On the Response of Halophilic Archaea to Space Conditions
Abstract
:1. Introduction
2. Characteristics and Environments of Halophilic Archaea
3. Stress Resistance of Halophilic Archaea on Earth
4. Simulated Space Conditions
5. Halophilic Archaea in Space
5.1. BIOPAN Mission
5.2. EXPOSE-E and EXPOSE-R
5.3. Exoplanets
5.4. Interstellar Travel Onboard Meteorites
6. Conclusions and Future Space Missions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tikhov, G.A. Astrobiology. In Molodaya Gvardia (Young Guard); Publishing House: Moscow, Russia, 1953. [Google Scholar]
- Olsson-Francis, K.; Cockell, C.S. Experimental methods for studying microbial survival in extraterrestrial environments. J. Microbiol. Meth. 2010, 80, 1–13. [Google Scholar] [CrossRef]
- Horneck, G.; Klaus, D.M.; Mancinelli, R.L. Space microbiology. Microbiol. Mol. Biol. Rev. 2010, 74, 121–156. [Google Scholar] [CrossRef]
- Möller, R.; Reitz, G.; Douki, T.; Cadet, T.; Horneck, G.; Stan-Lotter, H. UV photoreactions of the extremely haloalkaliphilic euryarchaeon Natronomonas pharaonis. FEMS Microbiol. Ecol. 2010, 73, 271–277. [Google Scholar]
- Crawford, R.L. Microbial diversity and its relationship to planetary protection. Appl. Environ. Microbiol. 2005, 71, 4163–4168. [Google Scholar] [CrossRef]
- Gibbson, N.E.; Family, V. Halobacteriaceae fam. Nov. In Bergey’s Manual of Determinative Bacteriology, 8th ed.; Buchanan, R.R., Gibbson, N.E., Eds.; Williams & Wilkins: Baltimore, MD, USA, 1974; pp. 269–273. [Google Scholar]
- Oren, A.; Arahal, D.R.; Ventosa, A. Emended descriptions of genera of the family Halobacteriaceae. Int. J. Syst. Evol. Microbiol. 2009, 59, 637–642. [Google Scholar] [CrossRef]
- Oren, A. Taxonomy of the family Halobacteriaceae: A paradigm for changing concepts in prokaryote systematics. Int. J. Syst. Evol. Microbiol. 2012, 62, 263–271. [Google Scholar] [CrossRef]
- Grant, W.D. Life at low water activity. Philos. Trans. R. Soc. B 2004, 359, 1249–1267. [Google Scholar] [CrossRef]
- Oren, A. Population dynamics of halobacteria in the Dead Sea water column. Limnol. Oceanogr. 1983, 28, 1094–1103. [Google Scholar] [CrossRef]
- Oren, A. Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol. Ecol. 2002, 39, 1–7. [Google Scholar]
- Benlloch, S.; Acinas, S.G.; Antón, J.; López-López, A.; Luz, S.P.; Rodríguez-Valera, F. Archaeal biodiversity in crystallizer ponds from a solar saltern: Culture versus PCR. Microb. Ecol. 2001, 41, 12–19. [Google Scholar]
- Sabet, S.; Diallo, L.; Hays, L.; Jung, W.; Dillon, J.G. Characterization of halophiles isolated from solar salterns in Baja California, Mexico. Extremophiles 2009, 13, 643–656. [Google Scholar]
- Zafrilla, B.; Martínez-Espinosa, R.M.; Alonso, M.A.; Bonete, M.J. Biodiversity of archaea and floral of two inland saltern ecosystems in the Alto Vinalopó Valley, Spain. Saline Syst. 2010, 6. [Google Scholar] [CrossRef] [Green Version]
- Stan-Lotter, H.; McGenity, T.J.; Legat, A.; Denner, E.B.M.; Glaser, K.; Stetter, K.O.; Wanner, G. Very similar strains of Halococcus salifodinae are found in geographically separated Permo-Triassic salt deposits. Microbiology 1999, 145, 3565–3574. [Google Scholar]
- Stan-Lotter, H.; Pfaffenhuemer, M.; Legat, A.; Busse, H.J.; Radax, C.; Gruber, C. Halococcus dombrowskii sp. nov., an archaeal isolate from a Permo-Triassic alpine salt deposit. Int. J. Syst. Evol. Microbiol. 2002, 52, 1807–1814. [Google Scholar] [CrossRef]
- Gramain, A.; Díaz, G.C.; Demergasso, C.; Lowenstein, T.K.; McGenity, T.J. Archaeal diversity along a subterranean salt core from the Salar Grande (Chile). Environ. Microbiol. 2011, 13, 2105–2121. [Google Scholar] [CrossRef]
- Franzmann, P.D.; Stackebrandt, E.; Sanderson, K.; Volkman, J.K.; Cameron, D.E.; Stevenson, P.L.; Mcmeekin, T.A.; Burton, H.R. Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst. Appl. Microbiol. 1988, 11, 20–27. [Google Scholar] [CrossRef]
- Cavicchioli, R. Cold-adapted archaea. Nat. Rev. 2006, 4, 331–343. [Google Scholar]
- Goh, F.; Leuko, S.; Allen, M.A.; Bowmann, J.P.; Kamekura, M.; Neilan, B.A.; Burns, B.P. Halococcus hamelinensis sp. nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay, Western Australia. Int. J. Syst. Evol. Microbiol. 2006, 56, 1323–1329. [Google Scholar] [CrossRef]
- Leuko, S.; Goh, F.; Allen, M.A.; Burns, B.P.; Walter, M.R.; Neilan, B.A. Analysis of intergenic spacer region length polymorphisms to investigate the halophilic archaeal diversity of stromatolites and microbial mats. Extremophiles 2007, 11, 203–210. [Google Scholar] [CrossRef]
- Elshahed, M.S.; Najar, F.Z.; Roe, B.A.; Oren, A.; Dewers, T.A.; Krumholz, L.R. Survey of archaeal diversity reveals an abundance of halophilic archaea in a low-salt, sulfide- and sulfur-rich spring. Appl. Environ. Microbiol. 2004, 70, 2230–2239. [Google Scholar] [CrossRef]
- Britto-Echeverría, J.; López-López, A.; Yarza, P.; Antón, J.; Roselló-Móra, R. Occurrence of Halococcus spp. in the nostrils salt glands of the seabird Calonectris diomedea. Extremophiles 2009, 13, 557–565. [Google Scholar] [CrossRef]
- Fendrihan, S.; Legat, A.; Pfaffenhuemer, M.; Gruber, C.; Weidler, G.; Gerbl, F.; Stan-Lotter, H. Extremely halophilic archaea and the issue of long-term microbial survival. Rev. Environ. Sci. Biotechnol. 2006, 5, 203–218. [Google Scholar] [CrossRef]
- Walsby, A.E. Archaea with square cells. Trends Microbiol. 2005, 13, 193–195. [Google Scholar] [CrossRef]
- Tenchov, B.; Vesico, E.M.; Sprott, G.D.; Zeidel, M.L.; Mathai, J.C. Salt tolerance of archaeal extremely halophilic lipid membranes. J. Biol. Chem. 2006, 281, 10016–10023. [Google Scholar]
- Kates, M. Biology of halophilic bacteria, part II. Membrane lipids of extreme halophiles: Biosynthesis, function and evolutionary significance. Experientia 1993, 49, 1027–1036. [Google Scholar] [CrossRef]
- Kottemann, M.; Kish, A.; Iloanusi, C.; Bjork, S.; DiRuggiero, J. Physiological responses of the halophilic archaeon Halobacterium sp. strain NCR-1 to desiccation and gamma irradiation. Extremophiles 2005, 9, 219–227. [Google Scholar] [CrossRef]
- Coker, J.A.; DasSarma, P.; Kumar, J.; Müller, J.A.; DasSarma, S. Transcriptional profiling of the model archaeon Halobacterium sp. NRC-1: Responses to changes in salinity and temperature. Saline Syst. 2007, 3. [Google Scholar] [CrossRef]
- Leuko, S.; Raftery, M.J.; Burns, B.P.; Walter, M.R.; Neilan, B.A. Global protein-level responses of Halobacterium salinarum NRC-1to prolonged changes in external sodium chloride concentrations. J. Proteome Res. 2009, 8, 2218–2225. [Google Scholar] [CrossRef]
- Shukla, H.D. Proteomic analysis of acidic chaperones, and stress proteins in extreme halophile Halobacterium NRC-1: A comparative proteomic approach to study heat shock response. Proteome Sci. 2006, 4. [Google Scholar] [CrossRef]
- DasSarma, P.; Zamora, R.C.; Müller, J.A.; DasSarma, S. Genome-wide responses of the model archaeon Halobacterium sp. strain NRC-1 to oxygen limitations. J. Bacteriol. 2012, 194, 5530–5537. [Google Scholar]
- Deveaux, L.C.; Müller, J.A.; Smith, J.; Petrisko, J.; Wells, D.P.; DasSarma, S. Extremely radiation-resistant mutants of a halophilic archaeon with increased single-stranded DNA-binding protein (RPA) gene expression. Radiat. Res. 2007, 168, 507–514. [Google Scholar] [CrossRef]
- Whitehead, K.; Kish, A.; Pan, M.; Kaur, A.; Reiss, D.J.; King, N.; Hohmann, L.; Diruggerio, J.; Baliga, N.S. An integrated systems approach for understanding cellular responses to gamma radiation. Mol. Syst. Biol. 2006, 2. [Google Scholar] [CrossRef]
- Baliga, N.S.; Bjork, S.J.; Bonneau, R.; Pan, M.; Iloanusi, C.; Kottemann, M.C.H.; Hood, L.; DiRuggiero, J. Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res. 2004, 14, 1025–1035. [Google Scholar] [CrossRef]
- McCready, S.; Müller, J.A.; Boubriak, I.; Berquist, B.R.; Ng, W.L.; DasSarma, S. UV irradiation induces homologous recombination genes in the model archaeon, Halobacterium sp. NRC-1. Saline Syst. 2005, 1. [Google Scholar] [CrossRef] [Green Version]
- Goh, F.; Jeon, Y.J.; Barrow, K.; Neilan, B.A.; Burns, B.P. Osmoadaptive strategies of the archaeon Halococcus hamelinensis isolated from a hypersaline stromatolite environment. Astrobiology 2011, 11, 529–536. [Google Scholar] [CrossRef]
- Leuko, S.; Neilan, B.A.; Burns, B.P.; Walter, M.R.; Rothschild, L.J. Molecular assessment of UVC radiation-induced DNA damage repair in the stromatolitic halophilic archaeon, Halococcus hamelinensis. J. Photochem. Photobiol. B 2011, 102, 140–145. [Google Scholar] [CrossRef]
- Fendrihan, S.; Bérces, A.; Lammer, H.; Musso, M.; Rontó, G.; Polacsek, T.K.; Holzinger, A.; Kolb, C.; Stan-Lotter, H. Investigating the effects of simulated Martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. Astrobiology 2009, 9, 104–112. [Google Scholar] [CrossRef]
- Kish, A.; Kirkali, G.; Robinson, C.; Rosenblatt, R.; Jaruga, P.; Dizdaroglu, M.; DiRuggiero, J. Salt shields: Intracellular salts provide cellular protection against ionizing radiation in the halophilic archaeon, Halobacterium salinarum NRC-1. Environ. Microbiol. 2009, 11, 1066–1078. [Google Scholar] [CrossRef]
- Koike, J.; Oshima, T.; Kobayashi, K.; Kawasaki, Y. Studies in the search for life on mars. Adv. Space Res. 1995, 15, 211–214. [Google Scholar]
- Stan-Lotter, H.; Radax, C.; Gruber, C.; Legat, A.; Pfaffenhuemer, M.; Wieland, H.; Leuko, S.; Weidler, G.; Kömle, N.; Kargl, G. Astrobiology with haloarchaea from Permo-Triassic rock salt. Int. J. Astrobiol. 2003, 1, 271–284. [Google Scholar]
- Dornmayr-Pfaffenhuemer, M.; Legat, A.; Schwimbersky, K.; Fendrihan, S.; Stan-Lotter, H. Response of haloarchaea to simulated microgravity. Astrobiology 2011, 11, 199–205. [Google Scholar] [CrossRef]
- Reid, I.N.; Sparks, W.B.; Lubow, S.; McGrath, M.; Livio, M.; Valenti, J.; Sowers, K.R.; Shukla, H.D.; MacAuley, S.; Miller, T.; et al. Terrestrial models for extraterrestrial life: Methanogens and halophiles at Martian temperatures. Int. J. Astrobiol. 2006, 5, 89–97. [Google Scholar] [CrossRef]
- Mancinelli, R.L.; White, M.R.; Rothschild, L.J. BIOPAN-survival I: Exposure of the osmophiles Synechococcus sp. (Naegli) and Haloarcula sp. to the space environment. Adv. Space Res. 1998, 22, 327–334. [Google Scholar]
- Mancinelli, R.L.; Landheim, R.; Sanchez-Porro, C.; Dornmayer-Pfaffenhuemer, M.; Gruber, C.; Legat, A.; Ventosa, A.; Radax, C.; Ihara, K.; White, M.R.; et al. Halorubrum chaoviator sp. nov., a haloarchaeon isolated from sea salt in Baja California, Mexico, Western Australia and Naxos, Greece. Int. J. Syst. Evol. Microbiol. 2009, 59, 1908–1913. [Google Scholar] [CrossRef]
- Rabbow, E.; Horneck, G.; Rettberg, P.; Schott, J.U.; Panitz, C.; L’Afflitto, A.; von Heise-Rotenburg, R.; Willnecker, R.; Baglioni, P.; Hatton, J.; et al. EPOSE, an astrobiological exposure facility on the International Space Station—from proposal to flight. Orig. Life Evol. Biosph. 2009, 39, 581–598. [Google Scholar] [CrossRef]
- Schulte, W.; Hofer, S.; Hofmann, P.; Thiele, H.; von Heise-Rotenburg, R.; Toporski, J.; Rettberg, P. Automated payload and instruments for astrobiology research developed and studied by German medium-sized space industry in cooperation with European academia. Acta Astronaut. 2007, 60, 966–973. [Google Scholar] [CrossRef]
- Gormly, S.; Adams, V.D.; Marchand, E. Physical simulation for low-energy astrobiology environmental scenarios. Astrobiology 2003, 3, 761–770. [Google Scholar] [CrossRef]
- Beaty, D.W.; Clifford, S.M.; Borg, L.E.; Catling, D.C.; Craddock, R.A.; Des Marais, D.J.; Farmer, J.D.; Frey, H.V.; Haberle, R.M.; McKay, C.P.; et al. Key science questions from the second conference on early Mars: Geologic, hydrologic, and climatic evolution and the implications for life. Astrobiology 2005, 5, 663–689. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Sleep, N.H. The habitat and nature of early life. Nature 2001, 409, 1083–1091. [Google Scholar] [CrossRef]
- Clifford, S. A model for the hydrologic and climate behavior of water on Mars. J. Geophys. Res. 1993, 98, 10973–11016. [Google Scholar] [CrossRef]
- McKay, C.P.; Stoker, C.R. The early environment and its evolution on Mars: Implications for life. Rev. Geophys. 1989, 27, 189–214. [Google Scholar] [CrossRef]
- Squyres, S.W.; Grotzinger, J.P.; Arvidson, R.E.; Bell, J.F., III; Calvin, W.; Christensen, P.R.; Clark, B.C.; Crisp, J.A.; Farrand, W.H.; Herkenhoff, K.E.; et al. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 2004, 306, 1709–1714. [Google Scholar] [CrossRef]
- Landis, G.A. Martian water: Are there extant halobacteria on Mars? Astrobiology 2001, 1, 161–164. [Google Scholar] [CrossRef]
- Maltagliati, L.; Montmessin, F.; Fedorova, A.; Korablev, O.; Forget, F.; Bertaux, J.L. Evidence of water vapor in excess of saturation in the atmosphere of Mars. Science 2011, 333, 1868–1871. [Google Scholar] [CrossRef]
- Niles, P.B.; Michalski, J. Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nat. Geosci. 2009, 2, 215–220. [Google Scholar] [CrossRef]
- Brown, M.E.; Hand, K.P. Salts and radiation products on the surface of Europa. Astron. J. 2013, 145. [Google Scholar] [CrossRef]
- Zimmer, C.; Khurana, K.K.; Kivelson, M.G. Subsurface oceans on Europa and Callisto: Constraints from Galileo magnetometer observations. Icarus 2000, 147, 329–347. [Google Scholar] [CrossRef]
- McCord, T.B.; Hansen, G.B.; Matson, D.L.; Johnson, T.V.; Crowley, J.K.; Fanale, F.P.; Carlson, R.W.; Smythe, W.D.; Martin, P.D.; Hibbitts, C.A.; et al. Hydrated salt minerals on Europa’s surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J. Geophys. Res. 1999, 104, 11827–11851. [Google Scholar] [CrossRef]
- Kovach, R.L.; Chyba, C.F. Seismic detectability of a subsurface ocean on Europa. Icarus 2001, 150, 279–287. [Google Scholar] [CrossRef]
- Chyba, C.F. Energy for microbial life on Europa. Nature 2000, 403, 381–382. [Google Scholar] [CrossRef]
- McKay, C.P.; Porco, C.C.; Altheide, T.; Davis, W.L.; Kral, T.A. The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. Astrobiology 2008, 8, 909–919. [Google Scholar] [CrossRef]
- Porco, C.C.; Helfenstein, P.; Thomas, P.C.; Ingersoll, A.P.; Wisdom, J.; West, R.; Neukum, G.; Denk, T.; Wagner, R.; Roatsch, T.; et al. Cassini observes the active south pole of Enceladus. Science 2006, 311, 1393–1401. [Google Scholar]
- Zolotov, M.Y. An oceanic composition on early and today’s Enceladus. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Zolensky, M.E.; Bodnar, R.J.; Gibson, E.K., Jr.; Nyquist, L.E.; Reese, Y.; Shih, C.Y.; Wiesmann, H. Asteroidal water within fluid inclusion—bearing halite in an H5 Condrite, Monahans (1998). Science 1999, 285, 1377–1379. [Google Scholar] [CrossRef]
- Whitby, J.; Burgess, R.; Turner, G.; Gilmour, J.; Bridges, J. Extinct 129I in halite from a primitive meteorite: Evidence for evaporate formation in the early solar system. Science 2000, 288, 1819–1821. [Google Scholar] [CrossRef]
- Rubin, A.E.; Zolensky, M.E.; Bodnar, R.J. The halite-bearing Zag and Monahans (1998) meteorite breccias: Shock metamorphism, thermal metamorphism and aqueous alteration on the H-chondrite parent body. Meteorit. Planet. Sci. 2002, 37, 125–141. [Google Scholar] [CrossRef]
- Rabbow, E.; Rettberg, P.; Panitz, C.; Drescher, J.; Horneck, G.; Reitz, G. SSIOUX—Space simulation for investigating organics, evolution and exobiology. Adv. Space Res. 2005, 36, 297–302. [Google Scholar] [CrossRef]
- Heyrman, J.; Balcaen, A.; de Vos, P.; Swings, J. Halomonas muralis sp. nov., isolated from microbial biofilms colonizing the walls and murals of the Saint-Catherine chapel (Castle Herberstein, Austria). Int. J. Syst. Evol. Microbiol. 2002, 52, 2049–2054. [Google Scholar] [CrossRef]
- Piñar, G.; Saiz-Jimenez, C.; Schabereiter-Gurtner, C.; Blanco-Varela, M.T.; Lubitz, W.; Rölleke, S. Archaeal communities in two disparate deteriorated ancient wall paintings: Detection, identification and temporal monitoring by denaturing gradient gel electrophorese. FEMS Microbiol. Ecol. 2001, 37, 45–54. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Leuko, S.; Rettberg, P.; Pontifex, A.L.; Burns, B.P. On the Response of Halophilic Archaea to Space Conditions. Life 2014, 4, 66-76. https://doi.org/10.3390/life4010066
Leuko S, Rettberg P, Pontifex AL, Burns BP. On the Response of Halophilic Archaea to Space Conditions. Life. 2014; 4(1):66-76. https://doi.org/10.3390/life4010066
Chicago/Turabian StyleLeuko, Stefan, Petra Rettberg, Ashleigh L. Pontifex, and Brendan P. Burns. 2014. "On the Response of Halophilic Archaea to Space Conditions" Life 4, no. 1: 66-76. https://doi.org/10.3390/life4010066
APA StyleLeuko, S., Rettberg, P., Pontifex, A. L., & Burns, B. P. (2014). On the Response of Halophilic Archaea to Space Conditions. Life, 4(1), 66-76. https://doi.org/10.3390/life4010066