Dark Matter Haloes and Subhaloes
<p>Dimensionless linear dark matter power spectrum in different dark matter models. In the current paradigm, cold dark matter (CDM), the power spectrum keeps on rising to well below subgalactic scales. Alternative models such as warm dark matter (WDM) or interacting dark matter (DAOs) have a cutoff at or slightly below galactic scales, which determines the abundance and structure of small-mass dark matter haloes and subhaloes and the galaxies within. In the black hashed area, the dark matter is constrained by the observed large-scale distribution of galaxies (e.g., [<a href="#B30-galaxies-07-00081" class="html-bibr">30</a>,<a href="#B31-galaxies-07-00081" class="html-bibr">31</a>]) and the Ly-<math display="inline"><semantics> <mi>α</mi> </semantics></math> forest constraints on WDM [<a href="#B28-galaxies-07-00081" class="html-bibr">28</a>] to behave as CDM. Figure adapted from [<a href="#B32-galaxies-07-00081" class="html-bibr">32</a>].</p> "> Figure 2
<p>Illustration of the initial conditions for an <span class="html-italic">N</span>-body simulation. <span class="html-italic">Left:</span> the dimensionless linear CDM power spectrum. The vertical dashed lines mark the modes corresponding to the maximum and minimum scales that can be represented in the initial conditions: the fundamental mode, <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>π</mi> <mo>/</mo> <mi>L</mi> </mrow> </semantics></math>, and the Nyquist mode, <math display="inline"><semantics> <mrow> <mi>π</mi> <mo>/</mo> <mi>d</mi> </mrow> </semantics></math>, where <span class="html-italic">L</span> and <span class="html-italic">d</span> are the cube length and interparticle separation, respectively. <span class="html-italic">Right</span>: a realization of the dark matter density field generated from the power spectrum on the left at redshift <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>127</mn> </mrow> </semantics></math> using <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>1024</mn> <mn>3</mn> </msup> </mrow> </semantics></math> particles in a cosmological cube of co-moving side, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math> Mpc/h. The code MUSIC [<a href="#B65-galaxies-07-00081" class="html-bibr">65</a>] was used to generate the particle distribution and the Pynbody package [<a href="#B72-galaxies-07-00081" class="html-bibr">72</a>] to create the image.</p> "> Figure 3
<p>Emergence of the cosmic web. <span class="html-italic">Left:</span> evolution of the (projected) dark matter density field in a slab of length <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> Mpc/h and thickness 15 Mpc/h from the Millennium-II simulation [<a href="#B77-galaxies-07-00081" class="html-bibr">77</a>]. The redshift corresponding to each snapshot is shown on the top right. <span class="html-italic">Right:</span> The dimensionless dark matter power spectrum (solid lines) at the redshifts shown on the left. For comparison, also shown are: the linear power spectrum (thin grey lines) and the non-linear power spectrum for the lower resolution but larger scale (500 Mpc/h) Millennium I simulation (in dotted lines; [<a href="#B4-galaxies-07-00081" class="html-bibr">4</a>]). The dashed lines show the Poisson noise limit for the Millennium I (left) and Millennium-II (right) simulations. Figure adapted from [<a href="#B77-galaxies-07-00081" class="html-bibr">77</a>]<a href="#fn018-galaxies-07-00081" class="html-fn">18</a>.</p> "> Figure 4
<p>The galaxy distribution in various redshift surveys and in mock catalogues constructed from the Millennium simulation [<a href="#B4-galaxies-07-00081" class="html-bibr">4</a>]. The small slice at the top shows the CfA2 “Great Wall” [<a href="#B81-galaxies-07-00081" class="html-bibr">81</a>], with the Coma cluster at the center. Just above is a section of the Sloan Digital Sky Survey in which the “Sloan Great Wall” [<a href="#B82-galaxies-07-00081" class="html-bibr">82</a>] is visible. The wedge on the left shows one half of the 2-degree-field galaxy redshift survey [<a href="#B83-galaxies-07-00081" class="html-bibr">83</a>]. At the bottom and on the right, mock galaxy surveys constructed using a semi-analytic model applied to the simulation [<a href="#B84-galaxies-07-00081" class="html-bibr">84</a>] are shown, selected to have geometry and magnitude limits matching the corresponding real surveys. Adapted from [<a href="#B85-galaxies-07-00081" class="html-bibr">85</a>].</p> "> Figure 5
<p>Halo mass function for different dark matter models (adapted from [<a href="#B20-galaxies-07-00081" class="html-bibr">20</a>]). <span class="html-italic">Left:</span> The large-scale dark matter distribution in a slab of a 64 Mpc/h cube in different cosmologies: CDM and WDM in the top left and bottom right, respectively; two interacting dark matter models in the other two panels. <span class="html-italic">Right:</span> The halo mass function at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for the models on the left. The transparent light blue region marks the resolution limit of the simulations. The cutoff in the primordial linear power spectrum of the non-CDM models results in a lower abundance of low-mass haloes, visible in the panels on the left and quantified in the halo mass function on the right.</p> "> Figure 6
<p>The structure of CDM haloes. The different panels show several characteristics of the spatial (left) and dynamical (right) structure of a Milky Way-size CDM halo (<math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mn>200</mn> </msub> <mo>∼</mo> <mn>1</mn> <mo>.</mo> <mn>8</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>12</mn> </msup> </mrow> </semantics></math> M<math display="inline"><semantics> <msub> <mrow/> <mo>⊙</mo> </msub> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>200</mn> </msub> <mo>∼</mo> <mn>250</mn> </mrow> </semantics></math> kpc) from the Aquarius project [<a href="#B138-galaxies-07-00081" class="html-bibr">138</a>]. The top panels show the spherically averaged radial density (left; [<a href="#B138-galaxies-07-00081" class="html-bibr">138</a>]<a href="#fn021-galaxies-07-00081" class="html-fn">21</a>) and velocity dispersion (right; [<a href="#B121-galaxies-07-00081" class="html-bibr">121</a>]<a href="#fn022-galaxies-07-00081" class="html-fn">22</a>) profiles, which are nearly universal for haloes in dynamical equilibrium. The bottom panels show the halo shape (left: moment of inertia axis ratios, and triaxiality: <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>−</mo> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> <mo>−</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </semantics></math>; [<a href="#B139-galaxies-07-00081" class="html-bibr">139</a>]<a href="#fn023-galaxies-07-00081" class="html-fn">23</a>) and local dark matter velocity distribution near the solar circle: <math display="inline"><semantics> <mrow> <mn>2</mn> <mspace width="3.33333pt"/> <mi>kpc</mi> <mo><</mo> <mi>r</mi> <mo><</mo> <mn>9</mn> <mspace width="3.33333pt"/> <mrow/> <mspace width="3.33333pt"/> <mi>kpc</mi> </mrow> </semantics></math> (right; [<a href="#B140-galaxies-07-00081" class="html-bibr">140</a>]<a href="#fn024-galaxies-07-00081" class="html-fn">24</a>).</p> "> Figure 7
<p>Structure of haloes in models with different types of dark matter: collisional (SIDM; <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mi>T</mi> </msub> <mo>/</mo> <msub> <mi>m</mi> <mi>χ</mi> </msub> <mo>≳</mo> <mn>1</mn> </mrow> </semantics></math> cm<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>/g) and with a galactic-scale free-streaming cutoff (WDM; <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>χ</mi> </msub> <mo>∼</mo> <mn>2</mn> <mo>.</mo> <mn>3</mn> </mrow> </semantics></math> keV). <span class="html-italic">Upper panels:</span> projected dark matter distribution of a Milky Way-size halo in the SIDM model (left panel; [<a href="#B57-galaxies-07-00081" class="html-bibr">57</a>]<a href="#fn026-galaxies-07-00081" class="html-fn">26</a>) and in the WDM model (right panel; [<a href="#B153-galaxies-07-00081" class="html-bibr">153</a>]<a href="#fn027-galaxies-07-00081" class="html-fn">27</a>). <span class="html-italic">Bottom left:</span> spherically averaged density profiles. WDM haloes are well described by an NFW profile, but have lower concentrations than their CDM counterparts of the same mass; SIDM haloes develop flat density cores during a transient stage that inevitably ends with the collapse of the core once the gravothermal catastrophe is triggered. <span class="html-italic">Bottom right:</span> spherically averaged velocity dispersion profiles. WDM haloes still obey the universal scaling for the pseudo-phase-space density, <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>/</mo> <msup> <mi>σ</mi> <mn>3</mn> </msup> <mo>∝</mo> <msup> <mi>r</mi> <mrow> <mo>−</mo> <mn>1</mn> <mo>.</mo> <mn>875</mn> </mrow> </msup> </mrow> </semantics></math>, at most radii, except in the very center, which results from a similar velocity dispersion profile to that in CDM but shifted downwards and to the right as a result of the lower concentration. SIDM haloes develop isothermal density cores of size of the order of the scale radius.</p> "> Figure 8
<p>Dark matter subhaloes. <span class="html-italic">Left:</span> schematic representation of a dark matter halo <span class="html-italic">merger tree</span> (taken from [<a href="#B176-galaxies-07-00081" class="html-bibr">176</a>]<a href="#fn030-galaxies-07-00081" class="html-fn">30</a>) at discrete redshifts. In a hierarchical model, haloes grow by the accretion of smaller neighboring haloes (A,B,C,D), which become subhaloes at the time when they first cross the virial radius of the host halo. The main branch of the tree represents the evolution of the main progenitor (shown in blue). Since this process occurs across the entire hierarchy of structures, there are subhaloes within subhaloes (sub-subhaloes; like a, b, c in system D) and so on. <span class="html-italic">Right:</span> a simulated Milky Way-size CDM halo from the Aquarius project (figure taken from [<a href="#B138-galaxies-07-00081" class="html-bibr">138</a>]<a href="#fn031-galaxies-07-00081" class="html-fn">31</a>; this is the same halo illustrated in <a href="#galaxies-07-00081-f006" class="html-fig">Figure 6</a>). The circles in the main image mark six subhaloes that are shown enlarged in the surrounding panels, as indicated by the labels. Sub-subhaloes are clearly visible (corresponding to the configuration illustrated in the last step, <math display="inline"><semantics> <msub> <mi>z</mi> <mn>0</mn> </msub> </semantics></math>, in the left panel). The bottom row shows several generations of sub-subhaloes contained within subhalo f.</p> "> Figure 9
<p>Initial conditions for the orbits of subhaloes infalling into haloes of present-day mass <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mn>200</mn> </msub> <mo>=</mo> <msup> <mn>10</mn> <mn>12</mn> </msup> </mrow> </semantics></math> M<math display="inline"><semantics> <msub> <mrow/> <mo>⊙</mo> </msub> </semantics></math> (figures taken from [<a href="#B186-galaxies-07-00081" class="html-bibr">186</a>]<a href="#fn033-galaxies-07-00081" class="html-fn">33</a>; see that paper for similar plots for other host masses). <span class="html-italic">Upper left:</span> the distribution of <span class="html-italic">formation redshifts</span> (defined as the redshift at which the mass of the main progenitor of the halo was half its present value). These and the other histograms in this figure are normalized such that the integral over the distribution is unity. <span class="html-italic">Lower left</span>: distribution of infall (accretion) redshifts of subhaloes of different mass ratios, <math display="inline"><semantics> <mi>ξ</mi> </semantics></math> (relative to the host halo at the time of accretion; see legend). <span class="html-italic">Middle:</span> distributions of radial (upper panel) and tangential (lower panel) subhalo orbital velocities at infall, relative to the virial velocity of the host, for the same halo mass and subhalo-to-halo mass ratios as in the lower-left panel. <span class="html-italic">Right:</span> bivariate distribution of orbital parameters for infalling haloes into hosts of mass <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mn>200</mn> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>=</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mn>10</mn> <mn>13</mn> </msup> </mrow> </semantics></math> M<math display="inline"><semantics> <msub> <mrow/> <mo>⊙</mo> </msub> </semantics></math>.</p> "> Figure 10
<p><b>Left:</b> Distribution in the 2D radial phase-space plane of subhaloes identified in a Milky Way-size halo simulation (Via Lactea II [<a href="#B188-galaxies-07-00081" class="html-bibr">188</a>]; figure adapted from [<a href="#B189-galaxies-07-00081" class="html-bibr">189</a>]<a href="#fn035-galaxies-07-00081" class="html-fn">35</a>). Subhaloes are color-coded according to their infall time (measured from <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>). Subhaloes that are just being accreted are radially infalling, while those that were accreted earlier and have completed many orbits lose energy through dynamical friction and sink towards the halo center. <b>Right:</b> the 2D radial phase-space structure of simulation particles in a different Milky Way-size halo simulation (Aquarius [<a href="#B138-galaxies-07-00081" class="html-bibr">138</a>]; figure adapted from [<a href="#B190-galaxies-07-00081" class="html-bibr">190</a>]<a href="#fn036-galaxies-07-00081" class="html-fn">36</a>). Each particle is color-coded according to the number of caustics it passes (roughly proportional to the number of orbits executed by a given particle). The top panel includes bound subhaloes, while the bottom one does not. In the latter, tidal streams from disrupted subhaloes are more clearly visible.</p> "> Figure 11
<p>Tidal effects in subhaloes. <b>Left:</b> evolution of a subhalo in a circular orbit in a static host halo potential. Since the tidal field strength is constant, the subhalo gradually loses mass (red particles are bound to the subhalo, black particles are unbound) as it orbits in the host halo creating characteristic tidal streams (figure adapted from [<a href="#B208-galaxies-07-00081" class="html-bibr">208</a>]<a href="#fn040-galaxies-07-00081" class="html-fn">40</a>). <b>Right:</b> the effect of tidal shocks. For nearly radial orbits, the variations in the potential near pericentre are rapid (relative to the internal dynamical timescale of the subhalo) and this leads to an impulsive <span class="html-italic">tidal shock</span>, which causes a drastic removal of mass (upper right) and a change in the dark matter distribution (bottom right). In the upper panel the fraction of stripped mass as a function of circularity (see <a href="#sec3dot2-galaxies-07-00081" class="html-sec">Section 3.2</a>), given by the impulsive approximation, is compared with that in a controlled simulation (figure adapted from [<a href="#B209-galaxies-07-00081" class="html-bibr">209</a>]<a href="#fn041-galaxies-07-00081" class="html-fn">41</a>). The model works quite well for radial orbits but it fails for circular orbits (as in the left panel), for which an adiabatic model is more appropriate (Equation (<a href="#FD14-galaxies-07-00081" class="html-disp-formula">14</a>)). In the lower panel, tidal shocking is seen to reduce the mass in the central regions but preserves the asymptotic NFW behavior, while the outer regions become considerably steeper than NFW (figure adapted from [<a href="#B215-galaxies-07-00081" class="html-bibr">215</a>]<a href="#fn042-galaxies-07-00081" class="html-fn">42</a>).</p> "> Figure 12
<p>Dynamical friction experienced by subhaloes. <b>Left:</b> simulation of a subhalo orbiting a Milky Way-size halo; the initial mass ratio and circularity of the orbit are 0.1 and 0.5, respectively. The images show the projected over- (or under-) density relative to the initial value at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, at different times during the evolution. The thick solid line marks the subhalo orbit, which decays over time due to dynamical friction. This gravitational process induces a wake in the host halo trailing behind the satellite (most clearly visible in the top left panel). The dipole feature at the center of the host is caused by the tidal effect of the subhalo, which perturbs the position of the halo potential minimum. This effect diminishes with time as the satellite is stripped of mass (figure adapted from [<a href="#B217-galaxies-07-00081" class="html-bibr">217</a>]<a href="#fn043-galaxies-07-00081" class="html-fn">43</a>). <b>Right:</b> evolution of the radial distance of a simulated subhalo orbiting a Milky Way-size halo (figure taken from [<a href="#B218-galaxies-07-00081" class="html-bibr">218</a>]<a href="#fn044-galaxies-07-00081" class="html-fn">44</a>). The orbit decays by dynamical friction on a timescale that strongly depends on the initial mass ratio (different colors) and circularity of the orbit (dashed and solid lines). The timescales are well approximated by the fitting formula (Equation (<a href="#FD18-galaxies-07-00081" class="html-disp-formula">18</a>)), which is an improvement over the classical Chandrasekhar formula (Equation (<a href="#FD17-galaxies-07-00081" class="html-disp-formula">17</a>)).</p> "> Figure 13
<p>Subhalo abundance. <b>Left:</b> the subhalo velocity function at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for haloes of different maximum circular velocity, from ∼150 km/s to ∼1000 km/s (bottom to top). In terms of the velocity ratio, <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <msub> <mi>V</mi> <mi>sub</mi> </msub> <mo>/</mo> <msub> <mi>V</mi> <mi>h</mi> </msub> </mrow> </semantics></math>, the velocity function is nearly universal, scaling as <math display="inline"><semantics> <msup> <mi>x</mi> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math> (dashed line) with a scale-dependent normalization (see Equation (<a href="#FD20-galaxies-07-00081" class="html-disp-formula">20</a>); figure adapted from [<a href="#B223-galaxies-07-00081" class="html-bibr">223</a>]<a href="#fn048-galaxies-07-00081" class="html-fn">48</a>). <b>Right:</b> the number density of subhaloes as a function of halocentric distance in units of the virial radius for Milky Way-size haloes (triangles) and cluster-size haloes (circles). All subhaloes with <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>sub</mi> </msub> <mo>/</mo> <msub> <mi>M</mi> <mi>h</mi> </msub> <mo>></mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> </mrow> </semantics></math> have been included. The dashed lines are the average NFW fits to the density profiles of the hosts. These functions have been normalized to unity at the virial radius. Figure adapted from [<a href="#B224-galaxies-07-00081" class="html-bibr">224</a>].</p> "> Figure 14
<p>The inner structure of subhaloes. <span class="html-italic">Left:</span> spherically averaged density profile of subhaloes (which is remarkably similar to that of isolated haloes). The plot shows the density profile of a Milky Way-size halo (solid black line) and eight of its largest subhaloes (color lines). The vertical dotted line marks the radius beyond which the simulation results are converged. The self-similarity in the central region is better appreciated in the inset where the density and radius are scaled to their values at the scale radius, <math display="inline"><semantics> <msub> <mi>r</mi> <mi>s</mi> </msub> </semantics></math>. The figure is for the Via Lactea II simulation and is adapted from [<a href="#B188-galaxies-07-00081" class="html-bibr">188</a>]. <span class="html-italic">Upper right:</span> mean relation between the maximum circular velocity, <math display="inline"><semantics> <msub> <mi>V</mi> <mi>max</mi> </msub> </semantics></math>, and the radius at which it is achieved, <math display="inline"><semantics> <msub> <mi>r</mi> <mi>max</mi> </msub> </semantics></math>, for subhaloes within <math display="inline"><semantics> <msub> <mi>r</mi> <mn>50</mn> </msub> </semantics></math> (the radius within which the mean enclosed density is 50 times the critical density) of one the Milky Way-size halo simulations in the Aquarius project, at different resolution levels (color lines). The red dashed lines show the scatter (<math display="inline"><semantics> <mrow> <mn>68</mn> <mo>%</mo> </mrow> </semantics></math> of the distribution) for the highest resolution level. The dotted line is a fit to the mean relation for subhaloes and lies systematically below the equivalent line for isolated haloes (solid line). <span class="html-italic">Lower right</span>: a measure of concentration for subhaloes (see Equation (<a href="#FD24-galaxies-07-00081" class="html-disp-formula">24</a>)) within different radial ranges, as given in the legend. The solid line corresponds to isolated haloes. Figures adapted from [<a href="#B138-galaxies-07-00081" class="html-bibr">138</a>]<a href="#fn051-galaxies-07-00081" class="html-fn">51</a>.</p> ">
Abstract
:Contents | |
1 Introduction | 2 |
2 Formation of Dark Matter Haloes | 3 |
2.1 Initial Conditions: The Primordial Power Spectrum in the Linear Regime | 3 |
2.2 The Non-Linear Regime: N-Body Simulation Methods | 5 |
2.3 The Non-Linear Regime: Initial Conditions and The Emergence of the CosmicWeb | 7 |
2.4 The Structural Properties of Dark Matter Haloes | 11 |
3 Halo Mergers and the Emergence of Subhaloes | 18 |
3.1 Halo Mass Assembly: Smooth Accretion vs Mergers | 18 |
3.2 Evolution of Subhaloes: Initial Conditions | 19 |
3.3 Dynamics of Subhaloes | 21 |
3.4 The Abundance, Spatial Distribution and Internal Structure of Dark Matter Subhaloes | 28 |
3.5 The Impact of the Nature of the Dark Matter | 32 |
4 Outlook | 33 |
4.1 The Impact of Baryonic Physics on Dark Matter Structure | 34 |
4.2 Astrophysical Tests of the Nature of the Dark Matter | 36 |
References | 39 |
1. Introduction
2. Formation of Dark Matter Haloes
2.1. Initial Conditions: The Primordial Power Spectrum in the Linear Regime
2.2. The Non-Linear Regime: N-Body Simulation Methods
2.3. The Non-Linear Regime: Initial Conditions and The Emergence of the Cosmic Web
- (i)
- create a realization of an unperturbed cube of side L by distributing N particles homogeneously in a lattice or in a glass-like configuration15 to avoid imprinting a grid-like pattern in the simulation.
- (ii)
- perturbations of wavelength down to the Nyquist frequency of the particle distribution are represented by plane waves of spatial frequency in Fourier space, , whose amplitudes and phases are drawn at random from a Gaussian distribution with variance proportional to the desired linear power spectrum. The density field and its gravitational potential in real space are then obtained by an inverse Fourier transform. Using the Zel’dovich approximation [70], or the more accurate second-order Lagrangian perturbation theory (e.g., [71]), these fields are used to compute the displacements needed to transform the uniform N-particle distribution in part (i) into a distribution that has the desired power spectrum.
2.4. The Structural Properties of Dark Matter Haloes
3. Halo Mergers and the Emergence of Subhaloes
3.1. Halo Mass Assembly: Smooth Accretion vs Mergers
3.2. Evolution of Subhaloes: Initial Conditions
3.3. Dynamics of Subhaloes
3.4. The Abundance, Spatial Distribution and Internal Structure of Dark Matter Subhaloes
3.5. The Impact of the Nature of the Dark Matter
4. Outlook
4.1. The Impact of Baryonic Physics on Dark Matter Structure
4.2. Astrophysical Tests of the Nature of the Dark Matter
Funding
Acknowledgments
Conflicts of Interest
References
- Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. arXiv 2018, arXiv:1807.06209. [Google Scholar]
- Walker, M.G.; Mateo, M.; Olszewski, E.W.; Peñarrubia, J.; Evans, N.W.; Gilmore, G. A Universal Mass Profile for Dwarf Spheroidal Galaxies? Astrophys. J. 2009, 704, 1274–1287. [Google Scholar] [CrossRef]
- Łokas, E.L.; Mamon, G.A. Dark matter distribution in the Coma cluster from galaxy kinematics: Breaking the mass-anisotropy degeneracy. Mon. Not. R. Astron. Soc. 2003, 343, 401–412. [Google Scholar]
- Springel, V.; White, S.D.M.; Jenkins, A.; Frenk, C.S.; Yoshida, N.; Gao, L.; Navarro, J.; Thacker, R.; Croton, D.; Helly, J.; et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 2005, 435, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Linde, A.D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Kahlhoefer, F. Review of LHC dark matter searches. Int. J. Mod. Phys. A 2017, 32, 1730006. [Google Scholar] [CrossRef]
- Xenon Collaboration. Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Phys. Rev. Lett. 2018, 121, 111302. [Google Scholar] [CrossRef] [Green Version]
- ADMX Collaboration. Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment. Phys. Rev. Lett. 2018, 120, 151301. [Google Scholar] [CrossRef] [Green Version]
- Fermi-LAT Collaboration; DES Collaboration. Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-Lat. Astrophys. J. 2017, 834, 110. [Google Scholar] [CrossRef]
- Horiuchi, S.; Humphrey, P.J.; Oñorbe, J.; Abazajian, K.N.; Kaplinghat, M.; Garrison-Kimmel, S. Sterile neutrino dark matter bounds from galaxies of the Local Group. Phys. Rev. D 2014, 89, 025017. [Google Scholar] [CrossRef]
- Gondolo, P.; Gelmini, G. Cosmic abundances of stable particles: Improved analysis. Nucl. Phys. B 1991, 360, 145–179. [Google Scholar] [CrossRef]
- Jungman, G.; Kamionkowski, M.; Griest, K. Supersymmetric dark matter. Phys. Rep. 1996, 267, 195–373. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.; Efstathiou, G.; Frenk, C.S.; White, S.D.M. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 1985, 292, 371–394. [Google Scholar] [CrossRef]
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the invisible axion. Phys. Lett. B 1983, 120, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Boyarsky, A.; Drewes, M.; Lasserre, T.; Mertens, S.; Ruchayskiy, O. Sterile Neutrino Dark Matter. arXiv 2018, arXiv:1807.07938. [Google Scholar] [CrossRef]
- Hui, L.; Ostriker, J.P.; Tremaine, S.; Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 2017, 95, 043541. [Google Scholar] [CrossRef] [Green Version]
- Tulin, S.; Yu, H.B. Dark matter self-interactions and small scale structure. Phys. Rep. 2018, 730, 1–57. [Google Scholar] [CrossRef] [Green Version]
- Zurek, K.M. Asymmetric Dark Matter: Theories, signatures, and constraints. Phys. Rep. 2014, 537, 91–121. [Google Scholar] [CrossRef] [Green Version]
- Buckley, M.R.; Zavala, J.; Cyr-Racine, F.Y.; Sigurdson, K.; Vogelsberger, M. Scattering, damping, and acoustic oscillations: Simulating the structure of dark matter halos with relativistic force carriers. Phys. Rev. D 2014, 90, 043524. [Google Scholar] [CrossRef]
- Cyr-Racine, F.Y.; Sigurdson, K.; Zavala, J.; Bringmann, T.; Vogelsberger, M.; Pfrommer, C. ETHOS: An effective theory of structure formation: From dark particle physics to the matter distribution of the Universe. Phys. Rev. D 2016, 93, 123527. [Google Scholar] [CrossRef]
- Meszaros, P. The behaviour of point masses in an expanding cosmological substratum. Astron. Astrophys. 1974, 37, 225–228. [Google Scholar]
- Green, A.M.; Hofmann, S.; Schwarz, D.J. The first WIMPy halos. J. Cosm. Part. Phys. 2005, 8, 3. [Google Scholar] [CrossRef]
- Bringmann, T. Particle models and the small-scale structure of dark matter. New J. Phys. 2009, 11, 105027. [Google Scholar] [CrossRef]
- Bœhm, C.; Riazuelo, A.; Hansen, S.H.; Schaeffer, R. Interacting dark matter disguised as warm dark matter. Phys. Rev. D 2002, 66, 083505. [Google Scholar] [CrossRef]
- Bœhm, C.; Schewtschenko, J.A.; Wilkinson, R.J.; Baugh, C.M.; Pascoli, S. Using the Milky Way satellites to study interactions between cold dark matter and radiation. Mon. Not. R. Astron. Soc. 2014, 445, L31–L35. [Google Scholar] [CrossRef] [Green Version]
- Loeb, A.; Zaldarriaga, M. Small-scale power spectrum of cold dark matter. Phys. Rev. D 2005, 71, 103520. [Google Scholar] [CrossRef]
- Viel, M.; Becker, G.D.; Bolton, J.S.; Haehnelt, M.G. Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data. Phys. Rev. D 2013, 88, 043502. [Google Scholar] [CrossRef]
- Schive, H.Y.; Chiueh, T.; Broadhurst, T.; Huang, K.W. Contrasting Galaxy Formation from Quantum Wave Dark Matter, ψDM, with ΛCDM, using Planck and Hubble Data. Astrophys. J. 2016, 818, 89. [Google Scholar] [CrossRef]
- Cole, S.; Percival, W.J.; Peacock, J.A.; Norberg, P.; Baugh, C.M.; Frenk, C.S.; Baldry, I.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; et al. The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final data set and cosmological implications. Mon. Not. R. Astron. Soc. 2005, 362, 505–534. [Google Scholar] [CrossRef]
- Percival, W.J.; Nichol, R.C.; Eisenstein, D.J.; Frieman, J.A.; Fukugita, M.; Loveday, J.; Pope, A.C.; Schneider, D.P.; Szalay, A.S.; Tegmark, M.; et al. The Shape of the Sloan Digital Sky Survey Data Release 5 Galaxy Power Spectrum. Astrophys. J. 2007, 657, 645–663. [Google Scholar] [CrossRef] [Green Version]
- Zavala, J.; Lovell, M.R.; Vogelsberger, M.; Burger, J.D. The diverse dark matter density at sub-kiloparsec scales in Milky Way satellites:implications for the nature of dark matter. arXiv 2019, arXiv:1904.09998. [Google Scholar]
- Carroll, S.M.; Press, W.H.; Turner, E.L. The cosmological constant. Annu. Rev. Astron. Astrophys. 1992, 30, 499–542. [Google Scholar] [CrossRef]
- Baumann, D.; Nicolis, A.; Senatore, L.; Zaldarriaga, M. Cosmological non-linearities as an effective fluid. J. Cosmol. Astropart. Phys. 2012, 7, 51. [Google Scholar] [CrossRef]
- Carrasco, J.J.M.; Hertzberg, M.P.; Senatore, L. The effective field theory of cosmological large scale structures. J. High Energy Phys. 2012, 9, 82. [Google Scholar] [CrossRef]
- Gunn, J.E.; Gott, J.R., III. On the Infall of Matter Into Clusters of Galaxies and Some Effects on Their Evolution. Astrophys. J. 1972, 176, 1. [Google Scholar] [CrossRef]
- Sheth, R.K.; Mo, H.J.; Tormen, G. Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes. Mon. Not. R. Astron. Soc. 2001, 323, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cooray, A.; Sheth, R. Halo models of large scale structure. Phys. Rep. 2002, 372, 1–129. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.; Peebles, P.J.E. On the integration of the BBGKY equations for the development of strongly nonlinear clustering in an expanding universe. Astrophys. J. Suppl. 1977, 34, 425–450. [Google Scholar] [CrossRef]
- Smith, R.E.; Peacock, J.A.; Jenkins, A.; White, S.D.M.; Frenk, C.S.; Pearce, F.R.; Thomas, P.A.; Efstathiou, G.; Couchman, H.M.P. Stable clustering, the halo model and non-linear cosmological power spectra. Mon. Not. R. Astron. Soc. 2003, 341, 1311–1332. [Google Scholar] [CrossRef] [Green Version]
- Afshordi, N.; Mohayaee, R.; Bertschinger, E. Hierarchy in the phase space and dark matter astronomy. Phys. Rev. D 2010, 81, 101301. [Google Scholar] [CrossRef]
- Zavala, J.; Afshordi, N. Clustering in the phase space of dark matter haloes—II. Stable clustering and dark matter annihilation. Mon. Not. R. Astron. Soc. 2014, 441, 1329–1339. [Google Scholar] [CrossRef]
- Zavala, J.; Afshordi, N. Universal clustering of dark matter in phase space. Mon. Not. R. Astron. Soc. 2016, 457, 986–992. [Google Scholar] [CrossRef] [Green Version]
- Hahn, O.; Abel, T.; Kaehler, R. A new approach to simulating collisionless dark matter fluids. Mon. Not. R. Astron. Soc. 2013, 434, 1171–1191. [Google Scholar] [CrossRef] [Green Version]
- Angulo, R.E.; Hahn, O.; Abel, T. The warm dark matter halo mass function below the cut-off scale. Mon. Not. R. Astron. Soc. 2013, 434, 3337–3347. [Google Scholar] [CrossRef]
- Dehnen, W.; Read, J.I. N-body simulations of gravitational dynamics. Eur. Phys. J. Plus 2011, 126, 55. [Google Scholar] [CrossRef]
- Dehnen, W. Towards optimal softening in three-dimensional N-body codes—I. Minimizing the force error. Mon. Not. R. Astron. Soc. 2001, 324, 273–291. [Google Scholar] [CrossRef]
- Klypin, A.A.; Shandarin, S.F. Three-dimensional numerical model of the formation of large-scale structure in the Universe. Mon. Not. R. Astron. Soc. 1983, 204, 891–907. [Google Scholar] [CrossRef]
- Melott, A.L. Massive neutrinos in large-scale gravitational clustering. Astrophys. J. 1983, 264, 59–78. [Google Scholar] [CrossRef]
- Frenk, C.S.; White, S.D.M.; Davis, M. Nonlinear evolution of large-scale structure in the universe. Astrophys. J. 1983, 271, 417–430. [Google Scholar] [CrossRef]
- Hockney, R.W.; Eastwood, J.W. Computer Simulation Using Particles; CRC Press: Boca Raton, FL, USA, 1988. [Google Scholar]
- Efstathiou, G.; Eastwood, J.W. On the clustering of particles in an expanding universe. Mon. Not. R. Astron. Soc. 1981, 194, 503–525. [Google Scholar] [CrossRef]
- Barnes, J.; Hut, P. A hierarchical O(N log N) force-calculation algorithm. Nature 1986, 324, 446–449. [Google Scholar] [CrossRef]
- Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 2005, 364, 1105–1134. [Google Scholar] [CrossRef]
- Kochanek, C.S.; White, M. A Quantitative Study of Interacting Dark Matter in Halos. Astrophys. J. 2000, 543, 514–520. [Google Scholar] [CrossRef] [Green Version]
- Davé, R.; Spergel, D.N.; Steinhardt, P.J.; Wandelt, B.D. Halo Properties in Cosmological Simulations of Self-interacting Cold Dark Matter. Astrophys. J. 2001, 547, 574–589. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Zavala, J.; Loeb, A. Subhaloes in self-interacting galactic dark matter haloes. Mon. Not. R. Astron. Soc. 2012, 423, 3740–3752. [Google Scholar] [CrossRef] [Green Version]
- Rocha, M.; Peter, A.H.G.; Bullock, J.S.; Kaplinghat, M.; Garrison-Kimmel, S.; Oñorbe, J.; Moustakas, L.A. Cosmological simulations with self-interacting dark matter—I. Constant-density cores and substructure. Mon. Not. R. Astron. Soc. 2013, 430, 81–104. [Google Scholar] [CrossRef]
- Robertson, A.; Massey, R.; Eke, V. Cosmic particle colliders: Simulations of self-interacting dark matter with anisotropic scattering. Mon. Not. R. Astron. Soc. 2017, 467, 4719–4730. [Google Scholar] [CrossRef]
- Lynden-Bell, D.; Eggleton, P.P. On the consequences of the gravothermal catastrophe. Mon. Not. R. Astron. Soc. 1980, 191, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Koda, J.; Shapiro, P.R. Gravothermal collapse of isolated self-interacting dark matter haloes: N-body simulation versus the fluid model. Mon. Not. R. Astron. Soc. 2011, 415, 1125–1137. [Google Scholar] [CrossRef] [Green Version]
- Schive, H.Y.; Chiueh, T.; Broadhurst, T. Cosmic structure as the quantum interference of a coherent dark wave. Nat. Phys. 2014, 10, 496–499. [Google Scholar] [CrossRef]
- Mocz, P.; Vogelsberger, M.; Robles, V.H.; Zavala, J.; Boylan-Kolchin, M.; Fialkov, A.; Hernquist, L. Galaxy formation with BECDM—I. Turbulence and relaxation of idealized haloes. Mon. Not. R. Astron. Soc. 2017, 471, 4559–4570. [Google Scholar] [CrossRef] [PubMed]
- Efstathiou, G.; Davis, M.; White, S.D.M.; Frenk, C.S. Numerical techniques for large cosmological N-body simulations. Astrophys. J. Suppl. 1985, 57, 241–260. [Google Scholar] [CrossRef]
- Hahn, O.; Abel, T. Multi-scale initial conditions for cosmological simulations. Mon. Not. R. Astron. Soc. 2011, 415, 2101–2121. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, A. A new way of setting the phases for cosmological multiscale Gaussian initial conditions. Mon. Not. R. Astron. Soc. 2013, 434, 2094–2120. [Google Scholar] [CrossRef] [Green Version]
- Sirko, E. Initial Conditions to Cosmological N-Body Simulations, or, How to Run an Ensemble of Simulations. Astrophys. J. 2005, 634, 728–743. [Google Scholar] [CrossRef]
- Mo, H.; van den Bosch, F.C.; White, S. Galaxy Formation and Evolution; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- White, S.D.M. Formation and Evolution of Galaxies. In Cosmology and Large Scale Structure; Schaeffer, R., Silk, J., Spiro, M., Zinn-Justin, J., Eds.; Cambridge University Press: Cambridge, UK, 1996; p. 349. [Google Scholar]
- Zel’dovich, Y.B. Gravitational instability: An approximate theory for large density perturbations. Astron. Astrophys. 1970, 5, 84–89. [Google Scholar]
- Jenkins, A. Second-order Lagrangian perturbation theory initial conditions for resimulations. Mon. Not. R. Astron. Soc. 2010, 403, 1859–1872. [Google Scholar] [CrossRef] [Green Version]
- Pontzen, A.; Roškar, R.; Stinson, G.S.; Woods, R.; Reed, D.M.; Coles, J.; Quinn, T.R. Pynbody: Astrophysics Simulation Analysis for Python. Astrophysics Source Code Library. ascl:1305.002. 2013. Available online: https://pynbody.github.io/pynbody/#acknowledging-pynbody-in-scientific-publications (accessed on 24 September 2019).
- Smith, R.E.; Markovic, K. Testing the warm dark matter paradigm with large-scale structures. Phys. Rev. D 2011, 84, 063507. [Google Scholar] [CrossRef]
- Wang, J.; White, S.D.M. Discreteness effects in simulations of hot/warm dark matter. Mon. Not. R. Astron. Soc. 2007, 380, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Lovell, M.R.; Frenk, C.S.; Eke, V.R.; Jenkins, A.; Gao, L.; Theuns, T. The properties of warm dark matter haloes. Mon. Not. R. Astron. Soc. 2014, 439, 300–317. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, A.; Read, J.I.; Agertz, O.; Iannuzzi, F.; Power, C. NOVel Adaptive softening for collisionless N-body simulations: Eliminating spurious haloes. Mon. Not. R. Astron. Soc. 2016, 458, 468–479. [Google Scholar] [CrossRef]
- Boylan-Kolchin, M.; Springel, V.; White, S.D.M.; Jenkins, A.; Lemson, G. Resolving cosmic structure formation with the Millennium-II Simulation. Mon. Not. R. Astron. Soc. 2009, 398, 1150–1164. [Google Scholar] [CrossRef] [Green Version]
- Frenk, C.S.; White, S.D.M.; Davis, M.; Efstathiou, G. The formation of dark halos in a universe dominated by cold dark matter. Astrophys. J. 1988, 327, 507–525. [Google Scholar] [CrossRef]
- Kuhlen, M.; Vogelsberger, M.; Angulo, R. Numerical simulations of the dark universe: State of the art and the next decade. Phys. Dark Univ. 2012, 1, 50–93. [Google Scholar] [CrossRef] [Green Version]
- Potter, D.; Stadel, J.; Teyssier, R. PKDGRAV3: beyond trillion particle cosmological simulations for the next era of galaxy surveys. Comput. Astrophys. Cosmol. 2017, 4, 2. [Google Scholar] [CrossRef]
- Geller, M.J.; Huchra, J.P. Mapping the universe. Science 1989, 246, 897–903. [Google Scholar] [CrossRef]
- Gott, J.R., III; Jurić, M.; Schlegel, D.; Hoyle, F.; Vogeley, M.; Tegmark, M.; Bahcall, N.; Brinkmann, J. A Map of the Universe. Astrophys. J. 2005, 624, 463–484. [Google Scholar] [CrossRef]
- Colless, M.; Dalton, G.; Maddox, S.; Sutherland, W.; Norberg, P.; Cole, S.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Collins, C.; et al. The 2dF Galaxy Redshift Survey: Spectra and redshifts. Mon. Not. R. Astron. Soc. 2001, 328, 1039–1063. [Google Scholar] [CrossRef]
- Croton, D.J.; Springel, V.; White, S.D.M.; De Lucia, G.; Frenk, C.S.; Gao, L.; Jenkins, A.; Kauffmann, G.; Navarro, J.F.; Yoshida, N. The many lives of active galactic nuclei: Cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 2006, 365, 11–28. [Google Scholar] [CrossRef]
- Springel, V.; Frenk, C.S.; White, S.D.M. The large-scale structure of the Universe. Nature 2006, 440, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Bardeen, J.M.; Bond, J.R.; Kaiser, N.; Szalay, A.S. The statistics of peaks of Gaussian random fields. Astrophys. J. 1986, 304, 15–61. [Google Scholar] [CrossRef]
- White, S.D.M.; Frenk, C.S. Galaxy formation through hierarchical clustering. Astrophys. J. 1991, 379, 52–79. [Google Scholar] [CrossRef]
- Kauffmann, G.; Nusser, A.; Steinmetz, M. Galaxy formation and large-scale bias. Mon. Not. R. Astron. Soc. 1997, 286, 795–811. [Google Scholar] [CrossRef] [Green Version]
- Kauffmann, G.; Colberg, J.M.; Diaferio, A.; White, S.D.M. Clustering of galaxies in a hierarchical universe—I. Methods and results at z = 0. Mon. Not. R. Astron. Soc. 1999, 303, 188–206. [Google Scholar] [CrossRef]
- Benson, A.J.; Cole, S.; Frenk, C.S.; Baugh, C.M.; Lacey, C.G. The nature of galaxy bias and clustering. Mon. Not. R. Astron. Soc. 2000, 311, 793–808. [Google Scholar] [CrossRef] [Green Version]
- Springel, V.; White, S.D.M.; Tormen, G.; Kauffmann, G. Populating a cluster of galaxies—I. Results at [formmu2]z = 0. Mon. Not. R. Astron. Soc. 2001, 328, 726–750. [Google Scholar] [CrossRef]
- Lacey, C.G.; Baugh, C.M.; Frenk, C.S.; Benson, A.J.; Bower, R.G.; Cole, S.; Gonzalez-Perez, V.; Helly, J.C.; Lagos, C.D.P.; Mitchell, P.D. A unified multiwavelength model of galaxy formation. Mon. Not. R. Astron. Soc. 2016, 462, 3854–3911. [Google Scholar] [CrossRef]
- White, S.D.M.; Frenk, C.S.; Davis, M. Clustering in a neutrino-dominated universe. Astrophys. J. Lett. 1983, 274, L1–L5. [Google Scholar] [CrossRef]
- Angulo, R.E.; White, S.D.M. The birth and growth of neutralino haloes. Mon. Not. R. Astron. Soc. 2010, 401, 1796–1803. [Google Scholar] [CrossRef] [Green Version]
- Stücker, J.; Busch, P.; White, S.D.M. The median density of the Universe. Mon. Not. R. Astron. Soc. 2018, 477, 3230–3246. [Google Scholar] [CrossRef] [Green Version]
- White, M. The mass of a halo. Astron. Astrophys. 2001, 367, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Cuesta, A.J.; Prada, F.; Klypin, A.; Moles, M. The virialized mass of dark matter haloes. Mon. Not. R. Astron. Soc. 2008, 389, 385–397. [Google Scholar] [CrossRef] [Green Version]
- Cole, S.; Lacey, C. The structure of dark matter haloes in hierarchical clustering models. Mon. Not. R. Astron. Soc. 1996, 281, 716. [Google Scholar] [CrossRef]
- Eke, V.R.; Cole, S.; Frenk, C.S. Cluster evolution as a diagnostic for Omega. Mon. Not. R. Astron. Soc. 1996, 282, 263–280. [Google Scholar] [CrossRef]
- Bryan, G.L.; Norman, M.L. Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons. Astrophys. J. 1998, 495, 80–99. [Google Scholar] [CrossRef]
- Jenkins, A.; Frenk, C.S.; White, S.D.M.; Colberg, J.M.; Cole, S.; Evrard, A.E.; Couchman, H.M.P.; Yoshida, N. The mass function of dark matter haloes. Mon. Not. R. Astron. Soc. 2001, 321, 372–384. [Google Scholar] [CrossRef] [Green Version]
- Warren, M.S.; Abazajian, K.; Holz, D.E.; Teodoro, L. Precision Determination of the Mass Function of Dark Matter Halos. Astrophys. J. 2006, 646, 881–885. [Google Scholar] [CrossRef] [Green Version]
- Lukić, Z.; Heitmann, K.; Habib, S.; Bashinsky, S.; Ricker, P.M. The Halo Mass Function: High-Redshift Evolution and Universality. Astrophys. J. 2007, 671, 1160–1181. [Google Scholar] [CrossRef]
- Tinker, J.; Kravtsov, A.V.; Klypin, A.; Abazajian, K.; Warren, M.; Yepes, G.; Gottlöber, S.; Holz, D.E. Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality. Astrophys. J. 2008, 688, 709–728. [Google Scholar] [CrossRef]
- Trujillo-Gomez, S.; Klypin, A.; Primack, J.; Romanowsky, A.J. Galaxies in ΛCDM with Halo Abundance Matching: Luminosity-Velocity Relation, Baryonic Mass-Velocity Relation, Velocity Function, and Clustering. Astrophys. J. 2011, 742, 16. [Google Scholar] [CrossRef]
- Hellwing, W.A.; Frenk, C.S.; Cautun, M.; Bose, S.; Helly, J.; Jenkins, A.; Sawala, T.; Cytowski, M. The Copernicus Complexio: a high-resolution view of the small-scale Universe. Mon. Not. R. Astron. Soc. 2016, 457, 3492–3509. [Google Scholar] [CrossRef] [Green Version]
- Crain, R.A.; Theuns, T.; Dalla Vecchia, C.; Eke, V.R.; Frenk, C.S.; Jenkins, A.; Kay, S.T.; Peacock, J.A.; Pearce, F.R.; Schaye, J.; et al. Galaxies-intergalactic medium interaction calculation—I. Galaxy formation as a function of large-scale environment. Mon. Not. R. Astron. Soc. 2009, 399, 1773–1794. [Google Scholar] [CrossRef]
- Press, W.H.; Schechter, P. Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation. Astrophys. J. 1974, 187, 425–438. [Google Scholar] [CrossRef]
- Bond, J.R.; Cole, S.; Efstathiou, G.; Kaiser, N. Excursion set mass functions for hierarchical Gaussian fluctuations. Astrophys. J. 1991, 379, 440–460. [Google Scholar] [CrossRef]
- Bower, R.G. The evolution of groups of galaxies in the Press-Schechter formalism. Mon. Not. R. Astron. Soc. 1991, 248, 332–352. [Google Scholar] [CrossRef]
- Schneider, A.; Smith, R.E.; Reed, D. Halo mass function and the free streaming scale. Mon. Not. R. Astron. Soc. 2013, 433, 1573–1587. [Google Scholar] [CrossRef] [Green Version]
- Bose, S.; Hellwing, W.A.; Frenk, C.S.; Jenkins, A.; Lovell, M.R.; Helly, J.C.; Li, B. The Copernicus Complexio: Statistical properties of warm dark matter haloes. Mon. Not. R. Astron. Soc. 2016, 455, 318–333. [Google Scholar] [CrossRef]
- Schewtschenko, J.A.; Wilkinson, R.J.; Baugh, C.M.; Bœhm, C.; Pascoli, S. Dark matter-radiation interactions: The impact on dark matter haloes. Mon. Not. R. Astron. Soc. 2015, 449, 3587–3596. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Zavala, J.; Cyr-Racine, F.Y.; Pfrommer, C.; Bringmann, T.; Sigurdson, K. ETHOS—An effective theory of structure formation: Dark matter physics as a possible explanation of the small-scale CDM problems. Mon. Not. R. Astron. Soc. 2016, 460, 1399–1416. [Google Scholar] [CrossRef]
- Benson, A.J.; Farahi, A.; Cole, S.; Moustakas, L.A.; Jenkins, A.; Lovell, M.; Kennedy, R.; Helly, J.; Frenk, C. Dark matter halo merger histories beyond cold dark matter—I. Methods and application to warm dark matter. Mon. Not. R. Astron. Soc. 2013, 428, 1774–1789. [Google Scholar] [CrossRef]
- Leo, M.; Baugh, C.M.; Li, B.; Pascoli, S. A new smooth-k space filter approach to calculate halo abundances. J. Cosmol. Astropart. Phys. 2018, 4, 010. [Google Scholar] [CrossRef]
- Sameie, O.; Benson, A.J.; Sales, L.V.; Yu, H.B.; Moustakas, L.A.; Creasey, P. The effect of dark matter-dark radiation interactions on halo abundance—A Press-Schechter approach. arXiv 2018, arXiv:1810.11040. [Google Scholar] [CrossRef]
- Cyr-Racine, F.Y.; Sigurdson, K. Cosmology of atomic dark matter. Phys. Rev. D 2013, 87, 103515. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. The Structure of Cold Dark Matter Halos. Astrophys. J. 1996, 462, 563. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal Density Profile from Hierarchical Clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- Navarro, J.F.; Ludlow, A.; Springel, V.; Wang, J.; Vogelsberger, M.; White, S.D.M.; Jenkins, A.; Frenk, C.S.; Helmi, A. The diversity and similarity of simulated cold dark matter haloes. Mon. Not. R. Astron. Soc. 2010, 402, 21–34. [Google Scholar] [CrossRef]
- Anderhalden, D.; Diemand, J. Density profiles of CDM microhalos and their implications for annihilation boost factors. J. Cosmol. Astropart. Phys. 2013, 4, 009. [Google Scholar] [CrossRef]
- Ishiyama, T. Hierarchical Formation of Dark Matter Halos and the Free Streaming Scale. Astrophys. J. 2014, 788, 27. [Google Scholar] [CrossRef]
- Angulo, R.E.; Hahn, O.; Ludlow, A.D.; Bonoli, S. Earth-mass haloes and the emergence of NFW density profiles. Mon. Not. R. Astron. Soc. 2017, 471, 4687–4701. [Google Scholar] [CrossRef] [Green Version]
- Delos, M.S.; Erickcek, A.L.; Bailey, A.P.; Alvarez, M.A. Density profiles of ultracompact minihalos: Implications for constraining the primordial power spectrum. Phys. Rev. D 2018, 98, 063527. [Google Scholar] [CrossRef] [Green Version]
- Bullock, J.S.; Kolatt, T.S.; Sigad, Y.; Somerville, R.S.; Kravtsov, A.V.; Klypin, A.A.; Primack, J.R.; Dekel, A. Profiles of dark haloes: Evolution, scatter and environment. Mon. Not. R. Astron. Soc. 2001, 321, 559–575. [Google Scholar] [CrossRef]
- Eke, V.R.; Navarro, J.F.; Steinmetz, M. The Power Spectrum Dependence of Dark Matter Halo Concentrations. Astrophys. J. 2001, 554, 114–125. [Google Scholar] [CrossRef]
- Wechsler, R.H.; Bullock, J.S.; Primack, J.R.; Kravtsov, A.V.; Dekel, A. Concentrations of Dark Halos from Their Assembly Histories. Astrophys. J. 2002, 568, 52–70. [Google Scholar] [CrossRef] [Green Version]
- Neto, A.F.; Gao, L.; Bett, P.; Cole, S.; Navarro, J.F.; Frenk, C.S.; White, S.D.M.; Springel, V.; Jenkins, A. The statistics of Λ CDM halo concentrations. Mon. Not. R. Astron. Soc. 2007, 381, 1450–1462. [Google Scholar] [CrossRef]
- Zhao, D.H.; Jing, Y.P.; Mo, H.J.; Börner, G. Accurate Universal Models for the Mass Accretion Histories and Concentrations of Dark Matter Halos. Astrophys. J. 2009, 707, 354–369. [Google Scholar] [CrossRef]
- Prada, F.; Klypin, A.A.; Cuesta, A.J.; Betancort-Rijo, J.E.; Primack, J. Halo concentrations in the standard Λ cold dark matter cosmology. Mon. Not. R. Astron. Soc. 2012, 423, 3018–3030. [Google Scholar] [CrossRef]
- Ludlow, A.D.; Navarro, J.F.; Angulo, R.E.; Boylan-Kolchin, M.; Springel, V.; Frenk, C.; White, S.D.M. The mass-concentration-redshift relation of cold dark matter haloes. Mon. Not. R. Astron. Soc. 2014, 441, 378–388. [Google Scholar] [CrossRef]
- Sánchez-Conde, M.A.; Prada, F. The flattening of the concentration-mass relation towards low halo masses and its implications for the annihilation signal boost. Mon. Not. R. Astron. Soc. 2014, 442, 2271–2277. [Google Scholar] [CrossRef]
- Diemer, B.; Kravtsov, A.V. A Universal Model for Halo Concentrations. Astrophys. J. 2015, 799, 108. [Google Scholar] [CrossRef]
- Klypin, A.; Yepes, G.; Gottlöber, S.; Prada, F.; Heß, S. MultiDark simulations: The story of dark matter halo concentrations and density profiles. Mon. Not. R. Astron. Soc. 2016, 457, 4340–4359. [Google Scholar] [CrossRef]
- Pilipenko, S.V.; Sánchez-Conde, M.A.; Prada, F.; Yepes, G. Pushing down the low-mass halo concentration frontier with the Lomonosov cosmological simulations. Mon. Not. R. Astron. Soc. 2017, 472, 4918–4927. [Google Scholar] [CrossRef]
- Wang, J.; Navarro, J.F.; Frenk, C.S.; White, S.D.M.; Springel, V.; Jenkins, A.; Helmi, A.; Ludlow, A.; Vogelsberger, M. Assembly history and structure of galactic cold dark matter haloes. Mon. Not. R. Astron. Soc. 2011, 413, 1373–1382. [Google Scholar] [CrossRef] [Green Version]
- Springel, V.; Wang, J.; Vogelsberger, M.; Ludlow, A.; Jenkins, A.; Helmi, A.; Navarro, J.F.; Frenk, C.S.; White, S.D.M. The Aquarius Project: The subhaloes of galactic haloes. Mon. Not. R. Astron. Soc. 2008, 391, 1685–1711. [Google Scholar] [CrossRef]
- Vera-Ciro, C.A.; Sales, L.V.; Helmi, A.; Frenk, C.S.; Navarro, J.F.; Springel, V.; Vogelsberger, M.; White, S.D.M. The shape of dark matter haloes in the Aquarius simulations: Evolution and memory. Mon. Not. R. Astron. Soc. 2011, 416, 1377–1391. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Helmi, A.; Springel, V.; White, S.D.M.; Wang, J.; Frenk, C.S.; Jenkins, A.; Ludlow, A.; Navarro, J.F. Phase-space structure in the local dark matter distribution and its signature in direct detection experiments. Mon. Not. R. Astron. Soc. 2009, 395, 797–811. [Google Scholar] [CrossRef]
- Binney, J.; Tremaine, S. Galactic Dynamics: Second Edition; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Ludlow, A.D.; Navarro, J.F.; White, S.D.M.; Boylan-Kolchin, M.; Springel, V.; Jenkins, A.; Frenk, C.S. The density and pseudo-phase-space density profiles of cold dark matter haloes. Mon. Not. R. Astron. Soc. 2011, 415, 3895–3902. [Google Scholar] [CrossRef]
- Hansen, S.H.; Moore, B. A universal density slope Velocity anisotropy relation for relaxed structures. New Astron. 2006, 11, 333–338. [Google Scholar] [CrossRef]
- Taylor, J.E.; Navarro, J.F. The Phase-Space Density Profiles of Cold Dark Matter Halos. Astrophys. J. 2001, 563, 483–488. [Google Scholar] [CrossRef]
- Bertschinger, E. Self-similar secondary infall and accretion in an Einstein-de Sitter universe. Astrophys. J. Suppl. 1985, 58, 39–65. [Google Scholar] [CrossRef]
- Eddington, A.S. The distribution of stars in globular clusters. Mon. Not. R. Astron. Soc. 1916, 76, 572–585. [Google Scholar] [CrossRef]
- Jing, Y.P.; Suto, Y. Triaxial Modeling of Halo Density Profiles with High-Resolution N-Body Simulations. Astrophys. J. 2002, 574, 538–553. [Google Scholar] [CrossRef]
- Hayashi, E.; Navarro, J.F.; Springel, V. The shape of the gravitational potential in cold dark matter haloes. Mon. Not. R. Astron. Soc. 2007, 377, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Ganeshaiah Veena, P.; Cautun, M.; van de Weygaert, R.; Tempel, E.; Jones, B.J.T.; Rieder, S.; Frenk, C.S. The Cosmic Ballet: Spin and shape alignments of haloes in the cosmic web. Mon. Not. R. Astron. Soc. 2018, 481, 414–438. [Google Scholar] [CrossRef]
- Bonamigo, M.; Despali, G.; Limousin, M.; Angulo, R.; Giocoli, C.; Soucail, G. Universality of dark matter haloes shape over six decades in mass: Insights from the Millennium XXL and SBARBINE simulations. Mon. Not. R. Astron. Soc. 2015, 449, 3171–3182. [Google Scholar] [CrossRef]
- Vega-Ferrero, J.; Yepes, G.; Gottlöber, S. On the shape of dark matter haloes from MultiDark Planck simulations. Mon. Not. R. Astron. Soc. 2017, 467, 3226–3238. [Google Scholar] [CrossRef] [Green Version]
- Despali, G.; Giocoli, C.; Tormen, G. Some like it triaxial: The universality of dark matter halo shapes and their evolution along the cosmic time. Mon. Not. R. Astron. Soc. 2014, 443, 3208–3217. [Google Scholar] [CrossRef]
- Lovell, M.R.; Eke, V.; Frenk, C.S.; Gao, L.; Jenkins, A.; Theuns, T.; Wang, J.; White, S.D.M.; Boyarsky, A.; Ruchayskiy, O. The haloes of bright satellite galaxies in a warm dark matter universe. Mon. Not. R. Astron. Soc. 2012, 420, 2318–2324. [Google Scholar] [CrossRef] [Green Version]
- Colín, P.; Avila-Reese, V.; Valenzuela, O. Substructure and Halo Density Profiles in a Warm Dark Matter Cosmology. Astrophys. J. 2000, 542, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Avila-Reese, V.; Colín, P.; Valenzuela, O.; D’Onghia, E.; Firmani, C. Formation and Structure of Halos in a Warm Dark Matter Cosmology. Astrophys. J. 2001, 559, 516–530. [Google Scholar] [CrossRef] [Green Version]
- Colín, P.; Valenzuela, O.; Avila-Reese, V. On the Structure of Dark Matter Halos at the Damping Scale of the Power Spectrum with and without Relict Velocities. Astrophys. J. 2008, 673, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.; Smith, R.E.; Macciò, A.V.; Moore, B. Non-linear evolution of cosmological structures in warm dark matter models. Mon. Not. R. Astron. Soc. 2012, 424, 684–698. [Google Scholar] [CrossRef] [Green Version]
- Ludlow, A.D.; Bose, S.; Angulo, R.E.; Wang, L.; Hellwing, W.A.; Navarro, J.F.; Cole, S.; Frenk, C.S. The mass-concentration-redshift relation of cold and warm dark matter haloes. Mon. Not. R. Astron. Soc. 2016, 460, 1214–1232. [Google Scholar] [CrossRef]
- Dalcanton, J.J.; Hogan, C.J. Halo Cores and Phase-Space Densities: Observational Constraints on Dark Matter Physics and Structure Formation. Astrophys. J. 2001, 561, 35–45. [Google Scholar] [CrossRef]
- Macciò, A.V.; Paduroiu, S.; Anderhalden, D.; Schneider, A.; Moore, B. Cores in warm dark matter haloes: A Catch 22 problem. Mon. Not. R. Astron. Soc. 2012, 424, 1105–1112. [Google Scholar] [CrossRef]
- Shao, S.; Gao, L.; Theuns, T.; Frenk, C.S. The phase-space density of fermionic dark matter haloes. Mon. Not. R. Astron. Soc. 2013, 430, 2346–2357. [Google Scholar] [CrossRef]
- Colín, P.; Avila-Reese, V.; Valenzuela, O.; Firmani, C. Structure and Subhalo Population of Halos in a Self-interacting Dark Matter Cosmology. Astrophys. J. 2002, 581, 777–793. [Google Scholar] [CrossRef]
- Balberg, S.; Shapiro, S.L.; Inagaki, S. Self-Interacting Dark Matter Halos and the Gravothermal Catastrophe. Astrophys. J. 2002, 568, 475–487. [Google Scholar] [CrossRef]
- Lynden-Bell, D.; Wood, R. The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Mon. Not. R. Astron. Soc. 1968, 138, 495. [Google Scholar] [CrossRef]
- Pollack, J.; Spergel, D.N.; Steinhardt, P.J. Supermassive Black Holes from Ultra-strongly Self-interacting Dark Matter. Astrophys. J. 2015, 804, 131. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Zavala, J.; Schutz, K.; Slatyer, T.R. Evaporating the Milky Way halo and its satellites with inelastic self-interacting dark matter. Mon. Not. R. Astron. Soc. 2019, 484, 5437–5452. [Google Scholar] [CrossRef]
- Yoshida, N.; Springel, V.; White, S.D.M.; Tormen, G. Weakly Self-interacting Dark Matter and the Structure of Dark Halos. Astrophys. J. Lett. 2000, 544, L87–L90. [Google Scholar] [CrossRef]
- Zavala, J.; Vogelsberger, M.; Walker, M.G. Constraining self-interacting dark matter with the Milky Way’s dwarf spheroidals. Mon. Not. R. Astron. Soc. 2013, 431, L20–L24. [Google Scholar] [CrossRef]
- Brinckmann, T.; Zavala, J.; Rapetti, D.; Hansen, S.H.; Vogelsberger, M. The structure and assembly history of cluster-sized haloes in self-interacting dark matter. Mon. Not. R. Astron. Soc. 2018, 474, 746–759. [Google Scholar] [CrossRef]
- Peter, A.H.G.; Rocha, M.; Bullock, J.S.; Kaplinghat, M. Cosmological simulations with self-interacting dark matter—II. Halo shapes versus observations. Mon. Not. R. Astron. Soc. 2013, 430, 105–120. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Zavala, J. Direct detection of self-interacting dark matter. Mon. Not. R. Astron. Soc. 2013, 430, 1722–1735. [Google Scholar] [CrossRef] [Green Version]
- Genel, S.; Bouché, N.; Naab, T.; Sternberg, A.; Genzel, R. The Growth of Dark Matter Halos: Evidence for Significant Smooth Accretion. Astrophys. J. 2010, 719, 229–239. [Google Scholar] [CrossRef]
- Gill, S.P.D.; Knebe, A.; Gibson, B.K. The evolution of substructure—III. The outskirts of clusters. Mon. Not. R. Astron. Soc. 2005, 356, 1327–1332. [Google Scholar] [CrossRef]
- Sales, L.V.; Navarro, J.F.; Abadi, M.G.; Steinmetz, M. Cosmic ménage à trois: The origin of satellite galaxies on extreme orbits. Mon. Not. R. Astron. Soc. 2007, 379, 1475–1483. [Google Scholar] [CrossRef]
- Ludlow, A.D.; Navarro, J.F.; Springel, V.; Jenkins, A.; Frenk, C.S.; Helmi, A. The Unorthodox Orbits of Substructure Halos. Astrophys. J. 2009, 692, 931–941. [Google Scholar] [CrossRef]
- Giocoli, C.; Tormen, G.; Sheth, R.K.; van den Bosch, F.C. The substructure hierarchy in dark matter haloes. Mon. Not. R. Astron. Soc. 2010, 404, 502–517. [Google Scholar] [CrossRef]
- Srisawat, C.; Knebe, A.; Pearce, F.R.; Schneider, A.; Thomas, P.A.; Behroozi, P.; Dolag, K.; Elahi, P.J.; Han, J.; Helly, J.; et al. Sussing Merger Trees: The Merger Trees Comparison Project. Mon. Not. R. Astron. Soc. 2013, 436, 150–162. [Google Scholar] [CrossRef] [Green Version]
- Fakhouri, O.; Ma, C.P. The nearly universal merger rate of dark matter haloes in ΛCDM cosmology. Mon. Not. R. Astron. Soc. 2008, 386, 577–592. [Google Scholar] [CrossRef]
- Fakhouri, O.; Ma, C.P.; Boylan-Kolchin, M. The merger rates and mass assembly histories of dark matter haloes in the two Millennium simulations. Mon. Not. R. Astron. Soc. 2010, 406, 2267–2278. [Google Scholar] [CrossRef] [Green Version]
- Poole, G.B.; Mutch, S.J.; Croton, D.J.; Wyithe, S. Convergence properties of halo merger trees; halo and substructure merger rates across cosmic history. Mon. Not. R. Astron. Soc. 2017, 472, 3659–3682. [Google Scholar] [CrossRef]
- Lacey, C.; Cole, S. Merger rates in hierarchical models of galaxy formation. Mon. Not. R. Astron. Soc. 1993, 262, 627–649. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, H.; Cole, S.; Helly, J. Generating dark matter halo merger trees. Mon. Not. R. Astron. Soc. 2008, 383, 557–564. [Google Scholar] [CrossRef]
- Cole, S.; Lacey, C.G.; Baugh, C.M.; Frenk, C.S. Hierarchical galaxy formation. Mon. Not. R. Astron. Soc. 2000, 319, 168–204. [Google Scholar] [CrossRef]
- Benson, A.J. Orbital parameters of infalling dark matter substructures. Mon. Not. R. Astron. Soc. 2005, 358, 551–562. [Google Scholar] [CrossRef] [Green Version]
- Tormen, G. The rise and fall of satellites in galaxy clusters. Mon. Not. R. Astron. Soc. 1997, 290, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Cole, S.; Sawala, T.; Frenk, C.S. Orbital parameters of infalling satellite haloes in the hierarchical ΛCDM model. Mon. Not. R. Astron. Soc. 2015, 448, 1674–1686. [Google Scholar] [CrossRef]
- Wetzel, A.R. On the orbits of infalling satellite haloes. Mon. Not. R. Astron. Soc. 2011, 412, 49–58. [Google Scholar] [CrossRef]
- Diemand, J.; Kuhlen, M.; Madau, P.; Zemp, M.; Moore, B.; Potter, D.; Stadel, J. Clumps and streams in the local dark matter distribution. Nature 2008, 454, 735–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, M.; Peter, A.H.G.; Bullock, J. Infall times for Milky Way satellites from their present-day kinematics. Mon. Not. R. Astron. Soc. 2012, 425, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Vogelsberger, M.; White, S.D.M. Streams and caustics: The fine-grained structure of Λ cold dark matter haloes. Mon. Not. R. Astron. Soc. 2011, 413, 1419–1438. [Google Scholar] [CrossRef]
- Natarajan, A.; Sikivie, P. Inner caustics of cold dark matter halos. Phys. Rev. D 2006, 73, 023510. [Google Scholar] [CrossRef] [Green Version]
- Vogelsberger, M.; White, S.D.M.; Mohayaee, R.; Springel, V. Caustics in growing cold dark matter haloes. Mon. Not. R. Astron. Soc. 2009, 400, 2174–2184. [Google Scholar] [CrossRef] [Green Version]
- Onions, J.; Knebe, A.; Pearce, F.R.; Muldrew, S.I.; Lux, H.; Knollmann, S.R.; Ascasibar, Y.; Behroozi, P.; Elahi, P.; Han, J.; et al. Subhaloes going Notts: The subhalo-finder comparison project. Mon. Not. R. Astron. Soc. 2012, 423, 1200–1214. [Google Scholar] [CrossRef]
- Klypin, A.; Gottlöber, S.; Kravtsov, A.V.; Khokhlov, A.M. Galaxies in N-Body Simulations: Overcoming the Overmerging Problem. Astrophys. J. 1999, 516, 530–551. [Google Scholar] [CrossRef]
- Neyrinck, M.C.; Gnedin, N.Y.; Hamilton, A.J.S. VOBOZ: An almost-parameter-free halo-finding algorithm. Mon. Not. R. Astron. Soc. 2005, 356, 1222–1232. [Google Scholar] [CrossRef]
- Knollmann, S.R.; Knebe, A. AHF: Amiga’s Halo Finder. Astrophys. J. Suppl. 2009, 182, 608–624. [Google Scholar] [CrossRef]
- Han, J.; Jing, Y.P.; Wang, H.; Wang, W. Resolving subhaloes’ lives with the Hierarchical Bound-Tracing algorithm. Mon. Not. R. Astron. Soc. 2012, 427, 2437–2449. [Google Scholar] [CrossRef]
- Han, J.; Cole, S.; Frenk, C.S.; Benitez-Llambay, A.; Helly, J. HBT+: An improved code for finding subhaloes and building merger trees in cosmological simulations. Mon. Not. R. Astron. Soc. 2018, 474, 604–617. [Google Scholar] [CrossRef]
- Tormen, G.; Moscardini, L.; Yoshida, N. Properties of cluster satellites in hydrodynamical simulations. Mon. Not. R. Astron. Soc. 2004, 350, 1397–1408. [Google Scholar] [CrossRef] [Green Version]
- Maciejewski, M.; Colombi, S.; Springel, V.; Alard, C.; Bouchet, F.R. Phase-space structures—II. Hierarchical Structure Finder. Mon. Not. R. Astron. Soc. 2009, 396, 1329–1348. [Google Scholar] [CrossRef]
- Behroozi, P.S.; Wechsler, R.H.; Wu, H.Y. The ROCKSTAR Phase-space Temporal Halo Finder and the Velocity Offsets of Cluster Cores. Astrophys. J. 2013, 762, 109. [Google Scholar] [CrossRef]
- Tormen, G.; Diaferio, A.; Syer, D. Survival of substructure within dark matter haloes. Mon. Not. R. Astron. Soc. 1998, 299, 728–742. [Google Scholar] [CrossRef]
- Tollet, É.; Cattaneo, A.; Mamon, G.A.; Moutard, T.; van den Bosch, F.C. On stellar mass loss from galaxies in groups and clusters. Mon. Not. R. Astron. Soc. 2017, 471, 4170–4193. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.E.; Babul, A. The Dynamics of Sinking Satellites around Disk Galaxies: A Poor Man’s Alternative to High-Resolution Numerical Simulations. Astrophys. J. 2001, 559, 716–735. [Google Scholar] [CrossRef]
- Zentner, A.R.; Bullock, J.S. Halo Substructure and the Power Spectrum. Astrophys. J. 2003, 598, 49–72. [Google Scholar] [CrossRef] [Green Version]
- Zentner, A.R.; Berlind, A.A.; Bullock, J.S.; Kravtsov, A.V.; Wechsler, R.H. The Physics of Galaxy Clustering. I. A Model for Subhalo Populations. Astrophys. J. 2005, 624, 505–525. [Google Scholar] [CrossRef] [Green Version]
- Johnston, K.V. A Prescription for Building the Milky Way’s Halo from Disrupted Satellites. Astrophys. J. 1998, 495, 297–308. [Google Scholar] [CrossRef]
- Van den Bosch, F.C.; Ogiya, G. Dark matter substructure in numerical simulations: A tale of discreteness noise, runaway instabilities, and artificial disruption. Mon. Not. R. Astron. Soc. 2018, 475, 4066–4087. [Google Scholar] [CrossRef]
- Van den Bosch, F.C.; Ogiya, G.; Hahn, O.; Burkert, A. Disruption of dark matter substructure: Fact or fiction? Mon. Not. R. Astron. Soc. 2018, 474, 3043–3066. [Google Scholar] [CrossRef]
- Hayashi, E.; Navarro, J.F.; Taylor, J.E.; Stadel, J.; Quinn, T. The Structural Evolution of Substructure. Astrophys. J. 2003, 584, 541–558. [Google Scholar] [CrossRef] [Green Version]
- Spitzer, L., Jr. Disruption of Galactic Clusters. Astrophys. J. 1958, 127, 17. [Google Scholar] [CrossRef]
- Gnedin, O.Y.; Hernquist, L.; Ostriker, J.P. Tidal Shocking by Extended Mass Distributions. Astrophys. J. 1999, 514, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, L.A.; White, S.D.M. Tidal interactions between spherical galaxies. Astrophys. J. 1985, 295, 374. [Google Scholar] [CrossRef]
- Aguilar, L.A.; White, S.D.M. The Density Profiles of Tidally Stripped Galaxies. Astrophys. J. 1986, 307, 97. [Google Scholar] [CrossRef]
- Kazantzidis, S.; Mayer, L.; Mastropietro, C.; Diemand, J.; Stadel, J.; Moore, B. Density Profiles of Cold Dark Matter Substructure: Implications for the Missing-Satellites Problem. Astrophys. J. 2004, 608, 663–679. [Google Scholar] [CrossRef]
- Moore, B.; Katz, N.; Lake, G.; Dressler, A.; Oemler, A. Galaxy harassment and the evolution of clusters of galaxies. Nature 1996, 379, 613–616. [Google Scholar] [CrossRef]
- Ogiya, G.; Burkert, A. Dynamical friction and scratches of orbiting satellite galaxies on host systems. Mon. Not. R. Astron. Soc. 2016, 457, 2164–2172. [Google Scholar] [CrossRef]
- Boylan-Kolchin, M.; Ma, C.P.; Quataert, E. Dynamical friction and galaxy merging time-scales. Mon. Not. R. Astron. Soc. 2008, 383, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. Dynamical Friction. I. General Considerations: The Coefficient of Dynamical Friction. Astrophys. J. 1943, 97, 255. [Google Scholar] [CrossRef]
- Van den Bosch, F.C.; Lewis, G.F.; Lake, G.; Stadel, J. Substructure in Dark Halos: Orbital Eccentricities and Dynamical Friction. Astrophys. J. 1999, 515, 50–68. [Google Scholar] [CrossRef] [Green Version]
- Hernquist, L. An analytical model for spherical galaxies and bulges. Astrophys. J. 1990, 356, 359–364. [Google Scholar] [CrossRef]
- Han, J.; Cole, S.; Frenk, C.S.; Jing, Y. A unified model for the spatial and mass distribution of subhaloes. Mon. Not. R. Astron. Soc. 2016, 457, 1208–1223. [Google Scholar] [CrossRef] [Green Version]
- Klypin, A.A.; Trujillo-Gomez, S.; Primack, J. Dark Matter Halos in the Standard Cosmological Model: Results from the Bolshoi Simulation. Astrophys. J. 2011, 740, 102. [Google Scholar] [CrossRef]
- Jiang, F.; van den Bosch, F.C. Statistics of dark matter substructure—III. Halo-to-halo variance. Mon. Not. R. Astron. Soc. 2017, 472, 657–674. [Google Scholar] [CrossRef]
- Gao, L.; White, S.D.M.; Jenkins, A.; Stoehr, F.; Springel, V. The subhalo populations of ΛCDM dark haloes. Mon. Not. R. Astron. Soc. 2004, 355, 819–834. [Google Scholar] [CrossRef]
- Diemand, J.; Kuhlen, M.; Madau, P. Formation and Evolution of Galaxy Dark Matter Halos and Their Substructure. Astrophys. J. 2007, 667, 859–877. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Navarro, J.F.; Frenk, C.S.; Jenkins, A.; Springel, V.; White, S.D.M. The Phoenix Project: The dark side of rich Galaxy clusters. Mon. Not. R. Astron. Soc. 2012, 425, 2169–2186. [Google Scholar] [CrossRef]
- Garrison-Kimmel, S.; Boylan-Kolchin, M.; Bullock, J.S.; Lee, K. ELVIS: Exploring the Local Volume in Simulations. Mon. Not. R. Astron. Soc. 2014, 438, 2578–2596. [Google Scholar] [CrossRef]
- Griffen, B.F.; Ji, A.P.; Dooley, G.A.; Gómez, F.A.; Vogelsberger, M.; O’Shea, B.W.; Frebel, A. The Caterpillar Project: A Large Suite of Milky Way Sized Halos. Astrophys. J. 2016, 818, 10. [Google Scholar] [CrossRef]
- Gao, L.; Frenk, C.S.; Boylan-Kolchin, M.; Jenkins, A.; Springel, V.; White, S.D.M. The statistics of the subhalo abundance of dark matter haloes. Mon. Not. R. Astron. Soc. 2011, 410, 2309–2314. [Google Scholar] [CrossRef]
- Angulo, R.E.; Lacey, C.G.; Baugh, C.M.; Frenk, C.S. The fate of substructures in cold dark matter haloes. Mon. Not. R. Astron. Soc. 2009, 399, 983–995. [Google Scholar] [CrossRef] [Green Version]
- Boylan-Kolchin, M.; Springel, V.; White, S.D.M.; Jenkins, A. There’s no place like home? Statistics of Milky Way-mass dark matter haloes. Mon. Not. R. Astron. Soc. 2010, 406, 896–912. [Google Scholar] [CrossRef]
- Rodríguez-Puebla, A.; Behroozi, P.; Primack, J.; Klypin, A.; Lee, C.; Hellinger, D. Halo and subhalo demographics with Planck cosmological parameters: Bolshoi-Planck and MultiDark-Planck simulations. Mon. Not. R. Astron. Soc. 2016, 462, 893–916. [Google Scholar] [CrossRef]
- Ghigna, S.; Moore, B.; Governato, F.; Lake, G.; Quinn, T.; Stadel, J. Density Profiles and Substructure of Dark Matter Halos: Converging Results at Ultra-High Numerical Resolution. Astrophys. J. 2000, 544, 616–628. [Google Scholar] [CrossRef]
- Diemand, J.; Moore, B.; Stadel, J. Velocity and spatial biases in cold dark matter subhalo distributions. Mon. Not. R. Astron. Soc. 2004, 352, 535–546. [Google Scholar] [CrossRef] [Green Version]
- Nagai, D.; Kravtsov, A.V. The Radial Distribution of Galaxies in Λ Cold Dark Matter Clusters. Astrophys. J. 2005, 618, 557–568. [Google Scholar] [CrossRef]
- Diemand, J.; Kuhlen, M.; Madau, P. Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo. Astrophys. J. 2007, 657, 262–270. [Google Scholar] [CrossRef]
- Gao, L.; De Lucia, G.; White, S.D.M.; Jenkins, A. Galaxies and subhaloes in ΛCDM galaxy clusters. Mon. Not. R. Astron. Soc. 2004, 352, L1–L5. [Google Scholar] [CrossRef]
- Navarro, J.F.; Hayashi, E.; Power, C.; Jenkins, A.R.; Frenk, C.S.; White, S.D.M.; Springel, V.; Stadel, J.; Quinn, T.R. The inner structure of ΛCDM haloes—III. Universality and asymptotic slopes. Mon. Not. R. Astron. Soc. 2004, 349, 1039–1051. [Google Scholar] [CrossRef]
- Gao, L.; Navarro, J.F.; Cole, S.; Frenk, C.S.; White, S.D.M.; Springel, V.; Jenkins, A.; Neto, A.F. The redshift dependence of the structure of massive Λ cold dark matter haloes. Mon. Not. R. Astron. Soc. 2008, 387, 536–544. [Google Scholar] [CrossRef]
- Vera-Ciro, C.A.; Helmi, A.; Starkenburg, E.; Breddels, M.A. Not too big, not too small: The dark haloes of the dwarf spheroidals in the Milky Way. Mon. Not. R. Astron. Soc. 2013, 428, 1696–1703. [Google Scholar] [CrossRef]
- Dutton, A.A.; Macciò, A.V. Cold dark matter haloes in the Planck era: Evolution of structural parameters for Einasto and NFW profiles. Mon. Not. R. Astron. Soc. 2014, 441, 3359–3374. [Google Scholar] [CrossRef]
- Peñarrubia, J.; Navarro, J.F.; McConnachie, A.W. The Tidal Evolution of Local Group Dwarf Spheroidals. Astrophys. J. 2008, 673, 226–240. [Google Scholar] [CrossRef] [Green Version]
- Moliné, Á.; Sánchez-Conde, M.A.; Palomares-Ruiz, S.; Prada, F. Characterization of subhalo structural properties and implications for dark matter annihilation signals. Mon. Not. R. Astron. Soc. 2017, 466, 4974–4990. [Google Scholar] [CrossRef]
- Barber, C.; Starkenburg, E.; Navarro, J.F.; McConnachie, A.W. Galactic tides and the shape and orientation of dwarf galaxy satellites. Mon. Not. R. Astron. Soc. 2015, 447, 1112–1125. [Google Scholar] [CrossRef]
- Vera-Ciro, C.A.; Sales, L.V.; Helmi, A.; Navarro, J.F. The shape of dark matter subhaloes in the Aquarius simulations. Mon. Not. R. Astron. Soc. 2014, 439, 2863–2872. [Google Scholar] [CrossRef]
- Bose, S.; Hellwing, W.A.; Frenk, C.S.; Jenkins, A.; Lovell, M.R.; Helly, J.C.; Li, B.; Gonzalez-Perez, V.; Gao, L. Substructure and galaxy formation in the Copernicus Complexio warm dark matter simulations. Mon. Not. R. Astron. Soc. 2017, 464, 4520–4533. [Google Scholar] [CrossRef]
- Dooley, G.A.; Peter, A.H.G.; Vogelsberger, M.; Zavala, J.; Frebel, A. Enhanced tidal stripping of satellites in the galactic halo from dark matter self-interactions. Mon. Not. R. Astron. Soc. 2016, 461, 710–727. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, H.; Boddy, K.K.; Kaplinghat, M. Accelerated core collapse in tidally stripped self-interacting dark matter halos. arXiv 2019, arXiv:1901.00499. [Google Scholar]
- Sawala, T.; Frenk, C.S.; Fattahi, A.; Navarro, J.F.; Theuns, T.; Bower, R.G.; Crain, R.A.; Furlong, M.; Jenkins, A.; Schaller, M.; et al. The chosen few: The low-mass haloes that host faint galaxies. Mon. Not. R. Astron. Soc. 2016, 456, 85–97. [Google Scholar] [CrossRef]
- Sameie, O.; Yu, H.B.; Sales, L.V.; Vogelsberger, M.; Zavala, J. Self-Interacting Dark Matter Subhalos in the Milky Way’s Tides. arXiv 2019, arXiv:1904.07872. [Google Scholar]
- Kahlhoefer, F.; Kaplinghat, M.; Slatyer, T.R.; Wu, C.L. Diversity in density profiles of self-interacting dark matter satellite halos. arXiv 2019, arXiv:1904.10539. [Google Scholar]
- Arkani-Hamed, N.; Finkbeiner, D.P.; Slatyer, T.R.; Weiner, N. A theory of dark matter. Phys. Rev. D 2009, 79, 015014. [Google Scholar] [CrossRef]
- Todoroki, K.; Medvedev, M.V. Dark matter haloes in the multicomponent model—I. Substructure. Mon. Not. R. Astron. Soc. 2019, 483, 3983–4003. [Google Scholar] [CrossRef]
- Eisenstein, D.J.; Hu, W. Baryonic Features in the Matter Transfer Function. Astrophys. J. 1998, 496, 605–614. [Google Scholar] [CrossRef]
- White, S.D.M.; Rees, M.J. Core condensation in heavy halos — A two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 1978, 183, 341–358. [Google Scholar] [CrossRef]
- Tseliakhovich, D.; Hirata, C. Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 2010, 82, 083520. [Google Scholar] [CrossRef]
- Bower, R.G.; Benson, A.J.; Malbon, R.; Helly, J.C.; Frenk, C.S.; Baugh, C.M.; Cole, S.; Lacey, C.G. Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc. 2006, 370, 645–655. [Google Scholar] [CrossRef] [Green Version]
- Blumenthal, G.R.; Faber, S.M.; Flores, R.; Primack, J.R. Contraction of dark matter galactic halos due to baryonic infall. Astrophys. J. 1986, 301, 27–34. [Google Scholar] [CrossRef]
- Mo, H.J.; Mao, S.; White, S.D.M. The formation of galactic discs. Mon. Not. R. Astron. Soc. 1998, 295, 319–336. [Google Scholar] [CrossRef] [Green Version]
- Gnedin, O.Y.; Kravtsov, A.V.; Klypin, A.A.; Nagai, D. Response of Dark Matter Halos to Condensation of Baryons: Cosmological Simulations and Improved Adiabatic Contraction Model. Astrophys. J. 2004, 616, 16–26. [Google Scholar] [CrossRef]
- Schaller, M.; Frenk, C.S.; Bower, R.G.; Theuns, T.; Jenkins, A.; Schaye, J.; Crain, R.A.; Furlong, M.; Dalla Vecchia, C.; McCarthy, I.G. Baryon effects on the internal structure of ΛCDM haloes in the EAGLE simulations. Mon. Not. R. Astron. Soc. 2015, 451, 1247–1267. [Google Scholar] [CrossRef]
- Lovell, M.R.; Pillepich, A.; Genel, S.; Nelson, D.; Springel, V.; Pakmor, R.; Marinacci, F.; Weinberger, R.; Torrey, P.; Vogelsberger, M.; et al. The fraction of dark matter within galaxies from the IllustrisTNG simulations. Mon. Not. R. Astron. Soc. 2018, 481, 1950–1975. [Google Scholar] [CrossRef] [Green Version]
- Efstathiou, G. Suppressing the formation of dwarf galaxies via photoionization. Mon. Not. R. Astron. Soc. 1992, 256, 43P–47P. [Google Scholar] [CrossRef]
- Babul, A.; Rees, M.J. On dwarf elliptical galaxies and the faint blue counts. Mon. Not. R. Astron. Soc. 1992, 255, 346–350. [Google Scholar] [CrossRef]
- Okamoto, T.; Gao, L.; Theuns, T. Mass loss of galaxies due to an ultraviolet background. Mon. Not. R. Astron. Soc. 2008, 390, 920–928. [Google Scholar] [CrossRef]
- Thoul, A.A.; Weinberg, D.H. Hydrodynamic Simulations of Galaxy Formation. II. Photoionization and the Formation of Low-Mass Galaxies. Astrophys. J. 1996, 465, 608. [Google Scholar] [CrossRef]
- Barkana, R.; Loeb, A. The Photoevaporation of Dwarf Galaxies during Reionization. Astrophys. J. 1999, 523, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Bullock, J.S.; Kravtsov, A.V.; Weinberg, D.H. Reionization and the Abundance of Galactic Satellites. Astrophys. J. 2000, 539, 517–521. [Google Scholar] [CrossRef] [Green Version]
- Gnedin, N.Y. Effect of Reionization on Structure Formation in the Universe. Astrophys. J. 2000, 542, 535–541. [Google Scholar] [CrossRef]
- Benson, A.J.; Lacey, C.G.; Baugh, C.M.; Cole, S.; Frenk, C.S. The effects of photoionization on galaxy formation—I. Model and results at z = 0. Mon. Not. R. Astron. Soc. 2002, 333, 156–176. [Google Scholar] [CrossRef]
- Somerville, R.S. Can Photoionization Squelching Resolve the Substructure Crisis? Astrophys. J. Lett. 2002, 572, L23–L26. [Google Scholar] [CrossRef]
- Hoeft, M.; Yepes, G.; Gottlöber, S.; Springel, V. Dwarf galaxies in voids: Suppressing star formation with photoheating. Mon. Not. R. Astron. Soc. 2006, 371, 401–414. [Google Scholar] [CrossRef]
- Ocvirk, P.; Gillet, N.; Shapiro, P.R.; Aubert, D.; Iliev, I.T.; Teyssier, R.; Yepes, G.; Choi, J.H.; Sullivan, D.; Knebe, A.; et al. Cosmic Dawn (CoDa): The First Radiation-Hydrodynamics Simulation of Reionization and Galaxy Formation in the Local Universe. Mon. Not. R. Astron. Soc. 2016, 463, 1462–1485. [Google Scholar] [CrossRef]
- Sawala, T.; Frenk, C.S.; Crain, R.A.; Jenkins, A.; Schaye, J.; Theuns, T.; Zavala, J. The abundance of (not just) dark matter haloes. Mon. Not. R. Astron. Soc. 2013, 431, 1366–1382. [Google Scholar] [CrossRef]
- Larson, R.B. Effects of supernovae on the early evolution of galaxies. Mon. Not. R. Astron. Soc. 1974, 169, 229–246. [Google Scholar] [CrossRef]
- Dekel, A.; Silk, J. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. Astrophys. J. 1986, 303, 39–55. [Google Scholar] [CrossRef]
- Navarro, J.F.; Eke, V.R.; Frenk, C.S. The cores of dwarf galaxy haloes. Mon. Not. R. Astron. Soc. 1996, 283, L72–L78. [Google Scholar] [CrossRef]
- Read, J.I.; Gilmore, G. Mass loss from dwarf spheroidal galaxies: The origins of shallow dark matter cores and exponential surface brightness profiles. Mon. Not. R. Astron. Soc. 2005, 356, 107–124. [Google Scholar] [CrossRef]
- Gnedin, O.Y.; Zhao, H. Maximum feedback and dark matter profiles of dwarf galaxies. Mon. Not. R. Astron. Soc. 2002, 333, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Governato, F.; Brook, C.; Mayer, L.; Brooks, A.; Rhee, G.; Wadsley, J.; Jonsson, P.; Willman, B.; Stinson, G.; Quinn, T.; et al. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows. Nature 2010, 463, 203–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontzen, A.; Governato, F. How supernova feedback turns dark matter cusps into cores. Mon. Not. R. Astron. Soc. 2012, 421, 3464–3471. [Google Scholar] [CrossRef] [Green Version]
- Di Cintio, A.; Brook, C.B.; Macciò, A.V.; Stinson, G.S.; Knebe, A.; Dutton, A.A.; Wadsley, J. The dependence of dark matter profiles on the stellar-to-halo mass ratio: A prediction for cusps versus cores. Mon. Not. R. Astron. Soc. 2014, 437, 415–423. [Google Scholar] [CrossRef]
- Chan, T.K.; Kereš, D.; Oñorbe, J.; Hopkins, P.F.; Muratov, A.L.; Faucher-Giguère, C.A.; Quataert, E. The impact of baryonic physics on the structure of dark matter haloes: The view from the FIRE cosmological simulations. Mon. Not. R. Astron. Soc. 2015, 454, 2981–3001. [Google Scholar] [CrossRef]
- Tollet, E.; Macciò, A.V.; Dutton, A.A.; Stinson, G.S.; Wang, L.; Penzo, C.; Gutcke, T.A.; Buck, T.; Kang, X.; Brook, C.; et al. NIHAO - IV: Core creation and destruction in dark matter density profiles across cosmic time. Mon. Not. R. Astron. Soc. 2016, 456, 3542–3552. [Google Scholar] [CrossRef]
- Read, J.I.; Agertz, O.; Collins, M.L.M. Dark matter cores all the way down. Mon. Not. R. Astron. Soc. 2016, 459, 2573–2590. [Google Scholar] [CrossRef] [Green Version]
- Moore, B. Evidence against dissipation-less dark matter from observations of galaxy haloes. Nature 1994, 370, 629–631. [Google Scholar] [CrossRef]
- Oman, K.A.; Navarro, J.F.; Fattahi, A.; Frenk, C.S.; Sawala, T.; White, S.D.M.; Bower, R.; Crain, R.A.; Furlong, M.; Schaller, M.; et al. The unexpected diversity of dwarf galaxy rotation curves. Mon. Not. R. Astron. Soc. 2015, 452, 3650–3665. [Google Scholar] [CrossRef]
- Oman, K.A.; Marasco, A.; Navarro, J.F.; Frenk, C.S.; Schaye, J.; Benítez-Llambay, A. Non-circular motions and the diversity of dwarf galaxy rotation curves. Mon. Not. R. Astron. Soc. 2019, 482, 821–847. [Google Scholar] [CrossRef]
- Benitez-Llambay, A.; Frenk, C.S.; Ludlow, A.D.; Navarro, J.F. Baryon-induced dark matter cores in the EAGLE simulations. arXiv 2018, arXiv:1810.04186. [Google Scholar] [CrossRef]
- Bose, S.; Frenk, C.S.; Jenkins, A.; Fattahi, A.; Gómez, F.A.; Grand, R.J.J.; Marinacci, F.; Navarro, J.F.; Oman, K.A.; Pakmor, R.; et al. No cores in dark matter-dominated dwarf galaxies with bursty star formation histories. Mon. Not. R. Astron. Soc. 2019, 486, 4790–4804. [Google Scholar] [CrossRef]
- Peirani, S.; Kay, S.; Silk, J. Active galactic nuclei and massive galaxy cores. Astron. Astrophys. 2008, 479, 123–129. [Google Scholar] [CrossRef]
- Duffy, A.R.; Schaye, J.; Kay, S.T.; Dalla Vecchia, C.; Battye, R.A.; Booth, C.M. Impact of baryon physics on dark matter structures: A detailed simulation study of halo density profiles. Mon. Not. R. Astron. Soc. 2010, 405, 2161–2178. [Google Scholar] [CrossRef]
- Teyssier, R.; Moore, B.; Martizzi, D.; Dubois, Y.; Mayer, L. Mass distribution in galaxy clusters: The role of Active Galactic Nuclei feedback. Mon. Not. R. Astron. Soc. 2011, 414, 195–208. [Google Scholar] [CrossRef]
- Martizzi, D.; Teyssier, R.; Moore, B. Cusp-core transformations induced by AGN feedback in the progenitors of cluster galaxies. Mon. Not. R. Astron. Soc. 2013, 432, 1947–1954. [Google Scholar] [CrossRef]
- Peirani, S.; Dubois, Y.; Volonteri, M.; Devriendt, J.; Bundy, K.; Silk, J.; Pichon, C.; Kaviraj, S.; Gavazzi, R.; Habouzit, M. Density profile of dark matter haloes and galaxies in the HORIZON-AGN simulation: The impact of AGN feedback. Mon. Not. R. Astron. Soc. 2017, 472, 2153–2169. [Google Scholar] [CrossRef]
- D’Onghia, E.; Springel, V.; Hernquist, L.; Keres, D. Substructure Depletion in the Milky Way Halo by the Disk. Astrophys. J. 2010, 709, 1138–1147. [Google Scholar] [CrossRef]
- Kazantzidis, S.; Łokas, E.L.; Callegari, S.; Mayer, L.; Moustakas, L.A. On the Efficiency of the Tidal Stirring Mechanism for the Origin of Dwarf Spheroidals: Dependence on the Orbital and Structural Parameters of the Progenitor Disky Dwarfs. Astrophys. J. 2011, 726, 98. [Google Scholar] [CrossRef]
- Zolotov, A.; Brooks, A.M.; Willman, B.; Governato, F.; Pontzen, A.; Christensen, C.; Dekel, A.; Quinn, T.; Shen, S.; Wadsley, J. Baryons Matter: Why Luminous Satellite Galaxies have Reduced Central Masses. Astrophys. J. 2012, 761, 71. [Google Scholar] [CrossRef]
- Sawala, T.; Pihajoki, P.; Johansson, P.H.; Frenk, C.S.; Navarro, J.F.; Oman, K.A.; White, S.D.M. Shaken and stirred: The Milky Way’s dark substructures. Mon. Not. R. Astron. Soc. 2017, 467, 4383–4400. [Google Scholar] [CrossRef]
- Garrison-Kimmel, S.; Hopkins, P.F.; Wetzel, A.; Bullock, J.S.; Boylan-Kolchin, M.; Keres, D.; Faucher-Giguere, C.A.; El-Badry, K.; Lamberts, A.; Quataert, E.; et al. The Local Group on FIRE: Dwarf galaxy populations across a suite of hydrodynamic simulations. arXiv 2018, arXiv:1806.04143. [Google Scholar] [CrossRef]
- Dubois, Y.; Pichon, C.; Welker, C.; Le Borgne, D.; Devriendt, J.; Laigle, C.; Codis, S.; Pogosyan, D.; Arnouts, S.; Benabed, K.; et al. Dancing in the dark: Galactic properties trace spin swings along the cosmic web. Mon. Not. R. Astron. Soc. 2014, 444, 1453–1468. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Sijacki, D.; Xu, D.; Snyder, G.; Nelson, D.; Hernquist, L. Introducing the Illustris Project: Simulating the coevolution of dark and visible matter in the Universe. Mon. Not. R. Astron. Soc. 2014, 444, 1518–1547. [Google Scholar] [CrossRef]
- Schaye, J.; Crain, R.A.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Dalla Vecchia, C.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 2015, 446, 521–554. [Google Scholar] [CrossRef]
- Khandai, N.; Di Matteo, T.; Croft, R.; Wilkins, S.; Feng, Y.; Tucker, E.; DeGraf, C.; Liu, M.S. The MassiveBlack-II simulation: The evolution of haloes and galaxies to z 0. Mon. Not. R. Astron. Soc. 2015, 450, 1349–1374. [Google Scholar] [CrossRef]
- Pillepich, A.; Springel, V.; Nelson, D.; Genel, S.; Naiman, J.; Pakmor, R.; Hernquist, L.; Torrey, P.; Vogelsberger, M.; Weinberger, R.; et al. Simulating galaxy formation with the IllustrisTNG model. Mon. Not. R. Astron. Soc. 2018, 473, 4077–4106. [Google Scholar] [CrossRef]
- Goodenough, L.; Hooper, D. Possible Evidence For Dark Matter Annihilation In The Inner Milky Way From The Fermi Gamma Ray Space Telescope. arXiv 2009, arXiv:0910.2998. [Google Scholar]
- Bulbul, E.; Markevitch, M.; Foster, A.; Smith, R.K.; Loewenstein, M.; Randall, S.W. Detection of an Unidentified Emission Line in the Stacked X-Ray Spectrum of Galaxy Clusters. Astrophys. J. 2014, 789, 13. [Google Scholar] [CrossRef]
- Boyarsky, A.; Ruchayskiy, O.; Iakubovskyi, D.; Franse, J. Unidentified Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster. Phys. Rev. Lett. 2014, 113, 251301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruchayskiy, O.; Boyarsky, A.; Iakubovskyi, D.; Bulbul, E.; Eckert, D.; Franse, J.; Malyshev, D.; Markevitch, M.; Neronov, A. Searching for decaying dark matter in deep XMM-Newton observation of the Draco dwarf spheroidal. Mon. Not. R. Astron. Soc. 2016, 460, 1390–1398. [Google Scholar] [CrossRef]
- Aharonian, F.A.; Akamatsu, H.; Akimoto, F.; Allen, S.W.; Angelini, L.; Arnaud, K.A.; Audard, M.; Awaki, H.; Axelsson, M.; Bamba, A.; et al. Hitomi Constraints on the 3.5 keV Line in the Perseus Galaxy Cluster. Astrophys. J. Lett. 2017, 837, L15. [Google Scholar] [CrossRef]
- Klypin, A.; Kravtsov, A.V.; Valenzuela, O.; Prada, F. Where Are the Missing Galactic Satellites? Astrophys. J. 1999, 522, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Moore, B.; Ghigna, S.; Governato, F.; Lake, G.; Quinn, T.; Stadel, J.; Tozzi, P. Dark Matter Substructure within Galactic Halos. Astrophys. J. 1999, 524, L19–L22. [Google Scholar] [CrossRef]
- Boylan-Kolchin, M.; Bullock, J.S.; Kaplinghat, M. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc. 2011, 415, L40–L44. [Google Scholar] [CrossRef] [Green Version]
- Walker, M.G.; Peñarrubia, J. A Method for Measuring (Slopes of) the Mass Profiles of Dwarf Spheroidal Galaxies. Astrophys. J. 2011, 742, 20. [Google Scholar] [CrossRef]
- Kroupa, P.; Theis, C.; Boily, C.M. The great disk of Milky-Way satellites and cosmological sub-structures. Astron. Astrophys. 2005, 431, 517–521. [Google Scholar] [CrossRef] [Green Version]
- Ibata, R.A.; Ibata, N.G.; Lewis, G.F.; Martin, N.F.; Conn, A.; Elahi, P.; Arias, V.; Fernando, N. A Thousand Shadows of Andromeda: Rotating Planes of Satellites in the Millennium-II Cosmological Simulation. Astrophys. J. Lett. 2014, 784, L6. [Google Scholar] [CrossRef]
- Pawlowski, M.S.; Famaey, B.; Jerjen, H.; Merritt, D.; Kroupa, P.; Dabringhausen, J.; Lüghausen, F.; Forbes, D.A.; Hensler, G.; Hammer, F.; et al. Co-orbiting satellite galaxy structures are still in conflict with the distribution of primordial dwarf galaxies. Mon. Not. R. Astron. Soc. 2014, 442, 2362–2380. [Google Scholar] [CrossRef] [Green Version]
- Wadepuhl, M.; Springel, V. Satellite galaxies in hydrodynamical simulations of Milky Way sized galaxies. Mon. Not. R. Astron. Soc. 2011, 410, 1975–1992. [Google Scholar] [CrossRef]
- Simpson, C.M.; Grand, R.J.J.; Gómez, F.A.; Marinacci, F.; Pakmor, R.; Springel, V.; Campbell, D.J.R.; Frenk, C.S. Quenching and ram pressure stripping of simulated Milky Way satellite galaxies. Mon. Not. R. Astron. Soc. 2018, 478, 548–567. [Google Scholar] [CrossRef] [Green Version]
- Mashchenko, S.; Couchman, H.M.P.; Wadsley, J. The removal of cusps from galaxy centres by stellar feedback in the early Universe. Nature 2006, 442, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, M.D.; Katz, N. Bar-driven Dark Halo Evolution: A Resolution of the Cusp-Core Controversy. Astrophys. J. 2002, 580, 627–633. [Google Scholar] [CrossRef]
- Müller, O.; Jerjen, H.; Pawlowski, M.S.; Binggeli, B. Testing the two planes of satellites in the Centaurus group. Astron. Astrophys. 2016, 595, A119. [Google Scholar] [CrossRef]
- Cautun, M.; Bose, S.; Frenk, C.S.; Guo, Q.; Han, J.; Hellwing, W.A.; Sawala, T.; Wang, W. Planes of satellite galaxies: When exceptions are the rule. Mon. Not. R. Astron. Soc. 2015, 452, 3838–3852. [Google Scholar] [CrossRef]
- Müller, O.; Pawlowski, M.S.; Jerjen, H.; Lelli, F. A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology. Science 2018, 359, 534–537. [Google Scholar] [CrossRef] [Green Version]
- Libeskind, N.I.; Frenk, C.S.; Cole, S.; Helly, J.C.; Jenkins, A.; Navarro, J.F.; Power, C. The distribution of satellite galaxies: The great pancake. Mon. Not. R. Astron. Soc. 2005, 363, 146–152. [Google Scholar] [CrossRef]
- Shao, S.; Cautun, M.; Frenk, C.S. Evolution of galactic planes of satellites in the EAGLE simulation. arXiv 2019, arXiv:1904.02719. [Google Scholar] [CrossRef]
- Wang, J.; Frenk, C.S.; Navarro, J.F.; Gao, L.; Sawala, T. The missing massive satellites of the Milky Way. Mon. Not. R. Astron. Soc. 2012, 424, 2715–2721. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.; Frenk, C.; Cole, S.; Benson, A. Constraining the warm dark matter particle mass with Milky Way satellites. Mon. Not. R. Astron. Soc. 2014, 442, 2487–2495. [Google Scholar] [CrossRef]
- Lovell, M.R.; Bose, S.; Boyarsky, A.; Cole, S.; Frenk, C.S.; Gonzalez-Perez, V.; Kennedy, R.; Ruchayskiy, O.; Smith, A. Satellite galaxies in semi-analytic models of galaxy formation with sterile neutrino dark matter. Mon. Not. R. Astron. Soc. 2016, 461, 60–72. [Google Scholar] [CrossRef]
- Callingham, T.M.; Cautun, M.; Deason, A.J.; Frenk, C.S.; Wang, W.; Gómez, F.A.; Grand, R.J.J.; Marinacci, F.; Pakmor, R. The mass of the Milky Way from satellite dynamics. Mon. Not. R. Astron. Soc. 2019, 484, 5453–5467. [Google Scholar] [CrossRef]
- Lovell, M.R.; Gonzalez-Perez, V.; Bose, S.; Boyarsky, A.; Cole, S.; Frenk, C.S.; Ruchayskiy, O. Addressing the too big to fail problem with baryon physics and sterile neutrino dark matter. Mon. Not. R. Astron. Soc. 2017, 468, 2836–2849. [Google Scholar] [CrossRef] [Green Version]
- Burger, J.D.; Zavala, J. The nature of core formation in dark matter haloes: Adiabatic or impulsive? Mon. Not. R. Astron. Soc. 2019, 485, 1008–1028. [Google Scholar] [CrossRef]
- Rees, M.J. Lyman absorption lines in quasar spectra—Evidence for gravitationally-confined gas in dark minihaloes. Mon. Not. R. Astron. Soc. 1986, 218, 25P–30P. [Google Scholar] [CrossRef]
- Benítez-Llambay, A.; Navarro, J.F.; Frenk, C.S.; Sawala, T.; Oman, K.; Fattahi, A.; Schaller, M.; Schaye, J.; Crain, R.A.; Theuns, T. The properties of ‘dark’ ΛCDM haloes in the Local Group. Mon. Not. R. Astron. Soc. 2017, 465, 3913–3926. [Google Scholar] [CrossRef]
- Carlberg, R.G. Dark Matter Sub-halo Counts via Star Stream Crossings. Astrophys. J. 2012, 748, 20. [Google Scholar] [CrossRef]
- Erkal, D.; Belokurov, V.; Bovy, J.; Sand ers, J.L. The number and size of subhalo-induced gaps in stellar streams. Mon. Not. R. Astron. Soc. 2016, 463, 102–119. [Google Scholar] [CrossRef]
- Amorisco, N.C.; Gómez, F.A.; Vegetti, S.; White, S.D.M. Gaps in globular cluster streams: Giant molecular clouds can cause them too. Mon. Not. R. Astron. Soc. 2016, 463, L17–L21. [Google Scholar] [CrossRef]
- Erkal, D.; Koposov, S.E.; Belokurov, V. A sharper view of Pal 5’s tails: Discovery of stream perturbations with a novel non-parametric technique. Mon. Not. R. Astron. Soc. 2017, 470, 60–84. [Google Scholar] [CrossRef]
- Bovy, J.; Erkal, D.; Sanders, J.L. Linear perturbation theory for tidal streams and the small-scale CDM power spectrum. Mon. Not. R. Astron. Soc. 2017, 466, 628–668. [Google Scholar] [CrossRef]
- Mao, S.; Schneider, P. Evidence for substructure in lens galaxies? Mon. Not. R. Astron. Soc. 1998, 295, 587. [Google Scholar] [CrossRef]
- Schneider, P.; Weiss, A. The gravitational lens equation near cusps. Astron. Astrophys. 1992, 260, 1–13. [Google Scholar]
- Metcalf, R.B.; Madau, P. Compound Gravitational Lensing as a Probe of Dark Matter Substructure within Galaxy Halos. Astrophys. J. 2001, 563, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Dalal, N.; Kochanek, C.S. Direct Detection of Cold Dark Matter Substructure. Astrophys. J. 2002, 572, 25–33. [Google Scholar] [CrossRef]
- Xu, D.; Sluse, D.; Gao, L.; Wang, J.; Frenk, C.; Mao, S.; Schneider, P.; Springel, V. How well can cold dark matter substructures account for the observed radio flux-ratio anomalies. Mon. Not. R. Astron. Soc. 2015, 447, 3189–3206. [Google Scholar] [CrossRef]
- Hsueh, J.W.; Enzi, W.; Vegetti, S.; Auger, M.; Fassnacht, C.D.; Despali, G.; Koopmans, L.V.E.; McKean, J.P. SHARP – VII. New constraints on warm dark matter free-streaming properties and substructure abundance from flux-ratio anomalous lensed quasars. arXiv 2019, arXiv:1905.04182. [Google Scholar]
- Iršič, V.; Viel, M.; Haehnelt, M.G.; Bolton, J.S.; Cristiani, S.; Becker, G.D.; D’Odorico, V.; Cupani, G.; Kim, T.S.; Berg, T.A.M.; et al. New constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data. Phys. Rev. D 2017, 96, 023522. [Google Scholar] [CrossRef]
- Vegetti, S.; Koopmans, L.V.E. Bayesian strong gravitational-lens modelling on adaptive grids: Objective detection of mass substructure in Galaxies. Mon. Not. R. Astron. Soc. 2009, 392, 945–963. [Google Scholar] [CrossRef]
- Vegetti, S.; Lagattuta, D.J.; McKean, J.P.; Auger, M.W.; Fassnacht, C.D.; Koopmans, L.V.E. Gravitational detection of a low-mass dark satellite galaxy at cosmological distance. Nature 2012, 481, 341–343. [Google Scholar] [CrossRef] [PubMed]
- Keeton, C.R. A Catalog of Mass Models for Gravitational Lensing. arXiv 2001, arXiv:astro-ph/0102341. [Google Scholar]
- Vegetti, S.; Koopmans, L.V.E.; Bolton, A.; Treu, T.; Gavazzi, R. Detection of a dark substructure through gravitational imaging. Mon. Not. R. Astron. Soc. 2010, 408, 1969–1981. [Google Scholar] [CrossRef]
- Vegetti, S.; Despali, G.; Lovell, M.R.; Enzi, W. Constraining sterile neutrino cosmologies with strong gravitational lensing observations at redshift z = 0.2. Mon. Not. R. Astron. Soc. 2018, 481, 3661–3669. [Google Scholar] [CrossRef]
- Vegetti, S.; Koopmans, L.V.E.; Auger, M.W.; Treu, T.; Bolton, A.S. Inference of the cold dark matter substructure mass function at z = 0.2 using strong gravitational lenses. Mon. Not. R. Astron. Soc. 2014, 442, 2017–2035. [Google Scholar] [CrossRef]
- Hezaveh, Y.D.; Dalal, N.; Marrone, D.P.; Mao, Y.Y.; Morningstar, W.; Wen, D.; Blandford, R.D.; Carlstrom, J.E.; Fassnacht, C.D.; Holder, G.P.; et al. Detection of Lensing Substructure Using ALMA Observations of the Dusty Galaxy SDP.81. Astrophys. J. 2016, 823, 37. [Google Scholar] [CrossRef]
- Nightingale, J.; Dye, S.; Massey, R. AutoLens: Automated Modeling of a Strong Lens’s Light, Mass and Source. arXiv 2017. [Google Scholar] [CrossRef]
- Brewer, B.J.; Huijser, D.; Lewis, G.F. Trans-dimensional Bayesian inference for gravitational lens substructures. Mon. Not. R. Astron. Soc. 2016, 455, 1819–1829. [Google Scholar] [CrossRef]
- Diaz Rivero, A.; Cyr-Racine, F.Y.; Dvorkin, C. On the Power Spectrum of Dark Matter Substructure in Strong Gravitational Lenses. arXiv 2017, arXiv:1707.04590. [Google Scholar] [CrossRef]
- Li, R.; Frenk, C.S.; Cole, S.; Wang, Q.; Gao, L. Projection effects in the strong lensing study of subhaloes. Mon. Not. R. Astron. Soc. 2017, 468, 1426–1432. [Google Scholar] [CrossRef] [Green Version]
- Despali, G.; Vegetti, S.; White, S.D.M.; Giocoli, C.; van den Bosch, F.C. Modelling the line-of-sight contribution in substructure lensing. Mon. Not. R. Astron. Soc. 2018, 475, 5424–5442. [Google Scholar] [CrossRef]
- Li, R.; Frenk, C.S.; Cole, S.; Gao, L.; Bose, S.; Hellwing, W.A. Constraints on the identity of the dark matter from strong gravitational lenses. Mon. Not. R. Astron. Soc. 2016, 460, 363–372. [Google Scholar] [CrossRef] [Green Version]
1 | Equal amounts of dark matter and anti-dark matter. |
2 | By strong, we mean that the cross-section for self-interaction is of the order of the nuclear cross-section for visible matter (set by the strong force). |
3 | Some SIDM models are motivated by the baryon asymmetry; in these models, dark matter, unlike traditional WIMPs, shares this asymmetry (for a review of asymmetric dark matter see [19]). |
4 | In contrast to WDM, the damping of small structures is not due to free-streaming, but to a collisional, Silk-like, damping. |
5 | The (co-moving) free-streaming scale is given by: , where is the age of the universe at the time when the dark matter particles become non-relativistic (at a temperature ); is the scale factor at ( in the radiation-dominated era); and is the scale factor at the time of matter-radiation equality. |
6 | For cold particles, we have assumed CDM WIMPs, which requires taking into account the kinetic decoupling temperature and epoch; specifically, we took Equation (43) of [23]. |
7 | Please note that acoustic oscillations are also present in WIMP-CDM models (e.g., [27]), but they occur at much smaller scales than in relevant hidden dark sector models where they can be of galactic scale. |
8 | We use , where is the mean dark matter density today. |
9 | For a review see e.g., Section 3 of [46]. |
10 | By this we mean an average of the fine-grained distribution function in the collisionless Boltzmann equation over the scales resolved in the simulation, typically several times the interparticle separation. |
11 | In principle, each particle can have an individual softening, see e.g., Section 4 of [47]. |
12 | The introduction of a softening scale in the density (or potential) suppresses gravitational two-body large-angle scatterings which are artificial for an approximately continuous dark matter density distribution. |
13 | In Fourier space, Equation (6) is simply a multiplication . |
14 | For a review of the force computation methods see Section 3.5 of [46]. |
15 | The particles are initially placed at random in the simulation cube and then left to evolve under a repulsive force by reversing the sign of the gravitational force until they reach an equilibrium configuration that has no discernible grid pattern [69]. |
16 | A sufficiently large volume is needed to sample large-scale modes that remain approximately linear during the simulation where power is transferred from large to small scales; without appropriate large-scale sampling, the clustering is no longer accurate once perturbations on the scale of the cube become non-linear. |
17 | In practice, power below the Nyquist frequency is generated non-linearly so the resolution of the simulation is not limited by the Nyquist frequency but rather by the gravitational softening scale, . |
18 | Reproduced from Michael Boylan-Kolchin et al. Resolving cosmic structure formation with the Millennium-II Simulation. MNRAS (2009) 398 (3): 1150-1164, doi: 10.1111/j.1365-2966.2009.15191.x. By permission of Oxford University Press on behalf of the Royal Astronomical Society. For the original article, please visit the following u. This figure is not included under the CC-BY license of this publication. For permissions, please email: [email protected]. |
19 | For a review of the state of cosmological simulations circa 2012 see [79]. |
20 | This is only true if, on the scales of interest, the primordial power spectrum grows monotonically towards large k. |
21 | Reproduced from Volker Springel et al. The Aquarius Project: the subhaloes of galactic haloes. MNRAS (2008) 391 (4): 1685–1711, doi: 10.1111/j.1365-2966.2008.14066.x. By permission of Oxford University Press on behalf of the Royal Astronomical Society. For the original article, please visit the following https://academic.oup.com/mnras/article/391/4/1685/1747035. |
22 | Reproduced from Julio Navarro et al. The diversity and similarity of simulated cold dark matter haloes. MNRAS (2010) 402 (1): 21–34, doi: 10.1111/j.1365-2966.2009.15878.x. By permission of Oxford University Press on behalf of the Royal Astronomical Society. For the original article, please visit the following https://academic.oup.com/mnras/article/402/1/21/1028856. |
23 | Reproduced from Carlos Vera-Ciro et al. The shape of dark matter haloes in the Aquarius simulations: evolution and memory. MNRAS (2011) 416 (2): 1377–1391, doi: 10.1111/j.1365-2966.2011.19134.x. By permission of Oxford University Press on behalf of the Royal Astronomical Society. For the original article, please visit the following https://academic.oup.com/mnras/article/416/2/1377/1061105. |
24 | Reproduced from Mark Vogelsberger et al. Phase-space structure in the local dark matter distribution and its signature in direct detection experiments. MNRAS (2009) 395 (2): 797–811, doi: 10.1111/j.1365-2966.2009.14630.x. By permission of Oxford University Press on behalf of the Royal Astronomical Society. For the original article, please visit the following https://academic.oup.com/mnras/article/395/2/797/1747020. The figures mentioned in footnotes 21–24 are not included under the CC-BY license of this publication. For permissions, please email: [email protected]. |
25 | Given the limited resolution of simulations, local in this sense refers to regions of at least (10 kpc) as in [140]. |
26 | Reproduced from Mark Vogelsberger et al. Subhaloes in self-interacting galactic dark matter haloes. MNRAS (2012) 423 (4): 3740–3752, doi: 10.1111/j.1365-2966.2012.21182.x. By permission of Oxford University Press on behalf of the Royal Astronomical Society. For the original article, please visit the following https://academic.oup.com/mnras/article/423/4/3740/1749150. This figure is not included under the CC-BY license of this publication. For permissions, please email: [email protected]. |
27 | Reproduced from Mark Lovell et al. The haloes of bright satellite galaxies in a warm dark matter universe. MNRAS (2012) 420 (3): 2318–2324, doi: 10.1111/j.1365-2966.2011.20200.x. By permission of Oxford University Press on behalf of the Royal Astronomical Society. For the original article, please visit the following https://academic.oup.com/mnras/article/420/3/2318/979379. This figure is not included under the CC-BY license of this publication. For permissions, please email: [email protected]. |
28 | This functional form has been corroborated by [112], but the parameters in the two studies are different. The formula is nevertheless a good approximation to the general behavior. |
29 | The gravothermal collapse [164] is a familiar process in globular clusters, where the inner regions have negative specific heat that is smaller than the positive specific heat in the outer regions. In the case of globular clusters, the collapse can be prevented by the formation of binary stars at the center. In the case of a SIDM halo, since the interactions are purely elastic, the process is expected to continue until a black hole forms. The black hole efficiently accretes the inner core of the SIDM halo (e.g., [165]). This discussion refers strictly to elastic self-scattering. If collisions are inelastic, then the energy released needs to be taken into account and, in fact, it could prevent the gravothermal collapse; see [166]. |
30 | Reproduced from Carlo Giocoli et al. The substructure hierarchy in dark matter haloes . MNRAS (2010) 404 (1): 502–517, doi: 10.1111/j.1365-2966.2010.16311.x. By permission of Oxford University Press on behalf of the Royal Astronomical Society. For the original article, please visit the following https://academic.oup.com/mnras/article/404/1/502/3101607. This figure is not included under the CC-BY license of this publication. For permissions, please email: [email protected]. |
31 | Reproduced from Volker Springel et al. The Aquarius Project: the subhaloes of galactic haloes. MNRAS (2008) 391 (4): 1685–1711, doi: 10.1111/j.1365-2966.2008.14066.x. By permission of Oxford University Press on behalf of the Royal Astronomical Society. For the original article, please visit the following https://academic.oup.com/mnras/article/391/4/1685/1747035. This figure is not included under the CC-BY license of this publication. For permissions, please email: [email protected]. |
32 | Another set of parameters that can be used to define the orbit are the apocentre and pericenter. Different parametrizations can be transformed into one another since they are all related to the potential, . |
33 | Reproduced from Lilian Jian et al. Orbital parameters of infalling satellite haloes in the hierarchical CDM model. MNRAS (2015) 448 (2): 1674–1686, doi: 10.1093/mnras/stv053. By permission of Oxford University Press on behalf of the Royal Astronomical Society. For the original article, please visit the following https://academic.oup.com/mnras/article/448/2/1674/1053529. This figure is not included under the CC-BY license of this publication. For permissions, please email: [email protected]. |
34 | This estimate is based on an extrapolation over many orders of magnitude of the subhalo mass function determined in simulations down to the free-streaming mass of WIMP-CDM particles. We discuss this in more detail below. |
35 | Reproduced from Miguel Rocha et al. Infall times for Milky Way satellites from their present-day kinematics. MNRAS (2012) 425 (1): 231–244, doi: 10.1111/j.1365-2966.2012.21432.x. By permission of Oxford University Press on behalf of the Royal Astronomical Society. For the original article, please visit the following https://academic.oup.com/mnras/article/425/1/231/998181. This figure is not included under the CC-BY license of this publication. For permissions, please email: [email protected]. |
36 | Reproduced from Mark Vogelsberger and Simon D. M. White. Streams and caustics: the fine-grained structure of cold dark matter haloes. MNRAS (2011) 413 (2): 1419–1438, doi: 10.1111/j.1365-2966.2011.18224.x. By permission of Oxford University Press on behalf of the Royal Astronomical Society. For the original article, please visit the following https://academic.oup.com/mnras/article/413/2/1419/1070092. This figure is not included under the CC-BY license of this publication. For permissions, please email: [email protected]. |
37 | Caustics represent folds in the fine-grained phase-space distribution function, which in CDM evolves according to the collisionless Boltzmann equation (Equation (1)). Before the formation of non-linear structures, CDM particles are distributed nearly uniformly in space with small density and velocity perturbations and very small thermal velocities. CDM particles thus occupy a thin, approximately three -dimensional, sheet in 6D phase-space volume. Since CDM particles are collisionless and evolve according to Equation (1), the fine-grained phase-space density is conserved during gravitational evolution (this was discussed earlier in the context of the maximum phase-space density in WDM models in Section 2.4), which implies that the original thin sheet can be stretched and folded but it cannot be broken. Caustics appear where folds occur, and have very large spatial densities, limited only by primordial thermal motions (e.g., [190,191,192]). |
38 | |
39 | |
40 | Reproduced from Frank C van den Bosch and Go Ogiya. Dark matter substructure in numerical simulations: a tale of discreteness noise, runaway instabilities, and artificial disruption. MNRAS (2018) 475 (3): 4066–4087, doi: 10.1093/mnras/sty084. By permission of Oxford University Press on behalf of the Royal Astronomical Society. For the original article, please visit the following https://academic.oup.com/mnras/article/475/3/4066/4797185. This figure is not included under the CC-BY license of this publication. For permissions, please email: [email protected]. |
41 | Reproduced from Frank C van den Bosch et al. Disruption of dark matter substructure: fact or fiction? MNRAS (2018) 474 (3): 3043–3066, doi: 10.1093/mnras/stx2956. By permission of Oxford University Press on behalf of the Royal Astronomical Society. For the original article, please visit the following https://academic.oup.com/mnras/article/474/3/3043/4638541. This figure is not included under the CC-BY license of this publication. For permissions, please email: [email protected]. |
42 | ©AAS. Reproduced with permission. For the original article, please visit the following https://iopscience.iop.org/article/10.1086/420840. |
43 | Reproduced from Go Ogiya and Andreas Burkert. Dynamical friction and scratches of orbiting satellite galaxies on host systems. MNRAS (2016) 457 (2): 2164–2172, doi: 10.1093/mnras/stw091. By permission of Oxford University Press on behalf of the Royal Astronomical Society. For the original article, please visit the following https://academic.oup.com/mnras/article/457/2/2164/970692. This figure is not included under the CC-BY license of this publication. For permissions, please email: [email protected]. |
44 | Reproduced from Michael Boylan-Kolchin et al. Dynamical friction and galaxy merging timescales . MNRAS (2008) 383 (1): 93–101, doi: 10.1111/j.1365-2966.2007.12530.x. By permission of Oxford University Press on behalf of the Royal Astronomical Society. For the original article, please visit the following https://academic.oup.com/mnras/article/383/1/93/1067887. This figure is not included under the CC-BY license of this publication. For permissions, please email: [email protected]. |
45 | The Hernquist halo profile [221] has the same asymptotic behavior at the center as the NFW halo and has the advantage that the velocity distribution function in the isotropic case has an analytic form (see Equation (11)), which makes it particularly simple to set up initial conditions for simulating haloes in dynamical equilibrium. |
46 | The values for these parameters reported in [218] are: , , , and , but we point out that in this study both the halo and the subhalo were modeled as Hernquist profiles. |
47 | Equation (18) was only explored for values of the circularity in the range and for ; the lower limits were imposed to avoid radial orbits that would take the subhalo so close to the center of the halo in the first orbit that the tidal effects of the galaxy cannot be ignored. So far we have not discussed baryonic effects, but it is worth mentioning them here since Equation (18) was not investigated outside this range and might not be valid there even in the absence of a central galaxy. |
48 | ©AAS. Reproduced with permission. For the original article, please visit the following https://iopscience.iop.org/article/10.1088/0004-637X/740/2/102. |
49 | |
50 | Although the introduction of a third parameter will obviously improve the quality of the fit, the Einasto profile is, in fact, a slightly better fit to simulations than the 2-parameter NFW profile even after one of the parameters () is fixed to an appropriate value. For instance, fixing gives a better fit than NFW to haloes across a range of halo masses [240]. |
51 | Reproduced from Volker Springel et al. The Aquarius Project: the subhaloes of galactic haloes. MNRAS (2008) 391 (4): 1685–1711, doi: 10.1111/j.1365-2966.2008.14066.x. By permission of Oxford University Press on behalf of the Royal Astronomical Society. For the original article, please visit the following https://academic.oup.com/mnras/article/391/4/1685/1747035. This figure is not included under the CC-BY license of this publication. For permissions, please email: [email protected]. |
52 | We note that there is a typo in the caption of Figure 28 in [138], which gives the fitting function for and ( M M). |
53 | |
54 | For a clear illustration of the evolutionary track of subhaloes in the plane due to tidal stripping, see Figure 8 of [243]. |
55 | |
56 | This is true only for elastic SIDM, and for cross sections that do not exceed the gravothermal collapse threshold, cmg, for dwarf-size haloes (see the last paragraphs of Section 2.4). Although the regime of gravothermal collapse has been known for a couple of decades [162,163], a comprehensive analysis of this regime has yet to be carried out (see [32,249,251,252] for recent developments in this interesting regime). |
57 | There is a class of inelastic SIDM models in which the dark matter can have ground and excited states (e.g., [253]), and in which scattering between the excited and ground states can result in energy injection at the center of dark matter haloes thus altering their structure. Only until very recently have these models began to be explored with simulations [166,254]. |
58 | Large relative velocities between gas and dark matter inherited from the photon-baryon coupling before recombination can impede the growth of gravitational perturbations and stop gas from accreting into the first haloes [257]. This process, however, is only thought to be relevant for the formation of the first stars. |
59 | This mass threshold is smaller at higher redshifts, see e.g., Figure 3 of [266]. |
60 | |
61 | |
62 | See [325] for an opposed view. |
63 | This halo mass was estimated assuming a truncated pseudo-Jaffe profile (see e.g., Equation (42) in [350]). The inferred mass is likely to be larger if an NFW profile is assumed instead. For instance, a similar dark matter substructure detected with lensing was reported by [351] with a mass of ∼ M assuming a truncated pseudo-Jaffe profile, while assuming an NFW profile this substructure is estimated to have a mass of ∼ M [352]. |
64 | This has been demonstrated explicitly for the case of Einstein ring distortions but it may hold true for other tests as well. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zavala, J.; Frenk, C.S. Dark Matter Haloes and Subhaloes. Galaxies 2019, 7, 81. https://doi.org/10.3390/galaxies7040081
Zavala J, Frenk CS. Dark Matter Haloes and Subhaloes. Galaxies. 2019; 7(4):81. https://doi.org/10.3390/galaxies7040081
Chicago/Turabian StyleZavala, Jesús, and Carlos S. Frenk. 2019. "Dark Matter Haloes and Subhaloes" Galaxies 7, no. 4: 81. https://doi.org/10.3390/galaxies7040081