mtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences
Abstract
:1. Introduction
2. The Generation and the Study of Heteroplasmy
2.1. The Sources of Heteroplasmy
2.2. Measuring Heteroplasmy
2.3. The Hierarchical Levels for Studying Heteroplasmy
2.4. Techniques for Detection of Heteroplasmy
2.5. Heteroplasmy and NUMTs
3. The Applications of Heteroplasmy
3.1. Heteroplasmy and Diseases
3.2. Heteroplasmy and mtDNA as Genetic Marker
4. Heteroplasmy and mtDNA Evolution
4.1. Selection and Drift on the Heteroplasmy Levels
4.2. Selection against Heteroplasmy to Support Maternal Transmission
4.3. Selection on Heteroplasmy to Control Deleterious mtDNA Mutations
4.3.1. Dynamics of Heteroplasmy in the Germline
4.3.2. Dynamics of Heteroplasmy in Somatic Tissues
4.4. Evolutionary Significance of Heteroplasmy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mastrantonio, V.; Latrofa, M.S.; Porretta, D.; Lia, R.P.; Parisi, A.; Iatta, R.; Dantas-torres, F.; Otranto, D.; Urbanelli, S. Paternal Leakage and MtDNA heteroplasmy in Rhipicephalus spp. ticks. Sci. Rep. 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Peng, L.; Hu, X.; Zhao, Y.; Liu, S.; Hong, Y. Transcriptional quiescence of paternal MtDNA in cyprinid fish embryos. Sci. Rep. 2016, 6, 28571. [Google Scholar] [CrossRef] [PubMed]
- Ujvari, B.; Dowton, M.; Madsen, T. Mitochondrial DNA recombination in a free-ranging australian lizard. Biol. Lett. 2007, 3, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.B.; Chinnery, P.F. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat. Rev. Genet. 2021, 106–118. [Google Scholar] [CrossRef]
- Payne, B.A.I.; Wilson, I.J.; Yu-Wai-Man, P.; Coxhead, J.; Deehan, D.; Horvath, R.; Taylor, R.W.; Samuels, D.C.; Santibanez-Koref, M.; Chinnery, P.F. Universal heteroplasmy of human mitochondrial DNA. Hum. Mol. Genet. 2013, 22, 384–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Schröder, R.; Ni, S.; Madea, B.; Stoneking, M. Extensive tissue-related and allele-related MtDNA heteroplasmy suggests positive selection for somatic mutations. Proc. Natl. Acad. Sci. USA 2015, 112, 2491–2496. [Google Scholar] [CrossRef] [Green Version]
- Ye, K.; Lu, J.; Ma, F.; Keinan, A.; Gu, Z. Extensive pathogenicity of mitochondrial heteroplasmy in healthy human individuals. Proc. Natl. Acad. Sci. USA 2014, 111, 10654–10659. [Google Scholar] [CrossRef] [Green Version]
- Nunes, M.D.S.; Dolezal, M.; Schlötterer, C. Extensive paternal MtDNA leakage in natural populations of Drosophila melanogaster. Mol. Ecol. 2013, 22, 2106–2117. [Google Scholar] [CrossRef] [Green Version]
- Robison, G.A.; Balvin, O.; Schal, C.; Vargo, E.L.; Booth, W. Extensive mitochondrial heteroplasmy in natural populations of a resurging human pest, the bed bug (Hemiptera: Cimicidae). J. Med. Entomol. 2015, 52, 734–738. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Valencia, C.A.; Zhang, J.; Lee, N.-C.; Slone, J.; Gui, B.; Wang, X.; Li, Z.; Dell, S.; Brown, J.; et al. Biparental Inheritance of Mitochondrial DNA in Humans. Proc. Natl. Acad. Sci. USA 2018, 115, 13039–13044. [Google Scholar] [CrossRef] [Green Version]
- Rokas, A.; Ladoukakis, E.; Zouros, E. Animal mitochondrial DNA recombination revisited. Trends Ecol. Evol. 2003, 18, 411–417. [Google Scholar] [CrossRef]
- Sato, M.; Sato, K. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim. Biophys. Acta Mol. Cell Res. 2013, 1833, 1979–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLuca, S.Z.; O’Farrell, P.H. Barriers to male transmission of mitochondrial DNA in sperm development. Dev. Cell 2012, 22, 660–668. [Google Scholar] [CrossRef] [Green Version]
- Politi, Y.; Gal, L.; Kalifa, Y.; Ravid, L.; Elazar, Z.; Arama, E. Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila. Dev. Cell 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Rothwell, R.; Vermaat, M.; Wachsmuth, M.; Schröder, R.; Laros, J.F.J.; Van Oven, M.; De Bakker, P.I.W.; Bovenberg, J.A.; Van Duijn, C.M.; et al. Transmission of Human MtDNA heteroplasmy in the genome of the netherlands families: Support for a variable-size bottleneck. Genome Res. 2016, 26, 417–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, M.; Vissing, J. Paternal inheritance of mitochondrial DNA. N. Engl. J. Med. 2002, 347, 576–580. [Google Scholar] [CrossRef]
- Doublet, V.; Souty-Grosset, C.; Bouchon, D.; Cordaux, R.; Marcadé, I. A thirty million year-old inherited heteroplasmy. PLoS ONE 2008, 3, e2938. [Google Scholar] [CrossRef] [PubMed]
- Polovina, E.S.; Parakatselaki, M.E.; Ladoukakis, E.D. Paternal leakage of mitochondrial DNA and maternal inheritance of heteroplasmy in Drosophila hybrids. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Skibinski, D.O.; Gallagher, C.; Beynon, C.M. Sex-limited mitochondrial DNA transmission in the marine mussel mytilus edulis. Genetics 1994, 138, 3. [Google Scholar] [CrossRef]
- Zouros, E.; Oberhauser Ball, A.; Saavedra, C.; Freeman, K.R. An unusual type of mitochondrial DNA inheritance in the blue mussel mytilus. Proc. Natl. Acad. Sci. USA 1994, 91, 7463–7467. [Google Scholar] [CrossRef] [Green Version]
- Venetis, C.; Theologidis, I.; Zouros, E.; Rodakis, G.C. No evidence for presence of maternal mitochondrial DNA in the sperm of Mytilus galloprovincialis males. Proc. R. Soc. B Biol. Sci. 2006, 273, 2483–2489. [Google Scholar] [CrossRef] [Green Version]
- Zouros, E. Biparental inheritance through uniparental transmission: The Doubly Uniparental Inheritance (DUI) of mitochondrial DNA. Evol. Biol. 2013, 40, 1–31. [Google Scholar] [CrossRef]
- Dokianakis, E.; Ladoukakis, E.D. Different degree of paternal MtDNA leakage between male and female progeny in interspecific Drosophila Crosses. Ecol. Evol. 2014, 4, 2633–2641. [Google Scholar] [CrossRef] [PubMed]
- Naue, J.; Hörer, S.; Sänger, T.; Strobl, C.; Hatzer-Grubwieser, P.; Parson, W.; Lutz-Bonengel, S. Evidence for frequent and tissue-specific sequence heteroplasmy in human mitochondrial DNA. Mitochondrion 2015, 20, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Sharpley, M.S.; Marciniak, C.; Eckel-mahan, K.; Mcmanus, M.; Crimi, M.; Waymire, K.; Lin, C.S.; Masubuchi, S.; Friend, N.; Koike, M.; et al. Heteroplasmy of mouse MtDNA is genetically unstable and results in altered behavior and cognition. Cell 2012, 151, 333–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floros, V.I.; Pyle, A.; DIetmann, S.; Wei, W.; Tang, W.W.C.; Irie, N.; Payne, B.; Capalbo, A.; Noli, L.; Coxhead, J.; et al. Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat. Cell Biol. 2018, 20, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Hauswirth, W.; Laipis, P. Mitochondrial DNA polymorphism in a maternal lineage of holstein cows. Proc. Natl. Acad. Sci. USA 1982, 79, 4686–4690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, E.; Wu, J.; Gutierrez, N.M.; Koski, A.; Tippner-hedges, R.; Agaronyan, K.; Platero-luengo, A.; Martinez-redondo, P.; Ma, H.; Lee, Y.; et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature 2016, 540, 270–275. [Google Scholar] [CrossRef]
- Yang, L.; Long, Q.; Liu, J.; Tang, H.; Li, Y.; Bao, F.; Qin, D.; Pei, D.; Liu, X. Mitochondrial fusion provides an “initial metabolic complementation” controlled by MtDNA. Cell. Mol. Life Sci. 2015, 72, 2585–2598. [Google Scholar] [CrossRef]
- Lareau, C.A.; Ludwig, L.S.; Muus, C.; Gohil, S.H.; Zhao, T.; Chiang, Z.; Pelka, K.; Verboon, J.M.; Luo, W.; Christian, E.; et al. Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling. Nat. Biotechnol. 2020, 1–11. [Google Scholar] [CrossRef]
- Maeda, R.; Kami, D.; Maeda, H.; Shikuma, A.; Gojo, S. High throughput single cell analysis of mitochondrial heteroplasmy in mitochondrial diseases. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Jaberi, E.; Tresse, E.; Grønbæk, K.; Weischenfeldt, J.; Issazadeh-Navikas, S. Identification of unique and shared mitochondrial DNA mutations in neurodegeneration and cancer by single-cell mitochondrial DNA structural variation sequencing (MitoSV-Seq). EBioMedicine 2020, 57, 102868. [Google Scholar] [CrossRef]
- Garrido-Ramos, M.A.; Stewart, D.T.; Sutherland, B.W.; Zouros, E. The distribution of male-transmitted and female-transmitted mitochondrial DNA types in somatic tissues of blue mussels: Implications for the operation of doubly uniparental inheritance of mitochondrial DNA. Genome 1998, 41, 818–824. [Google Scholar] [CrossRef]
- Solignac, M.; Monnerott, M.; Mounolout, J. Mitochondrial heteroplasmy mauritiana. Genetics 1983, 80, 6942–6946. [Google Scholar]
- Harrison, R.G.; Rand, D.M.; Wheeler, W.C. Mitochondrial DNA size variation within individual crickets. Science 1985, 228, 1446–1448. [Google Scholar] [CrossRef] [PubMed]
- Bentzen, S.M.; Poulsen, H.S.; Kaae, S.; Myhre Jensen, O.; Johansen, H.; Mouridsen, H.T.; Daugaard, S.; Arnoldl, C. Prognostic factors in osteosarcomas: A regression analysis. Cancer 1988, 62, 194–202. [Google Scholar] [CrossRef]
- Buroker, N.E.; Brown, J.R.; Gilbert, T.A.; O’Hara, P.J.; Beckenbach, A.T.; Thomas, W.K.; Smith, M.J. Length heteroplasmy of sturgeon mitochondrial DNA: An illegitimate elongation model. Genetics 1990, 124, 1. [Google Scholar] [CrossRef]
- Boyce, T.M.; Zwick, M.E.; Aquadro, C.F. Mitochondrial DNA in the bark weevils: Size, structure and heteroplasmy. Genetics 1989, 123, 825–836. [Google Scholar] [CrossRef]
- Maté, M.L.; Di Rocco, F.; Zambelli, A.; Vidal-Rioja, L. Mitochondrial heteroplasmy in control region DNA of South American Camelids. Small Rumin. Res. 2007, 71, 123–129. [Google Scholar] [CrossRef]
- Tully, L.A.; Parsons, T.J.; Steighner, R.J.; Holland, M.M.; Marino, M.A.; Prenger, V.L. A sensitive denaturing gradient-gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region 1 of the human MtDNA control region. Am. J. Hum. Genet. 2000, 67, 432–443. [Google Scholar] [CrossRef] [Green Version]
- El-Schahawi, M.; De López Munain, A.; Sarrazin, A.M.; Shanske, A.L.; Basirico, M.; Shanske, S.; DiMauro, S. Two large spanish pedigrees with nonsyndromic sensorineural deafness and the MtDNA mutation at Nt 1555 in the 12s RRNA gene: Evidence of heteroplasmy. Neurology 1997, 48, 453–456. [Google Scholar] [CrossRef] [PubMed]
- Ladoukakis, E.D.; Saavedra, C.; Magoulas, A.; Zouros, E. Mitochondrial DNA variation in a species with two mitochondrial genomes: The case of Mytilus galloprovincialis from the atlantic, the mediterranean and the black sea. Mol. Ecol. 2002, 11, 755–769. [Google Scholar] [CrossRef] [PubMed]
- Nesbø, C.L.; Arab, M.O.; Jakobsen, K.S. Heteroplasmy, length and sequence variation in the MtDNA control regions of three percid fish species (Perca Fluviatilis, Acerina Cernua, Stizostedion Lucioperca). Genetics 1998, 148, 1907–1919. [Google Scholar] [CrossRef]
- Ladoukakis, E.D.; Zouros, E. Direct evidence for homologous recombination in mussel (Mytilus galloprovincialis) Mitochondrial DNA. Mol. Biol. Evol. 2001, 18, 1168–1175. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Pena, E.; Verísimo, P.; Fernández, L.; González-Tizón, A.; Bárcena, C.; Martínez-Lage, A. High incidence of heteroplasmy in the MtDNA of a natural population of the spider crab Maja brachydactyla. PLoS ONE 2020, 15, e0230243. [Google Scholar] [CrossRef] [Green Version]
- Lutz-Bonengel, S.; Sänger, T.; Pollak, S.; Szibor, R. Different methods to determine length heteroplasmy within the mitochondrial control region. Int. J. Leg. Med. 2004, 118, 274–281. [Google Scholar] [CrossRef]
- Poe, B.G.; Navratil, M.; Arriaga, E.A. Absolute quantitation of a heteroplasmic mitochondrial DNA deletion using a multiplex three-primer real-time PCR assay. Anal. Biochem. 2007, 362, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Bai, R.K.; Wong, L.J.C. Detection and quantification of heteroplasmic mutant mitochondrial DNA by real-time amplification refractory mutation system quantitative PCR analysis: A single-step approach. Clin. Chem. 2004, 50, 996–1001. [Google Scholar] [CrossRef] [Green Version]
- Rong, E.; Wang, H.; Hao, S.; Fu, Y.; Ma, Y.; Wang, T. Heteroplasmy detection of mitochondrial DNA A3243G mutation using quantitative real-time PCR assay based on TaqMan-MGB probes. BioMed Res. Int. 2018, 2018. [Google Scholar] [CrossRef]
- Duan, M.; Tu, J.; Lu, Z. Recent advances in detecting mitochondrial DNA heteroplasmic variations. Molecules 2018, 23, 323. [Google Scholar] [CrossRef] [Green Version]
- Chin, R.M.; Panavas, T.; Brown, J.M.; Johnson, K.K. Patient-derived lymphoblastoid cell lines harboring mitochondrial DNA Mutations as tool for small molecule drug discovery. BMC Res. Notes 2018, 11, 205. [Google Scholar] [CrossRef] [Green Version]
- Hindson, B.J.; Ness, K.D.; Masquelier, D.A.; Belgrader, P.; Heredia, N.J.; Makarewicz, A.J.; Bright, I.J.; Lucero, M.Y.; Hiddessen, A.L.; Legler, T.C.; et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 2011, 83, 8604–8610. [Google Scholar] [CrossRef] [PubMed]
- Trifunov, S.; Pyle, A.; Valentino, M.L.; Liguori, R.; Yu-Wai-Man, P.; Burté, F.; Duff, J.; Kleinle, S.; Diebold, I.; Rugolo, M.; et al. Clonal expansion of MtDNA deletions: Different disease models assessed by digital droplet PCR in single muscle cells. Sci. Rep. 2018, 8, 1682. [Google Scholar] [CrossRef] [Green Version]
- Fazzini, F.; Fendt, L.; Schönherr, S.; Forer, L.; Schöpf, B.; Streiter, G.; Losso, J.L.; Kloss-Brandstätter, A.; Kronenberg, F.; Weissensteiner, H. Analyzing low-level MtDNA heteroplasmy—Pitfalls and challenges from bench to benchmarking. Int. J. Mol. Sci. 2021, 22, 935. [Google Scholar] [CrossRef]
- Marquis, J.; Lefebvre, G.; Kourmpetis, Y.A.I.; Kassam, M.; Ronga, F.; De Marchi, U.; Wiederkehr, A.; Descombes, P. MitoRS, a method for high throughput, sensitive, and accurate detection of mitochondrial DNA heteroplasmy. BMC Genom. 2017, 18, 326. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, C.; Simone, D.; Diroma, M.A.; Santorsola, M.; Guttà, C.; Gasparre, G.; Picardi, E.; Pesole, G.; Attimonelli, M. MToolBox: A highly automated pipeline for heteroplasmy annotation and prioritization analysis of human mitochondrial variants in high-throughput sequencing. Bioinformatics 2014, 30, 3115–3117. [Google Scholar] [CrossRef] [PubMed]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. Unraveling heteroplasmy patterns with NOVOPlasty. NAR Genom. Bioinf. 2020, 2. [Google Scholar] [CrossRef] [Green Version]
- Weissensteiner, H.; Forer, L.; Fuchsberger, C.; Schöpf, B.; Kloss-Brandstätter, A.; Specht, G.; Kronenberg, F.; Schönherr, S. MtDNA-server: Next-generation sequencing data analysis of human mitochondrial DNA in the cloud. Nucleic Acids Res. 2016, 44, W64–W69. [Google Scholar] [CrossRef]
- Zhou, K.; Mo, Q.; Guo, S.; Liu, Y.; Yin, C.; Ji, X.; Guo, X.; Xing, J. A novel next-generation sequencing–based approach for concurrent detection of mitochondrial DNA copy number and mutation. J. Mol. Diagn. 2020, 22, 1408–1418. [Google Scholar] [CrossRef]
- He, Y.; Wu, J.; Dressman, D.C.; Iacobuzio-Donahue, C.; Markowitz, S.D.; Velculescu, V.E.; Diaz, L.A.; Kinzler, K.W.; Vogelstein, B.; Papadopoulos, N. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 2010, 464, 610–614. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Guo, S.; Yin, C.; Guo, X.; Liu, M.; Yuan, Z.; Zhao, Z.; Jia, Y.; Xing, J. Optimized PCR-based enrichment improves coverage uniformity and mutation detection in mitochondrial DNA next-generation sequencing. J. Mol. Diagn. 2020, 22, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.S.; Clarke, C.; Costello, A.; Monger, C.; Meiller, J.; Dhiman, H.; Borth, N.; Betenbaugh, M.J.; Clynes, M.; Barron, N. Ultra-deep next generation mitochondrial genome sequencing reveals widespread heteroplasmy in Chinese hamster ovary cells. Metab. Eng. 2017, 41, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Radojičić, J.M.; Kristoffersen, J.B.; Polovina, E.-S.; Pavlidis, P.; Ladoukakis, E.D. Pervasive non-random MtDNA heteroplasmy in a natural hybrid water frog population. unpublished.
- Duan, M.; Chen, L.; Ge, Q.; Lu, N.; Li, J.; Pan, X.; Qiao, Y.; Tu, J.; Lu, Z. Evaluating heteroplasmic variations of the mitochondrial genome from whole genome sequencing data. Gene 2019, 699, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Grandhi, S.; Bosworth, C.; Maddox, W.; Sensiba, C.; Akhavanfard, S.; Ni, Y.; LaFramboise, T. Heteroplasmic shifts in tumor mitochondrial genomes reveal tissue-specific signals of relaxed and positive selection. Hum. Mol. Genet. 2017, 26, 2912–2922. [Google Scholar] [CrossRef]
- Xu, J.; Nuno, K.; Litzenburger, U.M.; Qi, Y.; Corces, M.R.; Majeti, R.; Chang, H.Y. Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA. Elife 2019, 8, 1–14. [Google Scholar] [CrossRef]
- Bensasson, D.; Zhang, D.X.; Hartl, D.L.; Hewitt, G.M. Mitochondrial pseudogenes: Evolution’s misplaced witnesses. Trends Ecol. Evol. 2001, 314–321. [Google Scholar] [CrossRef]
- Albayrak, L.; Khanipov, K.; Pimenova, M.; Golovko, G.; Rojas, M.; Pavlidis, I.; Chumakov, S.; Aguilar, G.; Chávez, A.; Widger, W.R.; et al. The ability of human nuclear DNA to cause false positive low-abundance heteroplasmy calls varies across the mitochondrial genome. BMC Genom. 2016, 17, 1017. [Google Scholar] [CrossRef] [Green Version]
- Richly, E.; Leister, D. NUMTs in sequenced eukaryotic genomes. Mol. Biol. Evol. 2004, 21, 1081–1084. [Google Scholar] [CrossRef] [Green Version]
- Mourier, T.; Hansen, A.J.; Willerslev, E.; Arctander, P. The human genome project reveals a continuous transfer of large mitochondrial fragments to the nucleus. Mol. Biol. Evol. 2001, 18, 1833–1837. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Xing, Y.; Mao, X. The little brown bat nuclear genome contains an entire mitochondrial genome: Real or artifact? Gene 2017, 629, 64–67. [Google Scholar] [CrossRef]
- Wei, W.; Pagnamenta, A.T.; Gleadall, N.; Sanchis-Juan, A.; Stephens, J.; Broxholme, J.; Tuna, S.; Odhams, C.A.; Ambrose, J.C.; Baple, E.L.; et al. Nuclear-mitochondrial DNA segments resemble paternally inherited mitochondrial DNA in humans. Nat. Commun. 2020, 11, 1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz-Bonengel, S.; Niederstätter, H.; Naue, J.; Koziel, R.; Yang, F.; Sänger, T.; Huber, G.; Berger, C.; Pflugradt, R.; Strobl, C.; et al. Evidence for multi-copy Mega-NUMT s in the human genome. Nucleic Acids Res. 2021, 49, 1517–1531. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Guo, J.; Li, J.; Gao, S.; Yao, B.; Lu, Z. Systematic characteristic exploration of the chimeras generated in multiple displacement amplification through next generation sequencing data reanalysis. PLoS ONE 2015, 10, e0139857. [Google Scholar] [CrossRef]
- Balciuniene, J.; Balciunas, D. A Nuclear MtDNA concatemer (Mega-NUMT) could mimic paternal inheritance of mitochondrial genome. Front. Genet. 2019, 10, 2018–2020. [Google Scholar] [CrossRef]
- Salas, A.; Schönherr, S.; Bandelt, H.J.; Gómez-Carballa, A.; Weissensteiner, H. Extraordinary claims require extraordinary evidence in asserted MtDNA biparental inheritance. Forensic Sci. Int. Genet. 2020, 47, 102274. [Google Scholar] [CrossRef] [PubMed]
- Bris, C.; Goudenege, D.; Desquiret-Dumas, V.; Charif, M.; Colin, E.; Bonneau, D.; Amati-Bonneau, P.; Lenaers, G.; Reynier, P.; Procaccio, V. Bioinformatics tools and databases to assess the pathogenicity of mitochondrial DNA variants in the field of next generation sequencing. Front. Genet. 2018, 11, 632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santibanez-Koref, M.; Griffin, H.; Turnbull, D.M.; Chinnery, P.F.; Herbert, M.; Hudson, G. Assessing mitochondrial heteroplasmy using next generation sequencing: A note of caution. Mitochondrion 2018, 46, 302–306. [Google Scholar] [CrossRef]
- Ring, J.D.; Sturk-Andreaggi, K.; Alyse Peck, M.; Marshall, C. Bioinformatic removal of NUMT-associated variants in mitotiling next-generation sequencing data from whole blood samples. Electrophoresis 2018, 39, 2785–2797. [Google Scholar] [CrossRef]
- Cihlar, J.C.; Strobl, C.; Lagacé, R.; Muenzler, M.; Parson, W.; Budowle, B. Distinguishing mitochondrial DNA and NUMT sequences amplified with the precision ID MtDNA whole genome panel. Mitochondrion 2020, 55, 122–133. [Google Scholar] [CrossRef]
- Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Prim. 2016, 2, 16080. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.B.; Chinnery, P.F. The dynamics of mitochondrial DNA heteroplasmy: Implications for human health and disease. Nat. Rev. Genet. 2015, 16, 530–542. [Google Scholar] [CrossRef]
- Machado, T.S.; Macabelli, C.H.; Del Collado, M.; Meirelles, F.V.; Guimarães, F.E.G.; Chiaratti, M.R. Evidence of selection against damaged mitochondria during early embryogenesis in the mouse. Front. Genet. 2020, 11, 1762. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, R.; Faustin, B.; Rocher, C.; Malgat, M.; Mazat, J.-P.; Letellier, T. Mitochondrial threshold effects. Biochem. J. 2003, 370, 751–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schon, E.A.; DiMauro, S.; Hirano, M. Human mitochondrial DNA: Roles of inherited and somatic mutations. Nat. Rev. Genet. 2012, 13, 878–890. [Google Scholar] [CrossRef] [PubMed]
- Burr, S.P.; Pezet, M.; Chinnery, P.F. Mitochondrial DNA heteroplasmy and purifying selection in the mammalian female germ line. Dev. Growth Differ. 2018, 60, 21–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorman, G.S.; Schaefer, A.M.; Ng, Y.; Gomez, N.; Blakely, E.L.; Alston, C.L.; Feeney, C.; Horvath, R.; Yu-Wai-Man, P.; Chinnery, P.F.; et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 2015, 77, 753–759. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, M.F.; Fakurazi, S.; Abdullah, M.A.; Maniam, S. Pathogenic mitochondria DNA mutations: Current detection tools and interventions. Nature 2020, 11, 192. [Google Scholar] [CrossRef] [Green Version]
- Zascavage, R.R.; Hall, C.L.; Thorson, K.; Mahmoud, M.; Sedlazeck, F.J.; Planz, J.V. Approaches to whole mitochondrial genome sequencing on the oxford nanopore MinION. Curr. Protoc. Hum. Genet. 2019, 104. [Google Scholar] [CrossRef] [PubMed]
- Mok, B.Y.; de Moraes, M.H.; Zeng, J.; Bosch, D.E.; Kotrys, A.V.; Raguram, A.; Hsu, F.S.; Radey, M.C.; Peterson, S.B.; Mootha, V.K.; et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 2020, 583, 631–637. [Google Scholar] [CrossRef]
- Jackson, C.B.; Turnbull, D.M.; Minczuk, M.; Gammage, P.A. Therapeutic manipulation of MtDNA heteroplasmy: A shifting perspective. Trends Mol. Med. 2020, 26, 698–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craven, L.; Tuppen, H.A.; Greggains, G.D.; Harbottle, S.J.; Murphy, J.L.; Cree, L.M.; Murdoch, A.P.; Chinnery, P.F.; Taylor, R.W.; Lightowlers, R.N.; et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 2010, 465, 82–85. [Google Scholar] [CrossRef] [Green Version]
- Tachibana, M.; Sparman, M.; Sritanaudomchai, H.; Ma, H.; Clepper, L.; Woodward, J.; Li, Y.; Ramsey, C.; Kolotushkina, O.; Mitalipov, S. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 2009, 461, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Flood, J.T.; Chillik, C.F.; van Uem, J.F.; Iritani, A.; Hodgen, G.D. Ooplasmic transfusion: Prophase germinal vesicle oocytes made developmentally competent by microinjection of metaphase II egg cytoplasm. Fertil. Steril. 1990, 53, 1049–1054. [Google Scholar] [CrossRef]
- Reznichenko, A.S.; Huyser, C.; Pepper, M.S. Mitochondrial transfer: Implications for assisted reproductive technologies. Appl. Translat. Genom. 2016, 11, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Yamada, M.; Emmanuele, V.; Sanchez-Quintero, M.J.; Sun, B.; Lallos, G.; Paull, D.; Zimmer, M.; Pagett, S.; Prosser, R.W.; Sauer, M.V.; et al. Genetic drift can compromise mitochondrial replacement by nuclear transfer in human oocytes. Cell Stem Cell 2016, 18, 749–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tachibana, M.; Kuno, T.; Yaegashi, N. Mitochondrial replacement therapy and assisted reproductive technology: A paradigm shift toward treatment of genetic diseases in gametes or in early embryos. Reprod. Med. Biol. 2018, 17, 421–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunbar, D.R.; Moonie, P.A.; Jacobs, H.T.; Holt, I.J. Different cellular backgrounds confer a marked advantage to either mutant or wild-type mitochondrial genomes. Proc. Natl. Acad. Sci. USA 1995, 92, 6562–6566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avise, J.C. Introduction. In Molecular Markers, Natural History and Evolution; Springer: New York, NY, USA, 1994; pp. 3–15. [Google Scholar] [CrossRef]
- Schierup, M.H.; Hein, J. Consequences of recombination on traditional phylogenetic analysis. Genetics 2000, 156, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Tsaousis, A.D.; Martin, D.P.; Ladoukakis, E.D.; Posada, D.; Zouros, E. Widespread recombination in published animal MtDNA sequences. Mol. Biol. Evol. 2005, 22, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Piganeau, G.; Eyre-Walker, A. A reanalysis of the indirect evidence for recombination in human mitochondrial DNA. Heredity 2004, 92, 282–288. [Google Scholar] [CrossRef]
- Hagström, E.; Freyer, C.; Battersby, B.J.; Stewart, J.B.; Larsson, N.G. No recombination of MtDNA after heteroplasmy for 50 generations in the mouse maternal germline. Nucleic Acids Res. 2014, 42, 1111–1116. [Google Scholar] [CrossRef] [Green Version]
- Radzvilavicius, A.L.; Lane, N.; Pomiankowski, A. Sexual conflict explains the extraordinary diversity of mechanisms regulating mitochondrial inheritance. BMC Biol. 2017, 15, 94. [Google Scholar] [CrossRef] [Green Version]
- Greiner, S.; Sobanski, J.; Bock, R. Why are most organelle genomes transmitted maternally? Bioessays 2015, 37, 80–94. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.C. Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu. Rev. Biochem. 2007, 76, 781–821. [Google Scholar] [CrossRef] [Green Version]
- Freyer, C.; Cree, L.M.; Mourier, A.; Stewart, J.B.; Koolmeister, C.; Milenkovic, D.; Wai, T.; Floros, V.I.; Hagström, E.; Chatzidaki, E.E.; et al. Variation in germline MtDNA heteroplasmy is determined prenatally but modified during subsequent transmission. Nat. Genet. 2012, 44, 1282–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, J.N.; White, D.J.; Woodhams, M.; White, H.E.; Gemmell, N.J. The strength and timing of the mitochondrial bottleneck in salmon suggests a conserved mechanism in vertebrates. PLoS ONE 2011, 6, e20522. [Google Scholar] [CrossRef] [Green Version]
- Otten, A.B.C.; Stassen, A.P.M.; Adriaens, M.; Gerards, M.; Dohmen, R.G.J.; Timmer, A.J.; Vanherle, S.J.V.; Kamps, R.; Boesten, I.B.W.; Vanoevelen, J.M.; et al. Replication errors made during oogenesis lead to detectable de novo MtDNA mutations in zebrafish oocytes with a low MtDNA copy number. Genetics 2016, 204, 1423–1431. [Google Scholar] [CrossRef] [Green Version]
- Rebolledo-Jaramillo, B.; Su, M.S.W.; Stoler, N.; McElhoe, J.A.; Dickins, B.; Blankenberg, D.; Korneliussen, T.S.; Chiaromonte, F.; Nielsen, R.; Holland, M.M.; et al. Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA. Proc. Natl. Acad. Sci. USA 2014, 111, 15474–15479. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Waymire, K.G.; Narula, N.; Li, P.; Rocher, C.; Coskun, P.E.; Vannan, M.A.; Narula, J.; Macgregor, G.R.; Wallace, D.C. A mouse model of mitochondrial disease reveals germline selection against severe MtDNA mutations. Science 2008, 319, 958–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, J.B.; Freyer, C.; Elson, J.L.; Larsson, N.G. Purifying selection of MtDNA and its implications for understanding evolution and mitochondrial disease. Nat. Rev. Genet. 2008, 9, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Xu, H.; O’Farrell, P.H. Transmission of mitochondrial mutations and action of purifying selection in Drosophila melanogaster. Nat. Genet. 2014, 46, 393–397. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.H.; Chen, Z.; Xu, H. Selective propagation of functional mitochondrial DNA during oogenesis restricts the transmission of a deleterious mitochondrial variant. Nat. Genet. 2014, 46, 389–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Fanti, S.; Vicario, S.; Lang, M.; Simone, D.; Magli, C.; Luiselli, D.; Gianaroli, L.; Romeo, G. Intra-individual purifying selection on mitochondrial DNA variants during human oogenesis. Hum. Reprod. 2017, 32, 1100–1107. [Google Scholar] [CrossRef]
- Rand, D.M. The Units of Selection of Mitochondrial DNA. Annu. Rev. Ecol. Syst. 2001, 32, 415–448. [Google Scholar] [CrossRef]
- Latorre-Pellicer, A.; Lechuga-Vieco, A.V.; Johnston, I.G.; Hämäläinen, R.H.; Pellico, J.; Justo-Méndez, R.; Fernández-Toro, J.M.; Clavería, C.; Guaras, A.; Sierra, R.; et al. Regulation of mother-to-offspring transmission of MtDNA heteroplasmy. Cell Metab. 2019, 30, 1120–1130.e5. [Google Scholar] [CrossRef] [PubMed]
- Lieber, T.; Jeedigunta, S.P.; Palozzi, J.M.; Lehmann, R.; Hurd, T.R. Mitochondrial fragmentation drives selective removal of deleterious MtDNA in the germline. Nature 2019, 570, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Palozzi, J.M.; Jeedigunta, S.P.; Hurd, T.R. Mitochondrial DNA purifying selection in mammals and invertebrates. J. Mol. Biol. 2018, 430, 4834–4848. [Google Scholar] [CrossRef] [PubMed]
- Wilton, P.R.; Zaidi, A.; Makova, K.; Nielsen, R. A population phylogenetic view of mitochondrial heteroplasmy. Genetics 2018, 208, 1261–1274. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, A.A.; Wilton, P.R.; Su, M.S.W.; Paul, I.M.; Arbeithuber, B.; Anthony, K.; Nekrutenko, A.; Nielsen, R.; Makova, K.D. Bottleneck and selection in the germline and maternal age influence transmission of mitochondrial DNA in human pedigrees. Proc. Natl. Acad. Sci. USA 2019, 116, 25172–25178. [Google Scholar] [CrossRef] [Green Version]
- Barrett, A.; Arbeithuber, B.; Zaidi, A.; Wilton, P.; Paul, I.M.; Nielsen, R.; Makova, K.D. Pronounced somatic bottleneck in mitochondrial DNA of human hair. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375. [Google Scholar] [CrossRef]
- Rajasimha, H.K.; Chinnery, P.F.; Samuels, D.C. Selection against pathogenic MtDNA mutations in a stem cell population leads to the loss of the 3243A→G mutation in blood. Am. J. Hum. Genet. 2008, 82, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Su, T.; Grady, J.P.; Afshar, S.; McDonald, S.A.C.; Taylor, R.W.; Turnbull, D.M.; Greaves, L.C. Inherited pathogenic mitochondrial DNA mutations and gastrointestinal stem cell populations. J. Pathol. 2018, 246, 427–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczepanowska, K.; Trifunovic, A. Origins of MtDNA mutations in ageing. Essays Biochem. 2017, 61, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Durham, S.E.; Samuels, D.C.; Chinnery, P.F. Is selection required for the accumulation of somatic mitochondrial DNA mutations in post-mitotic cells? Neuromuscul. Disord. 2006, 16, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Elson, J.L.; Andrews, R.M.; Chinnery, P.F.; Lightowlers, R.N.; Turnbull, D.M.; Howell, N. Analysis of European MtDNAs for recombination. Am. J. Hum. Genet. 2001, 68, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Baines, H.L.; Stewart, J.B.; Stamp, C.; Zupanic, A.; Kirkwood, T.B.L.; Larsson, N.G.; Turnbull, D.M.; Greaves, L.C. Similar patterns of clonally expanded somatic MtDNA mutations in the colon of heterozygous MtDNA mutator mice and ageing humans. Mech. Ageing Dev. 2014, 139, 22–30. [Google Scholar] [CrossRef]
- Lechuga-Vieco, A.V.; Latorre-Pellicer, A.; Johnston, I.G.; Prota, G.; Gileadi, U.; Justo-Méndez, R.; Acín-Pérez, R.; Martínez-De-Mena, R.; Fernández-Toro, J.M.; Jimenez-Blasco, D.; et al. Cell identity and nucleo-mitochondrial genetic context modulate OXPHOS performance and determine somatic heteroplasmy dynamics. Sci. Adv. 2020, 6, eaba5345. [Google Scholar] [CrossRef]
- Muller, H.J. The relation of recombination to mutational advance. Mutat. Res. Mol. Mech. Mutagen. 1964, 1, 2–9. [Google Scholar] [CrossRef]
- Andersson, G.E.; Karlberg, O.; Canbäck, B.; Kurland, C.G. On the origin of mitochondria: A Genom. perspective. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2003, 358. [Google Scholar] [CrossRef] [Green Version]
- Soares, P.; Abrantes, D.; Rito, T.; Thomson, N.; Radivojac, P.; Li, B.; Macaulay, V.; Samuels, D.C.; Pereira, L. Evaluating purifying selection in the mitochondrial DNA of various mammalian species. PLoS ONE 2013, 8, e58993. [Google Scholar] [CrossRef] [Green Version]
- Loewe, L. Quantifying the genomic decay paradox due to Muller’s ratchet in human mitochondrial DNA quantifying the genomic decay paradox due to Muller’s ratchet in human mitochondrial DNA. Genet. Res. 2006, 87, 133–159. [Google Scholar] [CrossRef]
- Radzvilavicius, A.L.; Hadjivasiliou, Z.; Pomiankowski, A.; Lane, N. Selection for mitochondrial quality drives evolution of the germline. PLoS Biol. 2016, 14, e2000410. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A. The Genetical Theory of Natural Selection, 2nd ed.; Dover: New York, NY, USA, 1958. [Google Scholar]
- Edwards, D.M.; Røyrvik, E.C.; Chustecki, J.M.; Giannakis, K.; Glastad, R.C.; Radzvilavicius, A.L.; Johnston, I.G. Avoiding organelle mutational meltdown across eukaryotes with or without a germline bottleneck. PLoS Biol. 2021, 19, e3001153. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, R.F. Evolutionary origin and consequences of uniparental mitochondrial inheritance. Hum. Reprod. 2000, 15, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Gordo, I.; Charlesworth, B. The degeneration of asexual haploid populations and the speed of Muller’s ratchet. Genetics 2000, 154, 1379–1387. [Google Scholar] [CrossRef]
- Frank, S.A.; Hurst, L.D. Mitochondria and male disease. Nature 1996, 224. [Google Scholar] [CrossRef] [PubMed]
- Gemmell, N.J.; Metcalf, V.J.; Allendorf, F.W. Mother’s curse: The effect of MtDNA on Individual fitness and population viability. Trends Ecol. Evol. 2004, 19, 238–244. [Google Scholar] [CrossRef]
- Kuijper, B.; Lane, N.; Pomiankowski, A. Can paternal leakage maintain sexually antagonistic polymorphism in the cytoplasm? J. Evol. Biol. 2015, 28, 468–480. [Google Scholar] [CrossRef] [Green Version]
- Garcia, L.E.; Zubko, M.K.; Zubko, E.I.; Sanchez-Puerta, M.V. Elucidating genomic patterns and recombination events in plant cybrid mitochondria. Plant Mol. Biol. 2019, 100, 433–450. [Google Scholar] [CrossRef]
- Sato, A.; Nakada, K.; Akimoto, M.; Ishikawa, K.; Ono, T.; Shitara, H.; Yonekawa, H.; Hayashi, J.-I. Rare creation of recombinant MtDNA haplotypes in mammalian tissues. Proc. Nat. Acad. Sci. USA 2005, 102, 6057–6062. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Liu, S.; Liu, Y. Evidence for recombination of mitochondrial DNA in triploid crucian carp. Genetics 2006, 172, 1745–1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gantenbein, B.; Fet, V.; Gantenbein-Ritter, I.A.; Balloux, F. Evidence for recombination in scorpion mitochondrial DNA (Scorpiones: Buthidae). Proc. Biol. Sci. 2005, 272, 697–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; O’Farrell, P.H. Selections that isolate recombinant mitochondrial genomes in animals. Elife 2015, 4, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kraytsberg, Y.; Schwartz, M.; Brown, T.A.; Ebralidse, K.; Kunz, W.S.; Clayton, D.A.; Vissing, J.; Khrapko, K. Recombination of human mitochondrial DNA. Science 2004, 304, 981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandelt, H.J.; Kong, Q.P.; Parson, W.; Salas, A. More evidence for non-maternal inheritance of mitochondrial DNA? J. Med. Genet. 2005, 42, 957–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piganeau, G.; Gardner, M.; Eyre-Walker, A. A broad survey of recombination in animal mitochondria. Mol. Biol. Evol. 2004, 21, 2319–2325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.M. A Short-term advantage for sex and recombination through sib-competition. J. Theor. Biol. 1976, 63, 245–258. [Google Scholar] [CrossRef]
Levels of Heteroplasmy | Description | Experimental Evidence for b |
---|---|---|
1. Heteroplasmic population | Individuals are (a) heteroplasmic or (b) homoplasmic for alternative haplotypes | All organisms |
2. Heteroplasmic individual | Tissues are (a) heteroplasmic or (b) homoplasmic for alterative haplotypes | Bivalves (ref. [22]) |
3. Heteroplasmic tissue | Cells are (a) heteroplasmic or (b) homoplasmic for alternative haplotypes | Indirect evidence and refs. [26,27] |
4. Heteroplasmic cell | Mitochondria are (a) heteroplasmic or (b) homoplasmic for alterative haplotypes | Indirect evidence and (ref. [28]) |
5. Heteroplasmic mitochondrion | Mitochondria are heteroplasmic. | Direct observation in ref. [29] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parakatselaki, M.-E.; Ladoukakis, E.D. mtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences. Life 2021, 11, 633. https://doi.org/10.3390/life11070633
Parakatselaki M-E, Ladoukakis ED. mtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences. Life. 2021; 11(7):633. https://doi.org/10.3390/life11070633
Chicago/Turabian StyleParakatselaki, Maria-Eleni, and Emmanuel D. Ladoukakis. 2021. "mtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences" Life 11, no. 7: 633. https://doi.org/10.3390/life11070633
APA StyleParakatselaki, M. -E., & Ladoukakis, E. D. (2021). mtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences. Life, 11(7), 633. https://doi.org/10.3390/life11070633