Particle Size-and Structure-Dependent Breakage Behaviors of EnAM-Containing Slags
<p>(<b>a</b>) A part of the homogeneous structure shown in element map overlay from micro X-ray fluorescence analysis and (<b>b</b>) the binary image of the observed clusters.</p> "> Figure 2
<p>Representative schematic representation of the structures: mineral grains and clusters in the slag sample are shown for three exemplary clusters, where a single hexagonal shape represents a single mineral grain and the accumulation of the connected single grains forms a cluster.</p> "> Figure 3
<p>Three-dimensional visualization of XCT data of three clusters consisting of smaller grains. Every grain is labelled with a unique color for easier differentiation.</p> "> Figure 4
<p>Size distributions of the determined grain size determined based on XCT image data (<b>a</b>) and the cluster size based on µXRF imaging (<b>b</b>) of the analyzed slag.</p> "> Figure 5
<p>SEM (<b>a</b>,<b>b</b>) and SEM/EDX (<b>c</b>,<b>d</b>) images of two samples (<b>a</b>–<b>d</b>) in the micro size range to investigate the structural composition on the surface.</p> "> Figure 6
<p>Side view of the load cell (Shimadzu AG-50kNX) during the piston tests (<b>a</b>) and a schematic representation of the load cell’s setup (<b>b</b>).</p> "> Figure 7
<p>Schematic representation of the two-roller breakage tester.</p> "> Figure 8
<p>Distribution of the breakage strength of particles in different size classes in the micro and macro size ranges.</p> "> Figure 9
<p>The specific breakage strength as a function of particle size, fitted based on the model by Tavares and King [<a href="#B33-minerals-15-00195" class="html-bibr">33</a>]. Grain and cluster sizes are highlighted as vertical lines.</p> "> Figure 10
<p>Normalized fragment size distribution in the micro and macro size ranges and normalized cluster and grain size distributions.</p> "> Figure 11
<p>Normalized fragment size distributions in the micro and macro ranges and fits for the breakage function by Zhu et al. [<a href="#B42-minerals-15-00195" class="html-bibr">42</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Piston-Die Experiments
2.3. Nanoindentation
2.4. Two-Roller Breakage Tester
2.5. X-Ray Computed Tomography Measurement and Reconstruction Settings
Image Processing, Segmentation and Analysis
3. Results and Discussions
3.1. Breakage Strength
3.2. Fragment Size Distribution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Werner, T.T.; Mudd, G.M.; Jowitt, S.M. Indium: Key Issues in Assessing Mineral Resources and Long-Term Supply from Recycling. Appl. Earth Sci. 2015, 124, 213–226. [Google Scholar] [CrossRef]
- European Commision. Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability. In Proceedings of the COM 474 Final Commun, Brussels, Belgium, 3 September 2020. [Google Scholar]
- Schirmer, T.; Qiu, H.; Li, H.; Goldmann, D.; Fischlschweiger, M. Li-Distribution in Compounds of the Li2O-MgO-Al2O3-SiO2-CaO System—A First Survey. Metals 2020, 10, 1633. [Google Scholar] [CrossRef]
- Katona, J.; Stanisavljevic, N. Mining the Low-Carbon Future. Waste Manag. Res. J. Sustain. Circ. Econ. 2024, 42, 509–510. [Google Scholar] [CrossRef] [PubMed]
- Blengini, G.A.; Mathieux, F.; Mancini, L.; Nyberg, M.; Viegas, H.M. Recovery of Critical and Other Raw Materials from Mining Waste and Landfills; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Kinnunen, P.; Karhu, M.; Yli-Rantala, E.; Kivikytö-Reponen, P.; Mäkinen, J. A Review of Circular Economy Strategies for Mine Tailings. Clean. Eng. Technol. 2022, 8, 100499. [Google Scholar] [CrossRef]
- Semsari Parapari, P.; Parian, M.; Rosenkranz, J. Breakage Process of Mineral Processing Comminution Machines—An Approach to Liberation. Adv. Powder Technol. 2020, 31, 3669–3685. [Google Scholar] [CrossRef]
- Ballantyne, G.R.; Powell, M.S.; Tiang, M. Proportion of Energy Attributable to Comminution. In Proceedings of the 11th Australasian Institute of Mining and Metallurgy Mill Operator’s Conference, Hobart, Tasmania, 29–31 October 2012; pp. 25–30. [Google Scholar]
- Curry, J.A.; Ismay, M.J.L.; Jameson, G.J. Mine Operating Costs and the Potential Impacts of Energy and Grinding. Miner. Eng. 2014, 56, 70–80. [Google Scholar] [CrossRef]
- Beinert, S.; Schilde, C.; Kwade, A. Simulation of Stress Energy and Grinding Media Movement within a Wet-Operated Annular-Gap Mill Using the Discrete-Element Method. Chem. Eng. Technol. 2012, 35, 1911–1921. [Google Scholar] [CrossRef]
- Beinert, S.; Schilde, C.; Gronau, G.; Kwade, A. CFD-Discrete Element Method Simulations Combined with Compression Experiments to Characterize Stirred-Media Mills. Chem. Eng. Technol. 2014, 37, 770–778. [Google Scholar] [CrossRef]
- Vogel, L.; Peukert, W. From Single Particle Impact Behaviour to Modelling of Impact Mills. Chem. Eng. Sci. 2005, 60, 5164–5176. [Google Scholar] [CrossRef]
- Devanand, K.; Ghiassi, B.; Faramarzi, A.; Mehravar, M. Particle-Based DEM to Assess Masonry Behaviour Under Compression. In Proceedings of the 18th International Brick and Block Masonry Conference (IB2MaC), Birmingham, UK, 21–24 July 2024; Springer: Cham, Germany, 2025; pp. 254–271. [Google Scholar]
- Weibull, W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- McDowell, G.R.; Amon, A. The Application of Weibull Statistics to the Fracture of Soil Particles. Soils Found. 2000, 40, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.M. The Angle Friction of Granular Fills. Doctoral Thesis, University of Cambridge, Cambridge, UK, 1992. [Google Scholar]
- Böttcher, A.-C.; Thon, C.; Fragnière, G.; Chagas, A.; Schilde, C.; Kwade, A. Rigidly-Mounted Roll Mill as Breakage Tester for Characterizing Fine Particle Breakage. Powder Technol. 2021, 383, 554–563. [Google Scholar] [CrossRef]
- Campos, T.M.; Bueno, G.; Rodriguez, V.A.; Böttcher, A.-C.; Kwade, A.; Mayerhofer, F.; Tavares, L.M. Relationships between Particle Breakage Characteristics and Comminution Response of Fine Iron Ore Concentrates. Miner. Eng. 2021, 164, 106818. [Google Scholar] [CrossRef]
- Lois-Morales, P.; Evans, C.; Weatherley, D. Analysis of the Size–Dependency of Relevant Mineralogical and Textural Characteristics to Particles Strength. Miner. Eng. 2022, 184, 107572. [Google Scholar] [CrossRef]
- Rumpf, H. Die Einzelkornzerkleinerung Als Grundlage Einer Technischen Zerkleinerungswissenschaft. Chem. Ing. Tech. 1965, 37, 187–202. [Google Scholar] [CrossRef]
- Hilden, M.M.; Powell, M.S. A Geometrical Texture Model for Multi-Mineral Liberation Prediction. Miner. Eng. 2017, 111, 25–35. [Google Scholar] [CrossRef]
- Mishra, D.A.; Ram, B.K. A Review on Evaluation of Microstructural Parameters to Estimate the Strength of Virtually Isotropic Rock Materials. Geotech. Geol. Eng. 2024, 42, 4627–4649. [Google Scholar] [CrossRef]
- Doebelin, N.; Kleeberg, R. Profex: A Graphical User Interface for the Rietveld Refinement Program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Rachmawati, C.; Weiss, J.; Lucas, H.I.; Löwer, E.; Leißner, T.; Ebert, D.; Möckel, R.; Friedrich, B.; Peuker, U.A. Characterisation of the Grain Morphology of Artificial Minerals (EnAMs) in Lithium Slags by Correlating Multi-Dimensional 2D and 3D Methods. Minerals 2024, 14, 130. [Google Scholar] [CrossRef]
- Schilde, C.; Kwade, A. Measurement of the Micromechanical Properties of Nanostructured Aggregates via Nanoindentation. J. Mater. Res. 2012, 27, 672–684. [Google Scholar] [CrossRef]
- Schilde, C.; Westphal, B.; Kwade, A. Effect of the Primary Particle Morphology on the Micromechanical Properties of Nanostructured Alumina Agglomerates. J. Nanoparticle Res. 2012, 14, 745. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Darbon, J.; Cunha, A.; Chan, T.F.; Osher, S.; Jensen, G.J. Fast Nonlocal Filtering Applied to Electron Cryomicroscopy. In Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, France, 14–17 May 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1331–1334. [Google Scholar]
- Buades, A.; Coll, B.; Morel, J.-M. Non-Local Means Denoising. Image Process. Line 2011, 1, 208–212. [Google Scholar] [CrossRef]
- Berg, S.; Kutra, D.; Kroeger, T.; Straehle, C.N.; Kausler, B.X.; Haubold, C.; Schiegg, M.; Ales, J.; Beier, T.; Rudy, M.; et al. Ilastik: Interactive Machine Learning for (Bio)Image Analysis. Nat. Methods 2019, 16, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Legland, D.; Arganda-Carreras, I.; Andrey, P. MorphoLibJ: Integrated Library and Plugins for Mathematical Morphology with ImageJ. Bioinformatics 2016, 32, 3532–3534. [Google Scholar] [CrossRef]
- Bernotat, S.; Schönert, K. Size Reduction. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar]
- Tavares, L.M.; King, R.P. Single-Particle Fracture under Impact Loading. Int. J. Miner. Process. 1998, 54, 1–28. [Google Scholar] [CrossRef]
- Rajczakowska, M.; Tole, I.; Hedlund, H.; Habermehl-Cwirzen, K.; Cwirzen, A. Autogenous Self-Healing of Low Embodied Energy Cementitious Materials: Effect of Multi-Component Binder and Crack Geometry. Constr. Build. Mater. 2023, 376, 130994. [Google Scholar] [CrossRef]
- Rumpf, H. Fundamental Physical Processes and Particle Metrology. In Particle Technology; Springer: Dordrecht, The Netherlands, 1975; pp. 56–135. [Google Scholar]
- Breitung-Faes, S.; Kwade, A. Use of an Enhanced Stress Model for the Optimization of Wet Stirred Media Milling Processes. Chem. Eng. Technol. 2014, 37, 819–826. [Google Scholar] [CrossRef]
- Rumpf, H. Particle Technology; Springer: Dordrecht, The Netherlands, 1990; ISBN 978-94-011-7946-1. [Google Scholar]
- Kwade, A.; Schwedes, J. Breaking Characteristics of Different Materials and Their Effect on Stress Intensity and Stress Number in Stirred Media Mills. Powder Technol. 2002, 122, 109–121. [Google Scholar] [CrossRef]
- Riganti, G.; Cadoni, E. Ductile-to-Brittle Transition of Steel Due to Dynamic Loading. Metals 2024, 14, 807. [Google Scholar] [CrossRef]
- Argon, A.S. Brittle to Ductile Transition in Cleavage Fracture. Acta Metall. 1987, 35, 185–196. [Google Scholar] [CrossRef]
- Weerasekara, N.S.; Powell, M.S.; Cleary, P.W.; Tavares, L.M.; Evertsson, M.; Morrison, R.D.; Quist, J.; Carvalho, R.M. The Contribution of DEM to the Science of Comminution. Powder Technol. 2013, 248, 3–24. [Google Scholar] [CrossRef]
- Zhu, J.-G.; Guo, W.-L.; Wen, Y.-F.; Yin, J.-H.; Zhou, C. New Gradation Equation and Applicability for Particle-Size Distributions of Various Soils. Int. J. Geomech. 2018, 18, 04017155. [Google Scholar] [CrossRef]
Mineral | Weight Percentage |
---|---|
Lithium aluminate (LiAlO2) | 8.4 |
Eucryptite (LiAlSiO4) | 8.9 |
Gehlenite (Ca2Al2SiO7) | 30.9 |
Li2MnSiO4 | 14.9 |
Mn-Al spinel (MnAl2O4) | 35.8 |
Quartz (SiO2) | <1 |
Measurement Setting | |
---|---|
source distance in mm | 16 |
detector distance in mm | 120 |
optical magnification | 0.4 × |
acceleration voltage in kV | 80 |
electrical power in W | 7 |
source filter (Zeiss standard) | LE4 |
voxel size in µm | 8.0635 |
camera binning | 2 |
number of projections | 1601 |
exposure time (s) | 1.5 |
angle range (°) | 360 |
reconstruction settings | parameter |
reconstruction algorithm | FBP |
center shift | 0.748 |
defect correction | none |
ring removal | none |
byte scaling | (0, 0.25) |
beam hardening constant | 0.2 |
Image Processing | Step | Setting(s) | Ref. |
---|---|---|---|
pre-processing (Fiji) [27] | raw image (16-bit) | - | |
non-local means denoising | s|8, sf|1 | [28,29] | |
unsharp mask | r|1, mw|0.6 | ||
8-bit conversion | - | ||
segmentation (Ilastik) [30] | pixel classification | four classes | |
color/intensity | 1.6 | ||
edge | 3.5 | ||
texture | 3.5 | ||
extraction of the target phase | thresholding (Fiji) | ||
separation of the small grain units | Distance transform watershed (Fiji) | Borgefors 16 bits Dynamic 2.0 Connectivity 13 | [31] |
3D analysis | Analyze Particles, MorphoLibJ (Fiji) | - | |
visualization | VGSTUDIO MAX |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahnmüller, S.; Hirschberger, P.; Võ, T.T.; Rachmawati, C.; Kwade, A.; Peuker, U.; Kruggel-Emden, H.; Schilde, C. Particle Size-and Structure-Dependent Breakage Behaviors of EnAM-Containing Slags. Minerals 2025, 15, 195. https://doi.org/10.3390/min15020195
Bahnmüller S, Hirschberger P, Võ TT, Rachmawati C, Kwade A, Peuker U, Kruggel-Emden H, Schilde C. Particle Size-and Structure-Dependent Breakage Behaviors of EnAM-Containing Slags. Minerals. 2025; 15(2):195. https://doi.org/10.3390/min15020195
Chicago/Turabian StyleBahnmüller, Simon, Paul Hirschberger, Thu Trang Võ, Cindytami Rachmawati, Arno Kwade, Urs Peuker, Harald Kruggel-Emden, and Carsten Schilde. 2025. "Particle Size-and Structure-Dependent Breakage Behaviors of EnAM-Containing Slags" Minerals 15, no. 2: 195. https://doi.org/10.3390/min15020195
APA StyleBahnmüller, S., Hirschberger, P., Võ, T. T., Rachmawati, C., Kwade, A., Peuker, U., Kruggel-Emden, H., & Schilde, C. (2025). Particle Size-and Structure-Dependent Breakage Behaviors of EnAM-Containing Slags. Minerals, 15(2), 195. https://doi.org/10.3390/min15020195