Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Meridiani Planum sediments on Mars formed through weathering in massive ice deposits

Abstract

The sulphate-rich deposits at Meridiani Planum, Mars, discovered by the rover Opportunity, were proposed to be playa evaporites that had been reworked by eolian processes. Alternative hypotheses include volcanic or impact-driven formation of the sediments. Here we argue that the cation chemistry, scale, mineralogy and structure of the Meridiani sedimentary deposits are best explained by eolian or impact-driven reworking of the sublimation residue from a large-scale deposit consisting of dust and ice. We suggest that silicate material underwent significant acid weathering inside the ice deposit when thin films of water, formed through radiant heating, enabled the reaction between silicate material and sulphate-rich aerosols deposited from the atmosphere. The massive ice deposit could have formed during a period of high obliquity or polar wander, and subsequently sublimed away when obliquity changed or the pole moved to a new location. We propose acid weathering inside massive ice deposits as an explanation for the formation of many of the sulphate-rich layered deposits on Mars, which share many characteristics, including mineralogy, structure, erosional characteristics and size, with the sediments found at Meridiani Planum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence of events in the ice-weathering model.
Figure 2: Antipodal hydrogen enrichments on Mars.
Figure 3: Chemical compositions of Meridiani Planum sediments.
Figure 4: Microscopic image of Meridiani Planum sediments.

Similar content being viewed by others

References

  1. Squyres, S. W. et al. Two years at Meridiani Planum: Results from the Opportunity Rover. Science 313, 1403–1407 (2006).

    Article  Google Scholar 

  2. Arvidson, R. E. et al. Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets. J. Geophys. Res. 111, E12S08 (2006).

    Google Scholar 

  3. Burns, R. G. Ferric sulfates on Mars. J. Geophys. Res. 92, E570–E574 (1987).

    Article  Google Scholar 

  4. Andrews-Hanna, J. C., Phillips, R. J. & Zuber, M. T. Meridiani Planum and the global hydrology of Mars. Nature 446, 163–166 (2007).

    Article  Google Scholar 

  5. Knauth, L. P., Burt, D. M. & Wohletz, K. H. Impact origin of sediments at the Opportunity landing site on Mars. Nature 438, 1123–1128 (2005).

    Article  Google Scholar 

  6. McCollom, T. M. & Hynek, B. M. A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars. Nature 438, 1129–1131 (2005).

    Article  Google Scholar 

  7. Hynek, B. M. & Phillips, R. J. The stratigraphy of Meridiani Planum, Mars, and implications for the layered deposits’ origin. Earth Planet. Sci. Lett. 274, 214–220 (2008).

    Article  Google Scholar 

  8. Zolotov, M. Y. & Mironenko, M. V. Timing of acid weathering on Mars: A kinetic-thermodynamic assessment. J. Geophys. Res. 112, E07006 (2007).

    Article  Google Scholar 

  9. Catling, D. C. et al. Light-toned layered deposits in Juventae Chasma, Mars. Icarus 181, 26–51 (2006).

    Article  Google Scholar 

  10. McAdam, A. C., Zolotov, M. Y., Sharp, T. G. & Leshin, L. A. Preferential low-pH dissolution of pyroxene in plagioclase-pyroxene mixtures: Implications for martian surface materials. Icarus 196, 90–96 (2008).

    Article  Google Scholar 

  11. Tanaka, K. L. Dust and ice deposition in the Martian geologic record. Icarus 144, 254–266 (2000).

    Article  Google Scholar 

  12. Wanke, H. & Dreibus, G. Chemistry and accretion history of Mars. Phil. Trans. R. Soc. Lond. A 349, 285–293 (1994).

    Article  Google Scholar 

  13. Clifford, S. M. et al. The state and future of Mars polar science and exploration. Icarus 144, 210–242 (2000).

    Article  Google Scholar 

  14. Paerl, H. W. & Priscu, J. C. Microbial phototrophic, heterotrophic, and diazotrophic activities associated with aggregates in the permanent ice cover of Lake Bonney, Antarctica. Microbiol. Ecol. 36, 221–230 (1998).

    Article  Google Scholar 

  15. Banin, A., Han, F. X., Kan, I. & Cicelsky, A. Acidic volatiles and the Mars soil. J. Geophys. Res. 102, 13341–13356 (1997).

    Article  Google Scholar 

  16. Grotzinger, J. P. et al. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 11–72 (2005).

    Article  Google Scholar 

  17. Golden, D. C., Ming, D. W., Morris, R. V. & Graff, T. G. Hydrothermal synthesis of hematite spherules and jarosite: Implications for diagenesis and hematite spherule formation in sulfate outcrops at Meridiani Planum, Mars. Am. Mineral. 93, 1201–1214 (2008).

    Article  Google Scholar 

  18. Jakosky, B. M. & Carr, M. H. Possible precipitation of ice at low latitudes of Mars during periods of high obliquity. Nature 315, 559–561 (1985).

    Article  Google Scholar 

  19. Levrard, B., Forget, F., Montmessin, F. & Laskar, J. Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity. Nature 431, 1072–1075 (2004).

    Article  Google Scholar 

  20. Schultz, P. H. & Lutz, A. B. Polar wandering of Mars. Icarus 73, 91–141 (1988).

    Article  Google Scholar 

  21. Boynton, W. V. et al. Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science 297, 81–85 (2002).

    Article  Google Scholar 

  22. Feldman, W. C. et al. Global distribution of neutrons from Mars: Results from Mars Odyssey. Science 297, 75–78 (2002).

    Article  Google Scholar 

  23. Hood, L. L., Young, C. N., Richmond, N. C. & Harrison, K. P. Modeling of major martian magnetic anomalies: Further evidence for polar reorientations during the Noachian. Icarus 177, 144–173 (2005).

    Article  Google Scholar 

  24. Watters, T. R. et al. Radar sounding of the Medusae Fossae Formation Mars: Equatorial ice or dry, low-density deposits? Science 318, 1125–1128 (2007).

    Article  Google Scholar 

  25. Griffes, J. L., Arvidson, R. E., Poulet, F. & Gendrin, A. Geologic and spectral mapping of etched terrain deposits in northern Meridiani Planum. J. Geophys. Res. 112, E08S09 (2007).

    Article  Google Scholar 

  26. Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L. & Malin, M. C. Global mapping of Martian hematite mineral deposits: Remnants of water-driven processes on early Mars. J. Geophys. Res. 106, 23873–23885 (2001).

    Article  Google Scholar 

  27. Hynek, B. M., Arvidson, R. E. & Phillips, R. J. Geologic setting and origin of Terra Meridiani hematite deposit on Mars. J. Geophys. Res. 107, 5088 (2002).

    Article  Google Scholar 

  28. Smith, D. E. et al. The global topography of Mars and implications for surface evolution. Science 284, 1495–1503 (1999).

    Article  Google Scholar 

  29. Zuber, M. T. et al. Density of Mars’ south polar layered deposits. Science 317, 1718–1719 (2007).

    Article  Google Scholar 

  30. Mellon, M. T., Jakosky, B. M. & Postawko, S. E. The persistence of equatorial ground ice on Mars. J. Geophys. Res. 102, 19357–19369 (1997).

    Article  Google Scholar 

  31. Clark, B. C. et al. Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet. Sci. Lett. 240, 73–94 (2005).

    Article  Google Scholar 

  32. McCollom, T. M. & Hynek, B. M. Bedrock formation at Meridiani Planum—Reply. Nature 443, E2 (2006).

    Article  Google Scholar 

  33. Bibring, J. P. et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006).

    Article  Google Scholar 

  34. Malin, M. C. & Edgett, K. S. Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. J. Geophys. Res. 106, 23429–23570 (2001).

    Article  Google Scholar 

  35. Malin, M. C. & Edgett, K. S. Sedimentary rocks of early Mars. Science 290, 1927–1937 (2000).

    Article  Google Scholar 

  36. Edgett, K. S. The sedimentary rocks of Sinus Meridiani: Five key observations from data acquired by the Mars Global Surveyor and Mars Odyssey orbiters. Mars 1, 5–58 (2005).

    Article  Google Scholar 

  37. Bibring, J. P. et al. Coupled ferric oxides and sulfates on the Martian surface. Science 317, 1206–1210 (2007).

    Article  Google Scholar 

  38. Glotch, T. D. & Rogers, A. D. Evidence for aqueous deposition of hematite- and sulfate-rich light-toned layered deposits in Aureum and Iani Chaos, Mars. J. Geophys. Res. 112, E06001 (2007).

    Article  Google Scholar 

  39. Langevin, Y., Poulet, F., Bibring, J.-P. & Gondet, B. Sulfates in the north polar region of Mars detected by OMEGA/Mars Express. Science 307, 1584–1586 (2005).

    Article  Google Scholar 

  40. Christensen, P. R. et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J. Geophys. Res. 106, 23823–23871 (2001).

    Article  Google Scholar 

  41. Morris, R. V. et al. Mossbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. J. Geophys. Res. 111, E02S13 (2006).

    Article  Google Scholar 

  42. Morris, R. V. et al. Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. J. Geophys. Res. 111, E12S15 (2006).

    Article  Google Scholar 

  43. McSween, H. Y. & Keil, K. Mixing relationships in the Martian regolith and the composition of globally homogeneous dust. Geochim. Cosmochim. Acta 64, 2155–2166 (2000).

    Article  Google Scholar 

  44. McLennan, S. M. et al. Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 95–121 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The manuscript was greatly improved by discussions with M. Kraft, D. Rogers, T. Glotch, R. Fergason and A. Baldridge. We gratefully acknowledge pictures of Antarctic ice cores from Dr. Hans Paerl. The manuscript has also been improved by thorough comments from D. Burt, B. Hynek and V. Chevrier. We also benefited from global data sets hosted by Arizona State University at http://jmars.asu.edu/data/. This material is based on work supported by a grant from the National Aeronautics and Space Administration issued through the Mars Fundamental Research Program. P.B.N. also acknowledges support from NASA/Johnson Space Center, and J.M. acknowledges support from Centre National d’Etudes Spatiale (CNES).

Author information

Authors and Affiliations

Authors

Contributions

P.B.N. wrote the majority of the manuscript. J.M. helped develop many of the ideas and figures, and wrote some sections of the paper.

Corresponding author

Correspondence to Paul B. Niles.

Supplementary information

Supplementary Information

Supplementary Information (PDF 427 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niles, P., Michalski, J. Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nature Geosci 2, 215–220 (2009). https://doi.org/10.1038/ngeo438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo438

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing