotaxonomic study of strain 3AsT and Tm. perometabolis T was therefore carried out, together with multilocus sequence analysis (MLSA) of all three bacteria. Differences in fatty acid profiles and utilization of organic substrates supported the view that strain 3AsT and Tm. perometabolis are distinct species, while MLSA showed a closer relationship between strain 3AsT and Tm. intermedia T than between strain 3AsT and Tm. perometabolis T. These apparent contradictory conclusions were explained by differences in genome of these three bacteria, which are known to be highly flexible in Thiomonas spp. A novel species designation Thiomonas arsenitoxydans is proposed for strain 3AsT (DSM 22701T, CIP 110005T), which is nominated as the type strain of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Amouric A, Brochier-Armanet C, Johnson DB, Bonnefoy V, Hallberg KB (2011) Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. Microbiology 157:111–122

    Article  PubMed  CAS  Google Scholar 

  • Arsene-Ploetze F, Koechler S, Marchal M, Coppee JY, Chandler M, Bonnefoy V, Brochier-Armanet C, Barakat M, Barbe V, Battaglia-Brunet F, Bruneel O, Bryan CG, Cleiss-Arnold J, Cruveiller S, Erhardt M, Heinrich-Salmeron A, Hommais F, Joulian C, Krin E, Lieutaud A, Lievremont D, Michel C, Muller D, Ortet P, Proux C, Siguier P, Roche D, Rouy Z, Salvignol G, Slyemi D, Talla E, Weiss S, Weissenbach J, Medigue C, Bertin PN (2010) Structure, function, and evolution of the Thiomonas spp. genome. PLoS Genet 6:e1000859

  • Battaglia-Brunet F, Joulian C, Garrido F, Dictor MC, Morin D, Coupland K, Johnson DB, Hallberg KB, Baranger P (2006) Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp. nov. Antonie Van Leeuwenhoek 89:1–10

    Article  Google Scholar 

  • Coupland K, Battaglia-Brunet F, Hallberg KB, Dictor MC, Garrido F, Johnson DB (2003) Oxidation of iron, sulfur and arsenic in mine waters and mine wastes: an important role for novel Thiomonas spp. In: Tsezos M, Remoudaki E, Hatzikioseyian A (eds) Biohydrometallurgy; a sustainable technology in evolution. National Technical University of Athens, Zografou, Greece, Athens, Greece, pp 639–646

    Google Scholar 

  • Duquesne K (2004) Rôle des bactéries dans la bioremédiation de l’arsenic dans les eaux acides de drainage de la mine de Carnoulès. PhD Thesis, Faculté des Sciences de Luminy, Université de la Méditerranée, Marseille, France

  • Duquesne K, Lieutaud A, Ratouchniak J, Muller D, Lett MC, Bonnefoy V (2008) Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environ Microbiol 10:228–237

    PubMed  CAS  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    Article  PubMed  CAS  Google Scholar 

  • Hallberg KB, Johnson DB (2003) Novel acidophiles isolated from moderately acidic mine drainage waters. Hydrometallurgy 71:139–148

    Article  CAS  Google Scholar 

  • Huber H, Stetter KO (1990) Thiobacillus cuprinus sp. nov., a novel facultatively organotrophic metal-mobilizing bacterium. Appl Environ Microbiol 56:315–322

    PubMed  CAS  Google Scholar 

  • Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18

    Article  PubMed  Google Scholar 

  • Johnson DB (2009) Extremophiles: acidic environments. In: Schaechter M (ed) Encyclopaedia of microbiology. Elsevier, Oxford, pp 107–126

    Chapter  Google Scholar 

  • Johnson DB, Hallberg KB (2007) Techniques for detecting and identifying acidophilic mineral-oxidizing microorganisms. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin, pp 237–261

    Chapter  Google Scholar 

  • Katayama Y, Uchino Y, Wood AP, Kelly DP (2006) Confirmation of Thiomonas delicata (formerly Thiobacillus delicatus) as a distinct species of the genus Thiomonas Moreira and Amils 1997 with comments on some species currently assigned to the genus. Int J Syst Evol Microbiol 56:2553–2557

    Article  PubMed  CAS  Google Scholar 

  • Katayama-Fujimura Y, Kuraishi H (1983) Emendation of Thiobacillus perometabolis London and Rittenberg 1967. Int J Syst. Bacteriol 33:650–651

    Article  Google Scholar 

  • Katayama-Fujimura Y, Enokizono Y, Kaneko T, Kuraishi H (1983) Deoxyribonucleic acid homologies among species of the genus Thiobacillus. J Gen Appl Microbiol 29:287–295

    Article  CAS  Google Scholar 

  • Katayama-Fujimura Y, Kawashima I, Tsuzaki N, Kuraishi H (1984) Physiological characteristics of the facultatively chemolithotrophic Thiobacillus species Thiobacillus delicatus nom. rev., emend. Thiobacillus perometabolis, and Thiobacillus intermedius. Int J Syst Bacteriol 34:139–144

    Article  CAS  Google Scholar 

  • Kelly DP, Uchino Y, Huber H, Amils R, Wood AP (2007) Reassessment of the phylogenetic relationships of Thiomonas cuprina. Int J Syst Evol Microbiol 57:2720–2724

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Hallberg KB, Johnson DB (2006) Sulfidogenesis in low pH (3.8–4.2) media by a mixed population of acidophilic bacteria. Biodegradation 17:57–65

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Borne F, Ratouchniak J, Bonnefoy V (2001) Genetic transfer of IncP, IncQ and IncW plasmids to four Thiobacillus ferrooxidans strain by conjugation. Hydrometallurgy 59:339–345

    Article  Google Scholar 

  • London J (1963) Thiobacillus intermedius nov. sp. A novel type of facultative autotroph. Arch Mikrobiol 46:329–337

    Article  Google Scholar 

  • London J, Rittenberg SC (1967) Thiobacillus perometabolis nov. sp., a non-autotrophic thiobacillus. Arch Mikrobiol 59:218–225

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJ (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53:1536–1540

    PubMed  CAS  Google Scholar 

  • Maiden MC (2006) Multilocus sequence typing of bacteria. Annu Rev Microbiol 60:561–588

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi T, Sato T, Okabe T (1976) New sulfur-oxidizing bacteria capable of growing heterotrophically, Thiobacillus rubellus nov. sp. and Thiobacillus delicatus nov. sp. J Ferment Technol 54:181–191

    CAS  Google Scholar 

  • Moreira D, Amils R (1997) Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli: proposal for Thiomonas gen. nov. Int J Syst Bacteriol 47:522–528

    Article  PubMed  CAS  Google Scholar 

  • Panda SK, Jyoti V, Bhadra B, Nayak KC, Shivaji S, Rainey FA, Das SK (2009) Thiomonas bhubaneswarensis sp. nov. an obligately mixotrophic, moderately thermophilic, thiosulfate-oxidizing bacterium. Int J Syst Evol Microbiol 59:2171–2175

    Article  PubMed  CAS  Google Scholar 

  • Philippe H (1993) MUST, a computer package of Management Utilities for Sequences and Trees. Nucleic Acids Res 21:5264–5272

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Shooner F, Bousquet J, Tyagi RD (1996) Isolation, phenotypic characterization, and phylogenetic position of a novel, facultatively autotrophic, moderately thermophilic bacterium, Thiobacillus thermosulfatus sp. nov. Int J Syst Bacteriol 46:409–415

    Article  PubMed  CAS  Google Scholar 

  • Slyemi D (2010) Caractérisation de “Thiomonas arsenitoxydans” et étude de la régulation des gènes codant pour l’arsénite oxydase. PhD Thesis, Faculté des Sciences de Luminy, Université de la Méditerranée, Marseille, France

  • Vesteinsdottir H, Reynisdottir DB, Orlygsson J (2011) Thiomonas islandica sp. nov., a novel moderately thermophilic hydrogen and sulfur oxidizing betaproteobacterium isolated from an Icelandic hot spring. Int J Syst Evol Microbiol 61:132–137

    Article  PubMed  CAS  Google Scholar 

  • Wakeman K, Auvinen H, Johnson DB (2008) Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore. Biotechnol Bioeng 101:739–750

    Article  PubMed  CAS  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

Download references

Acknowledgments

We warmly acknowledge K. Duquesne (IMM, LCB, Marseille, France), J. Ratouchniak (IMM, LCB, Marseille, France) and A. Yarzábal (Universidad de Los Andes, Merida, Venezuela) for initiating this work. The authors are grateful to B. Ollivier (IRD, Microbiologie et Biotechnologie des environnements chauds, Marseille) and P. Bauda (Université Paul Verlaine, Metz) for their advices and for helpful discussions. We wish to thank J. Euzéby for his expert advice on bacterial nomenclature. We also thank M. Bauzan (Fermentation plant unit, IMM, Marseille, France) for growing the bacteria in bioreactor, S. Verbarg (DSMZ, Braunschweig, Germany) for fatty acid analysis. Part of this work was financed by the EU framework 6 project “BioMine” (N° NM2.ct, 2005.500329). This work was partly performed in the frame of the Groupement de Recherche “Métabolisme de l’Arsenic chez les Procaryotes: de la résistance à la détoxication” (GDR2009-CNRS). DS was supported by a grant from the French Ministry of Education and Research. C.B.-A. is supported by an Action Thématique et Incitative sur Programme (ATIP) of the French Centre National de la Recherche Scientifique (CNRS). DBJ is grateful to the Royal Society (UK) for the provision of an Industrial Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violaine Bonnefoy.

Additional information

Communicated by Erko Stackebrandt.

Addendum

During the review of this manuscript, a paper was published online in which Thiomonas cuprina and “Thiomonas arsenivorans” are proposed to be reclassified as strains of Thiomonas delicata. These three strains have been shown to oxidize arsenite (Battaglia-Brunet et al. Int J Syst Evol Microbiol doi:10.1099/ijs.0.023408-0).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 310 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slyemi, D., Moinier, D., Brochier-Armanet, C. et al. Characteristics of a phylogenetically ambiguous, arsenic-oxidizing Thiomonas sp., Thiomonas arsenitoxydans strain 3AsT sp. nov. Arch Microbiol 193, 439–449 (2011). https://doi.org/10.1007/s00203-011-0684-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0684-y

Keywords

Navigation