Internet of Things: A Scientometric Review
"> Figure 1
<p>Documents per year published (WoS and Scopus) with the search string “Internet of Things” (IoT) for the period 2000 to 2016. (<b>a</b>) before the duplicates-removal filter; (<b>b</b>) after duplicates-removal filter.</p> "> Figure 2
<p>Internet of Things percentage of documents published per year by the top 7 first author’s corresponding address country for the period 2002 to 2016.</p> "> Figure 3
<p>Internet of Things top 5 authors with most documents published per year, for the period 2006 to 2016.</p> "> Figure 4
<p>Internet of Things top authors’ keywords documents published per year, excluding the keywords: Internet of Things, IoT, Internet of Things (IoT), and The Internet of Things, for the period 2006 to 2016.</p> "> Figure 5
<p>Internet of Things top applications based authors’ keywords in documents per year, for the period 2006 to 2016. (<b>a</b>) applications that start with “smart” (<b>b</b>) applications that do not start with “smart”.</p> "> Figure 6
<p>Internet of Things media and host layers communication protocols based on authors’ keywords in documents per year, for the 2006 to 2016 period. (<b>a</b>) media layers’ communications protocols; (<b>b</b>) host layers’ communication protocols.</p> "> Figure 7
<p>Internet of Things software processing techniques based on authors’ keywords in documents per year, for the period 2006 to 2016.</p> "> Figure 8
<p>Internet of Things devices operating systems (OS) and hardware based on authors’ keywords, for the period 2006 to 2016. (<b>a</b>) most used operating systems in authors’ keywords per year; (<b>b</b>) most used hardware in authors’ keywords per year.</p> "> Figure 9
<p>Internet of Things top trending topics based on authors’ keywords, with average growth rate (AGR) for different times periods (2011–2012, 2013–2014, and 2015–2016).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
- Read Clarivate Web of Science and Scopus databases (.CSV files).
- Filter publications by document type.
- Find and remove duplicated documents.
- Graph the history of the top topics (keywords, authors, countries).
- Graph the history of selected items inside a topic.
- Find trending topics using the top average growth rate (AGR).
- Calculate the h-index for authors and countries.
2.1. Data Set
- Conference Paper;
- Article;
- Review;
- Proceedings Paper.
2.2. Pre-Processing
2.2.1. Simplify Author’s name
- Most journals abbreviate the author’s first name to an initial and a dot.
- Most journals use the author name’s special accents.
- WoS uses a comma between the author’s last name and first name initial, but Scopus does not.
- Remove dots and coma from author’s name.
- Remove special accents from author’s name.
2.2.2. Remove Duplicate Samples
2.3. Times Cited and h-Index
2.4. Document’s Country
2.5. General IoT Publications Growth
3. Country and Author Research Analysis
3.1. Country Analysis
3.2. Author Analysis
4. Research Topics
4.1. Applications
4.2. Communication Protocols According to Open Systems Interconnection Model (OSI Model)
4.3. Software Processing Techniques
4.4. Device Operating Systems (OS) and Hardware
4.5. Top Trending Topics
- = Average growth rate;
- = Start year;
- = End year;
- = Number of publications on year
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Williams, J.M.; Khanna, R.; Ruiz-Rosero, J.P.; Pisharody, G.; Qian, Y.; Carlson, C.R.; Liu, H.; Ramirez-Gonzalez, G. Weaving the Wireless Web: Toward a Low-Power, Dense Wireless Sensor Network for the Industrial IoT. IEEE Microw. Mag. 2017, 18, 40–63. [Google Scholar] [CrossRef]
- Hiremath, S.; Yang, G.; Mankodiya, K. Wearable Internet of Things: Concept, Architectural Components and Promises for Person-Centered Healthcare; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 304–307. [Google Scholar]
- Williams, J.M.; Ruiz-Rosero, J.P.; Ramirez-Gonzalez, G.; Khanna, R.; Pisharody, G.; Qian, Y.; Wang, J.; Carlson, C.R.; Liu, H. Enabling Densely-Scalable Low-Power WSNs for Shipping and Industrial IoT; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017. [Google Scholar]
- Gerla, M.; Lee, E.K.; Pau, G.; Lee, U. Internet of Vehicles: From Intelligent Grid to Autonomous Cars and Vehicular Clouds; IEEE Computer Society: Washington, DC, USA, 2014; pp. 241–246. [Google Scholar]
- Bi, Z.; Xu, L.; Wang, C. Internet of Things for enterprise systems of modern manufacturing. IEEE Trans. Ind. Inf. 2014, 10, 1537–1546. [Google Scholar]
- Spanò, E.; Niccolini, L.; Pascoli, S.; Iannaccone, G. Last-meter smart grid embedded in an internet-of-things platform. IEEE Trans. Smart Grid 2015, 6, 468–476. [Google Scholar] [CrossRef]
- IBM. Redefining Boundaries: Insights from the Global C-Suite Study. IBM Institute for Business Value, IBM Corporation. 2015. Available online: https://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03695usen/GBE03695USEN.PDF (accessed on 28 August 2017).
- Garcia-Sanchez, A.J.; Garcia-Sanchez, F.; Garcia-Haro, J. wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Comput. Electron. Agric. 2011, 75, 288–303. [Google Scholar] [CrossRef]
- Buratti, C.; Stajkic, A.; Gardasevic, G.; Milardo, S.; Abrignani, M.D.; Mijovic, S.; Morabito, G.; Verdone, R. Testing Protocols for the Internet of Things on the EuWIn Platform. IEEE Int. Things J. 2016, 3, 124–133. [Google Scholar] [CrossRef]
- Ruiz-Rosero, J.; Ramirez-Gonzalez, G. Firmware architecture to support Plug and Play sensors for IoT environment. In Proceedings of the VII Congreso Iberoamericano de Telemática CITA 2015, Popayán, Colombia, 10–12 June 2015. [Google Scholar]
- Khanna, R.; Liu, H.; Rangarajan, T. Wireless Data Center Management: Sensor Network Applications and Challenges. IEEE Microw. Mag. 2014, 15, S45–S60. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef]
- Borgia, E. The internet of things vision: Key features, applications and open issues. Comput. Commun. 2014, 54, 1–31. [Google Scholar] [CrossRef]
- Yan, B.N.; Lee, T.S.; Lee, T.P. Mapping the intellectual structure of the Internet of Things (IoT) field (2000–2014): A co-word analysis. Scientometrics 2015, 105, 1285–1300. [Google Scholar] [CrossRef]
- Mishra, D.; Gunasekaran, A.; Childe, S.; Papadopoulos, T.; Dubey, R.; Wamba, S. Vision, applications and future challenges of Internet of Things: A bibliometric study of the recent literature. Ind. Manag. Data Syst. 2016, 116, 1331–1355. [Google Scholar] [CrossRef]
- Leydesdorff, L.; Milojevic, S. Scientometrics. arXiv, 2012; arXiv:1208.4566v2. [Google Scholar]
- Schoenberger, C.R.; Upbin, B. The Internet of Things. Forbes Mag. 2002, 169, 155–160. [Google Scholar]
- Qiu, R.; Zhang, Z. Design of enterprise web servers in support of instant information retrievals. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Washington, DC, USA, 8 October 2003; Volume 3, pp. 2661–2666. [Google Scholar]
- Traversat, B.; Abdelaziz, M.; Doolin, D.; Duigou, M.; Hugly, J.C.; Pouyoul, E. Project JXTA-C: Enabling a Web of Things. 2003. Available online: http://ieeexplore.ieee.org/document/1174816/ (accessed on 10 August 2017).
- Gershenfeld, N.; Krikorian, R.; Cohen, D. The internet of things. Sci. Am. 2004, 291, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Luckett, D. The supply chain. BT Technol. J. 2004, 22, 50–55. [Google Scholar] [CrossRef]
- Böse, F.; Lampe, W. Adoption of RFID in logistics. IBIMA 2005, 1, 62–65. [Google Scholar]
- Norman, A. Leveraging Radio Frequency Identification (RFID) Technology for Halal Tracking Tag; Universiti Malaya: Kuala Lumpur, Malaysia, 2005; Volume 1. [Google Scholar]
- Djassemi, M.; Singh, J. The use of RFID in manufacturing and packaging technology laboratories. In Proceedings of the Thirty-Third North American Manufacturing Research Conference, New York, NY, USA, 23–27 May 2005; Volume TP05PUB223. [Google Scholar]
- Pujolle, G. An Autonomic-oriented Architecture for the Internet of Things. In Proceedings of the IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA’06), Sofia, Bulgaria, 3–6 October 2006; pp. 163–168. [Google Scholar]
- Bernard, G. Invited Paper: Middleware for Next Generation Distributed Systems: Main Challenges and Perspectives. In Proceedings of the 17th International Workshop on Database and Expert Systems Applications (DEXA’06), Krakow, Poland, 4–8 September 2006; pp. 237–240. [Google Scholar]
- Adelmann, R.; Langheinrich, M.; Flörkemeier, C. Toolkit for Bar Code Recognition and Resolving on Camera Phones—Jump Starting the Internet of Things. In Proceedings of the Workshop Mobile and Embedded Interactive Systems (MEIS 2006) at Informatik, Dresden, Germany, October 2006. [Google Scholar]
- Lehtonen, M.; Michahelles, F.; Staake, T.; Fleisch, E. Strengthening the Security of Machine Readable Documents by Combining RFID and Optical Memory Devices; Springer: Paris, France, 2006; pp. 77–92. [Google Scholar]
- Futatsumori, S.; Kono, T.; Hikage, T.; Nojima, T.; Koike, B. Experimental Test System to Assess the EMI From RFID Reader/Writer on Implantable Cardiac Pacemaker. 2006, pp. 258–261. Available online: https://www.scopus.com/record/display.uri?eid=2-s2.0-84901711947&origin=inward (accessed on 10 August 2017).
- Broll, G.; Rukzio, E.; Paolucci, M.; Wagner, M.; Schmidt, A.; Hussmann, H. Perci: Pervasive Service Interaction with the Internet of Things. IEEE Int. Comput. 2009, 13, 74–81. [Google Scholar] [CrossRef]
- Hvistendahl, M. Information Technology China Pushes the ‘Internet of Things’. Science 2012, 336, 1223. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Wang, R.; Chen, Q.; Liu, Y.; Qin, W. IOT gateway: Bridging wireless sensor networks into Internet of Things. In Proceedings of the 2010 IEEE/IFIP 8th International Conference on Embedded and Ubiquitous Computing (EUC), Hong Kong, China, 11–13 December 2010; pp. 347–352. [Google Scholar]
- The Economic Times. Internet of Things to Grow Rapidly in India by 2020: Report. 2017. Available online: http://economictimes.indiatimes.com/articleshow/57129635.cms (accessed on 28 July 2017).
- BBC. South Korea Launches First Internet of Things Network. 2016. Available online: http://www.bbc.com/news/technology-36710667 (accessed on 25 July 2017).
- Estopace, E. IDC Sees Gov’t Use of IoT in Indonesia by 2019. 2017. Available online: https://www.enterpriseinnovation.net/article/idc-sees-govt-use-iot-indonesia-2019-1967761722 (accessed on 25 July 2017).
- Telecompaper. Xeelas, Sade to Build IoT Network in Turkey. 2017. Available online: https://www.telecompaper.com/news/xeelas-sade-to-build-iot-network-in-turkey--1189559 (accessed on 25 July 2017).
- Research an Markets. Russia Internet of Things (IoT) Market Size, Demand, Opportunity & Growth Outlook 2023. 2017. Available online: https://www.researchandmarkets.com/research/xmn4pm/russia_internet (accessed on 25 July 2017).
- Ignite National Technology Fund. Internet of Things: It’s Happening! 2017. Available online: https://www.ictrdf.org.pk/blog/2017/01/23/internet-of-things-its-happening-2/ (accessed on 25 July 2017).
- Yu, R.; Zhang, Y.; Gjessing, S.; Xia, W.; Yang, K. Toward Cloud-Based Vehicular Networks with Efficient Resource Management. IEEE Netw. 2013, 27, 48–55. [Google Scholar] [CrossRef]
- Li, Y.; Hou, M.; Liu, H.; Liu, Y. Towards a theoretical framework of strategic decision, supporting capability and information sharing under the context of Internet of Things. Inf. Technol. Manag. 2012, 13, 205–216. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, S.; Nelms, R.M. Distributed Online Algorithm for Optimal Real-Time Energy Distribution in the Smart Grid. IEEE Int. Things J. 2014, 1, 70–80. [Google Scholar] [CrossRef]
- Su, K.; Li, J.; Fu, H. Smart city and the applications. In Proceedings of the 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 1028–1031. [Google Scholar]
- Zhang, J.; Iannucci, B.; Hennessy, M.; Gopal, K.; Xiao, S.; Kumar, S.; Pfeffer, D.; Aljedia, B.; Ren, Y.; Griss, M.; et al. Sensor Data as a Service—A Federated Platform for Mobile Data-centric Service Development and Sharing. In Proceedings of the 2013 IEEE International Conference on Services Computing, Santa Clara, CA, USA, 28 June–3 July 2013; pp. 446–453. [Google Scholar]
- Wang, J.; Katabi, D. Dude, where’s my card? RFID positioning that works with multipath and non-line of sight. In Proceedings of the ACM SIGCOMM 2013 Conference, Hong Kong, China, 12–16 August 2013; pp. 51–62. [Google Scholar]
- Li, B.H.; Zhang, L.; Wang, S.L.; Tao, F.; Cao, J.W.; Jiang, X.D.; Song, X.; Chai, X.D. Cloud manufacturing: A new service-oriented networked manufacturing model. Comput. Integr. Manuf. Syst. 2010, 16, 1–7. [Google Scholar]
- Li, W.; Zhong, Y.; Wang, X.; Cao, Y. Resource virtualization and service selection in cloud logistics. J. Netw. Comput. Appl. 2013, 36, 1696–1704. [Google Scholar] [CrossRef]
- Chen, Y.; Han, F.; Yang, Y.H.; Ma, H.; Han, Y.; Jiang, C.; Lai, H.Q.; Claffey, D.; Safar, Z.; Liu, K. Time-reversal wireless paradigm for green internet of things: An overview. IEEE Int. Things J. 2014, 1, 81–98. [Google Scholar] [CrossRef]
- Jara, A.J.; Zamora, M.A.; Skarmeta, A.F.G. An internet of things-based personal device for diabetes therapy management in ambient assisted living (AAL). Pers. Ubiquitous Comput. 2011, 15, 431–440. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.; Zhang, X. An iBeacon-based indoor positioning systems for hospitals. Int. J. Smart Home 2015, 9, 161–168. [Google Scholar] [CrossRef]
- Li, H.; Gao, B.; Chen, Z.; Zhao, Y.; Huang, P.; Ye, H.; Liu, L.; Liu, X.; Kang, J. A learnable parallel processing architecture towards unity of memory and computing. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Sheng, Q.; Falkner, N.; Dustdar, S.; Wang, H.; Vasilakos, A. When things matter: A survey on data-centric internet of things. J. Netw. Comput. Appl. 2016, 64, 137–153. [Google Scholar] [CrossRef]
- Li, X.; Lu, R.; Liang, X.; Shen, X.; Chen, J.; Lin, X. Smart community: An internet of things application. IEEE Commun. Mag. 2011, 49, 68–75. [Google Scholar] [CrossRef]
- Sun, Q.B.; Liu, J.; Li, S.; Fan, C.X.; Sun, J.J. Internet of Things: Summarize on concepts, architecture and key technology problem. J. Beijing Univ. Posts Telecommun. 2010, 33, 1–9. [Google Scholar]
- Lim, S.; Son, D.; Kim, J.; Lee, Y.; Song, J.K.; Choi, S.; Lee, D.; Kim, J.; Lee, M.; Hyeon, T.; Kim, D.H. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Funct. Mater. 2015, 25, 375–383. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, D.; Wang, Z.; Yu, Z.; Zhou, X. Opportunistic IoT: Exploring the harmonious interaction between human and the internet of things. J. Netw. Comput. Appl. 2013, 36, 1531–1539. [Google Scholar] [CrossRef]
- Li, J.; Liu, X. An important aspect of big data: Data usability. Comput. Res. Dev. 2013, 50, 1147–1162. [Google Scholar]
- Hong, S.; Kim, D.; Ha, M.; Bae, S.; Park, S.; Jung, W.; Kim, J.E. SNAIL: An IP-based wireless sensor network approach to the Internet of things. IEEE Wirel. Commun. 2010, 17, 34–42. [Google Scholar] [CrossRef]
- Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet of Things: Vision, applications and research challenges. Ad Hoc Netw. 2012, 10, 1497–1516. [Google Scholar] [CrossRef]
- Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; pp. 13–15. [Google Scholar]
- Tao, F.; Zhang, L.; Venkatesh, V.; Luo, Y.; Cheng, Y. Cloud manufacturing: A computing and service-oriented manufacturing model. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2011, 225, 1969–1976. [Google Scholar] [CrossRef]
- Tan, L.; Wang, N. Future Internet: The Internet of Things. In Proceedings of the 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, 20–22 August 2010; Volume 5, pp. V5376–V5380. [Google Scholar]
- Meng, X.; Ci, X. Big data management: Concepts, techniques and challenges. Comput. Res. Dev. 2013, 50, 146–169. [Google Scholar]
- Aziz, A.; Şekercioǧlu, Y.; Fitzpatrick, P.; Ivanovich, M. A survey on distributed topology control techniques for extending the lifetime of battery powered wireless sensor networks. IEEE Commun. Surv. Tutor. 2013, 15, 121–144. [Google Scholar] [CrossRef]
- Kortuem, G.; Kawsar, F.; Sundramoorthy, V.; Fitton, D. Smart objects as building blocks for the internet of things. IEEE Int. Comput. 2010, 14, 44–51. [Google Scholar] [CrossRef]
- Ganti, R.; Ye, F.; Lei, H. Mobile crowdsensing: Current state and future challenges. IEEE Commun. Mag. 2011, 49, 32–39. [Google Scholar] [CrossRef]
- Bobadilla, J.; Ortega, F.; Hernando, A.; Gutiérrez, A. Recommender systems survey. Knowl. Based Syst. 2013, 46, 109–132. [Google Scholar] [CrossRef]
- Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Context aware computing for the internet of things: A survey. IEEE Commun. Surv. Tutor. 2014, 16, 414–454. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for smart cities. IEEE Int. Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Chen, M.; Mao, S.; Liu, Y. Big data: A survey. Mob. Netw. Appl. 2014, 19, 171–209. [Google Scholar] [CrossRef]
- Spiess, P.; Karnouskos, S.; Guinard, D.; Savio, D.; Baecker, O.; Souza, L.; Trifa, V. Soa-based integration of the internet of things in enterprise services. In Proceedings of the IEEE International Conference on Web Services, Los Angeles, CA, USA, 6–10 July 2009; pp. 968–975. [Google Scholar]
- Mainetti, L.; Patrono, L.; Vilei, A. Evolution of wireless sensor networks towards the Internet of Things: A survey. In Proceedings of the 2011 19th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 15–17 September 2011; pp. 16–21. [Google Scholar]
- Dohr, A.; Modre-Osprian, R.; Drobics, M.; Hayn, D.; Schreier, G. The internet of things for ambient assisted living. In Proceedings of the 2010 Seventh International Conference on Information Technology: New Generations (ITNG), Las Vegas, NV, USA, 12–14 April 2010; pp. 804–809. [Google Scholar]
- Kovatsch, M.; Duquennoy, S.; Dunkels, A. A low-power CoAP for Contiki. In Proceedings of the 2011 IEEE 8th International Conference on Mobile Adhoc and Sensor Systems (MASS), Valencia, Spain, 17–22 October 2011; pp. 855–860. [Google Scholar]
- Khan, R.; Khan, S.; Zaheer, R.; Khan, S. Future internet: The internet of things architecture, possible applications and key challenges. In Proceedings of the 2012 10th International Conference on Frontiers of Information Technology (FIT), Islamabad, India, 17–19 December 2012; pp. 257–260. [Google Scholar]
- Domingo, M. An overview of the Internet of Things for people with disabilities. J. Netw. Comput. Appl. 2012, 35, 584–596. [Google Scholar] [CrossRef]
- Hancke, G.; de Silva, B.; Hancke, G., Jr. The role of advanced sensing in smart cities. Sensors 2013, 13, 393–425. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, R.; Zhou, J.; Qin, Y.; Xu, C.; Hu, Y.; Xu, S. Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics. Mater. Sci. Eng. R Rep. 2010, 70, 320–329. [Google Scholar] [CrossRef]
- Wang, S.; Lin, L.; Wang, Z. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462. [Google Scholar] [CrossRef]
- Keoh, S.; Kumar, S.; Tschofenig, H. Securing the internet of things: A standardization perspective. IEEE Int. Things J. 2014, 1, 265–275. [Google Scholar] [CrossRef]
- Malhotra, A.; Melville, N.; Watson, R. Spurring impactful research on information systems for environmental sustainability. MIS Q. Manag. Inf. Syst. 2013, 37, 1265–1274. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Q.; Zheng, F.; Long, C.; Lu, Z.; Duan, Z. Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. J. Assoc. Inf. Sci. Technol. 2016, 67, 967–972. [Google Scholar] [CrossRef]
- Sun, Y.; Song, H.; Jara, A.J.; Bie, R. Internet of Things and Big Data Analytics for Smart and Connected Communities. IEEE Access 2016, 4, 766–773. [Google Scholar] [CrossRef]
- Li, D.; Yao, Y.; Shao, Z. Big data in smart city. Geomat. Inf. Sci. Wuhan Univ. 2014, 39, 631–640. [Google Scholar]
- Moreno-Cano, V.; Terroso-Saenz, F.; Skarmeta-Gomez, A. Big Data for IoT Services in Smart Cities; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 418–423. [Google Scholar]
- Gómez Romero, C.D.; Díaz Barriga, J.K.; Rodríguez Molano, J.I. Big Data Meaning in the Architecture of IoT for Smart Cities. In Proceedings of the First International Conference on Data Mining and Big Data (DMBD 2016), Bali, Indonesia, 25–30 June 2016; Tan, Y., Shi, Y., Eds.; Springer: Cham, Switzerland, 2016; pp. 457–465. [Google Scholar]
- Kaur, M.; Maheshwari, P. Building Smart Cities Applications Using IoT and Cloud-Based Architectures; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016. [Google Scholar]
- Chang, C.I.; Lo, C.C. Planning and Implementing a Smart City in Taiwan. IT Prof. 2016, 18, 42–49. [Google Scholar] [CrossRef]
- Longo, M.; Zaninelli, D.; Roscia, M.; Costoiu, M. Smart City to Improve Power Quality; IEEE Computer Society: Washington, DC, USA, 2014; pp. 458–462. [Google Scholar]
- Longo, M.; Roscia, M.; Lazaroiu, G.; Zaninelli, D. The spread of smart city and power quality requirements. UPB Sci. Bull. Ser. C Electr. Eng. Comput. Sci. 2015, 77, 281–292. [Google Scholar]
- Rehman, S.U.; Manickam, S. A Study of Smart Home Environment and its Security Threats. Int. J. Reliab. Qual. Saf. Eng. 2016, 23. [Google Scholar] [CrossRef]
- Alohali, B.; Merabti, M.; Kifayat, K. A Secure Scheme for a Smart House Based on Cloud of Things (CoT); Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 115–120. [Google Scholar]
- Peter, S.; Gopal, R. Multi-Level Authentication System for Smart Home-Security Analysis and Implementation; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; Volume 2. [Google Scholar]
- Peng, Y.; Jiang, L.; Gang, W.; Wang, X. Smart home system based on zigbee wireless sensor network. Rev. Tec. Fac. Ing. Univ. Zulia 2016, 39, 335–341. [Google Scholar]
- Yiqi, W.; Lili, H.; Chengquan, H.; Yan, G.; Zhangwei, Z. A Zigbee-Based Smart Home Monitoring System; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 114–117. [Google Scholar]
- Gong, S.F.; Yin, X.Q. Solution of Home Security Based on ARM and ZigBee; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 89–91. [Google Scholar]
- Cicirelli, F.; Fortino, G.; Giordano, A.; Guerrieri, A.; Spezzano, G.; Vinci, A. On the Design of Smart Homes: A Framework for Activity Recognition in Home Environment. J. Med. Syst. 2016, 40. [Google Scholar] [CrossRef] [PubMed]
- Bourobou, S.; Yoo, Y. User activity recognition in smart homes using pattern clustering applied to temporal ANN algorithm. Sensors 2015, 15, 11953–11971. [Google Scholar] [CrossRef] [PubMed]
- Fortino, G.; Giordano, A.; Guerrieri, A.; Spezzano, G.; Vinci, A. A Data Analytics Schema for Activity Recognition in Smart Home Environments. In Ubiquitous Computing and Ambient Intelligence, Proceedings of the 9th International Conference on Sensing, Processing, and Using Environmental Information (UCAmI 2015), Puerto Varas, Chile, 1–4 December 2015; García-Chamizo, J.M., Fortino, G., Ochoa, S.F., Eds.; Springer: Cham, Switzerland, 2015; pp. 91–102. [Google Scholar]
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart grid—The new and improved power grid: A survey. IEEE Commun. Surv. Tutor. 2012, 14, 944–980. [Google Scholar] [CrossRef]
- Noll, J.; Garitano, I.; Fayyad, S.; Åsberg, E.; Abie, H. Measurable security, privacy and dependability in smart grids. J. Cyber Secur. Mob. 2014, 3, 371–398. [Google Scholar] [CrossRef]
- Pitas, C.; Tsirakis, C.; Zotou, E.; Panagopoulos, A. Emerging communication technologies and security challenges in a smart grid wireless ecosystem. Int. J. Wirel. Mob. Comput. 2014, 7, 231–245. [Google Scholar] [CrossRef]
- Dalipi, F.; Yayilgan, S. Security and Privacy Considerations for Iot Application on Smart Grids: Survey and Research Challenges; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 63–68. [Google Scholar]
- Meloni, A.; Atzori, L. A Cloud-Based and Restful Internet of Things Platform to Foster Smart Grid Technologies Integration and Re-Usability; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 387–392. [Google Scholar]
- Wang, G.; Li, B.; Hu, Z.; Song, Y. Challenges and future evolution of control center under smart grid environment. Power Syst. Technol. 2011, 35, 1–5. [Google Scholar]
- Beligianni, F.; Alamaniotis, M.; Fevgas, A.; Tsompanopoulou, P.; Bozanis, P.; Tsoukalas, L. An Internet of Things Architecture for Preserving Privacy of Energy Consumption; Institution of Engineering and Technology: Stevenage, UK, 2016; Volume 2016. [Google Scholar]
- Winter, J. Citizen perspectives on the customization/privacy paradox related to smart meter implementation. Int. J. Technoethics 2015, 6, 45–59. [Google Scholar] [CrossRef]
- Dumitrache, L. The next generation of cyber-physical systems. Control Eng. Appl. Inf. 2010, 12, 3–4. [Google Scholar]
- Jazdi, N. Cyber Physical Systems in the Context of Industry 4.0; IEEE Computer Society: Washington, DC, USA, 2014. [Google Scholar]
- Pisching, M.A.; Junqueira, F.; Filho, D.J.D.S.; Miyagi, P.E. An architecture based on IoT and CPS to organize and locate services. In Proceedings of the 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, Germany, 6–9 September 2016; pp. 1–4. [Google Scholar]
- Zhou, K.; Liu, T.; Liang, L. From cyber-physical systems to Industry 4.0: Make future manufacturing become possible. Int. J. Manuf. Res. 2016, 11, 167–188. [Google Scholar] [CrossRef]
- Mosterman, P.; Zander, J. Industry 4.0 as a Cyber-Physical System study. Softw. Syst. Model. 2016, 15, 17–29. [Google Scholar] [CrossRef]
- Jara, A.; Genoud, D.; Bocchi, Y. Big Data for Cyber Physical Systems an Analysis of Challenges, Solutions and Opportunities; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 376–380. [Google Scholar]
- Lee, J.; Bagheri, B.; Jin, C. Introduction to cyber manufacturing. Manuf. Lett. 2016, 8, 11–15. [Google Scholar] [CrossRef]
- O’Donovan, P.; Leahy, K.; Bruton, K.; O’Sullivan, D. Big data in manufacturing: A systematic mapping study. J. Big Data 2015, 2. [Google Scholar] [CrossRef]
- Vegh, L.; Miclea, L. Secure and Efficient Communication in Cyber-Physical Systems through Cryptography and Complex Event Processing; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 273–276. [Google Scholar]
- Mourtzis, D.; Vlachou, E. Cloud-based cyber-physical systems and quality of services. TQM J. 2016, 28, 704–733. [Google Scholar] [CrossRef]
- Watt, S.; Milne, C.; Bradley, D.; Russell, D.; Hehenberger, P.; Azorin-Lopez, J. Privacy Matters—Issues within Mechatronics. IFAC-PapersOnLine 2016, 49, 423–430. [Google Scholar] [CrossRef]
- Miranda, J.; Cabral, J.; Wagner, S.; Pedersen, C.; Ravelo, B.; Memon, M.; Mathiesen, M. An open platform for seamless sensor support in healthcare for the internet of things. Sensors 2016, 16. [Google Scholar] [CrossRef] [PubMed]
- Tsirbas, H.; Giokas, K.; Koutsouris, D. “Internet of Things“, an RFID—IPv6 scenario in a healthcare environment. In XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010; Springer: Berlin/Heidelberg, Germany, 2010; Volume 29, pp. 808–811. [Google Scholar]
- Sowmiya, E.; Malathi, L.; Selvi, A.T. A study on security issues in healthcare applications using medical wireless sensor network and IoT. IIOAB J. 2016, 7, 575–583. [Google Scholar]
- Ullah, K.; Shah, M.; Zhang, S. Effective Ways to Use Internet of Things in the Field of Medical And Smart Health Care; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 372–379. [Google Scholar]
- Chong, A.Y.L.; Liu, M.; Luo, J.; Keng-Boon, O. Predicting RFID adoption in healthcare supply chain from the perspectives of users. Int. J. Prod. Econ. 2015, 159, 66–75. [Google Scholar] [CrossRef]
- Shahamabadi, M.; Ali, B.; Noordin, N.; Rasid, M.; Varahram, P.; Jara, A. A NEMO-HWSN solution to support 6LoWPAN network mobility in hospital wireless sensor network. Comput. Sci. Inf. Syst. 2014, 11, 943–960. [Google Scholar] [CrossRef]
- Gia, T.; Thanigaivelan, N.; Rahmani, A.M.; Westerlund, T.; Liljeberg, P.; Tenhunen, H. Customizing 6lowpan Networks towards Internet-of-Things Based Ubiquitous Healthcare Systems; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015. [Google Scholar]
- Romero, L.; Chatterjee, P.; Armentano, R. An IoT approach for integration of computational intelligence and wearable sensors for Parkinson’s disease diagnosis and monitoring. Health Technol. 2016, 6, 167–172. [Google Scholar] [CrossRef]
- Perez, M.; Mata, F.; Rodriguez, V.; Zhang, S. Pervasive Healthcare Monitoring System; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 1712–1716. [Google Scholar]
- Abdennadher, I.; Khabou, N.; Rodriguez, I.; Jmaiel, M. Designing Energy Efficient Smart Buildings in Ubiquitous Environments; IEEE Computer Society: Washington, DC, USA, 2016; pp. 122–127. [Google Scholar]
- Patti, E.; Acquaviva, A.; Jahn, M.; Pramudianto, F.; Tomasi, R.; Rabourdin, D.; Virgone, J.; MacIi, E. Event-Driven User-Centric Middleware for Energy-Efficient Buildings and Public Spaces. IEEE Syst. J. 2016, 10, 1137–1146. [Google Scholar] [CrossRef]
- Ferrández-Pastor, F.J.; Gómez-Trillo, S.; García-Chamizo, J.M.; Valdivieso-Sarabia, R. Developing a Context Aware System for Energy Management in Urban Areas. In Proceedings of the 10th International Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI 2016), San Bartolomé de Tirajana, Gran Canaria, Spain, 29 November–2 December 2016; García, C.R., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A., Eds.; Springer: Cham, Switzerland, 2016. Part II. pp. 326–331. [Google Scholar]
- Magno, M.; Spadaro, L.; Singh, J.; Benini, L. Kinetic Energy Harvesting: Toward Autonomous Wearable Sensing for Internet of Things; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 248–254. [Google Scholar]
- Wang, Y.; Liu, Y.; Wang, C.; Li, Z.; Sheng, X.; Lee, H.; Chang, N.; Yang, H. Storage-Less and Converter-Less Photovoltaic Energy Harvesting with Maximum Power Point Tracking for Internet of Things. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2016, 35, 173–186. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, J.; Shim, B.; Kim, D. DEARER: A Distance-And-Energy-Aware Routing with Energy Reservation for Energy Harvesting Wireless Sensor Networks. IEEE J. Sel. Areas Commun. 2016, 34, 3798–3813. [Google Scholar] [CrossRef]
- Zhang, S.G.; Liu, G.L.; Liu, X.; Wang, J.X. An energy-efficient and fast missing tag detection algorithm in large scale RFID systems. Chin. J. Comput. 2014, 37, 434–444. [Google Scholar]
- Colella, R.; Catarinucci, L.; Tarricone, L. EM Design of a Passive RFID-Based Device with Sensing and Reasoning Capabilities; IEEE Computer Society: Washington, DC, USA, 2015. [Google Scholar]
- Rafey, S.; Abdel-Hamid, A.; El-Nasr, M. CBSTM-IoT: Context-Based Social Trust Model for the Internet of Things; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016. [Google Scholar]
- Abdelghani, W.; Zayani, C.A.; Amous, I.; Sèdes, F. Trust Management in Social Internet of Things: A Survey. In Social Media: The Good, the Bad, and the Ugly, Proceedings of the 15th IFIP WG 6.11 Conference on E-Business, E-Services, and E-Society, Swansea, UK, 13–15 September 2016; Dwivedi, Y.K., Mäntymäki, M., Ravishankar, M., Janssen, M., Clement, M., Slade, E.L., Rana, N.P., Al-Sharhan, S., Simintiras, A.C., Eds.; Springer: Cham, Switzerland, 2016; pp. 430–441. [Google Scholar]
- Chen, I.R.; Guo, J.; Bao, F. Trust Management for SOA-Based IoT and Its Application to Service Composition. IEEE Trans. Serv. Comput. 2016, 9, 482–495. [Google Scholar] [CrossRef]
- Yao, L.; Sheng, Q.; Ngu, A.; Ashman, H.; Li, X. Exploring Recommendations in Internet of Things; Association for Computing Machinery: New York, NY, USA, 2014; pp. 855–858. [Google Scholar]
- Muñoz-Organero, M.; Ramíez-González, G.; Muñoz-Merino, P.; Delgado Kloos, C. A collaborative recommender system based on space-time similarities. IEEE Pervasive Comput. 2010, 9, 81–87. [Google Scholar] [CrossRef]
- Jurkovičová, L.; Červenka, P.; Hrivíková, T.; Hlavatý, I. E-Learning in Augmented Reality Utilizing iBeacon Technology; Academic Conferences Limited: Sonning Common, UK, 2015; pp. 170–178. [Google Scholar]
- Meda, P.; Kumar, M.; Parupalli, R. Mobile Augmented Reality Application for Telugu Language Learning; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 183–186. [Google Scholar]
- Rose, R.; Bhuvaneswari, G. Word Recognition Incorporating Augmented Reality for Linguistic E-Conversion; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 2106–2109. [Google Scholar]
- Pozza, R.; Nati, M.; Georgoulas, S.; Gluhak, A.; Moessner, K.; Krco, S. CARD: Context-Aware Resource Discovery for Mobile Internet of Things Scenarios; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014. [Google Scholar]
- Thomas, A.; Shah, H.; Moore, P.; Rayson, P.; Wilcox, A.; Osman, K.; Evans, C.; Chapman, C.; Athwal, C.; While, D.; et al. E-Education 3.0: Challenges and Opportunities for the Future Of iCampuses. In Proceedings of the 2012 Sixth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), Palermo, Italy, 4–6 July 2012; pp. 953–958. [Google Scholar]
- Bhatti, Z.; Naqvi, N.; Ramakrishnan, A.; Preuveneers, D.; Berbers, Y. Learning distributed deployment and configuration trade-offs for context-aware applications in Intelligent Environments. J. Ambient Intell. Smart Environ. 2014, 6, 541–559. [Google Scholar]
- Yin, C.; David, B.; Chalon, R. A Contextual Mobile Learning System in Our Daily Lives And Professional Situations; Academic Conferences Limited: Sonning Common, UK, 2009; pp. 703–711. [Google Scholar]
- Muñoz-Organero, M.; Ramírez, G.A.; Muñoz-Merino, P.J.; Kloos, C.D. Framework for Contextualized Learning Ecosystems. In Towards Ubiquitous Learning, Proceedings of the 6th European Conference of Technology Enhanced Learning, Palermo, Italy, 20–23 September 2011; Kloos, C.D., Gillet, D., Crespo García, R.M., Wild, F., Wolpers, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 260–270. [Google Scholar]
- Kavka, L.; Kodym, O.; Strakos, V. Logistics laboratory in education. In Proceedings of the 15th International Multidisciplinary Scientific GeoConference 2015 (SGEM 2015), Albena, Bulgaria, 18–24 June 2015; Volume 3, pp. 965–972. [Google Scholar]
- Ramírez-González, G.; Córdoba-Paladinez, C.; Sotelo-Torres, O.; Palacios, C.; Muñoz-Organero, M.; Delgado-Kloos, C. Pervasive learning activities for the LMS.LRN through Android mobile devices with NFC support. In Proceedings of the 2012 IEEE 12th International Conference on Advanced Learning Technologies (ICALT), Rome, Italy, 4–6 July 2012; pp. 672–673. [Google Scholar]
- González, G.; Organero, M.; Kloos, C. Early infrastructure of an Internet of Things in spaces for learning. In Proceedings of the Eighth IEEE International Conference on Advanced Learning Technologies, Santander, Spain, 1–5 July 2008; pp. 381–383. [Google Scholar]
- Stallings, W. Handbook of Computer-Communications Standards; Volume 1: The Open Systems Interconnection (OSI) Model and OSI-Related Standards; Macmillan Publishing Co., Inc.: Indianapolis, IN, USA, 1987. [Google Scholar]
- Yuan, J.; Xu, Y.; Gao, H. A new security authentication method in the internet of things based on PID. Int. J. Simul. Syst. Sci. Technol. 2016, 17, 9.1–9.6. [Google Scholar]
- Li, X.; Liu, C. A novel RFID authentication protocol support detecting cloned tags. Information 2012, 15, 4971–4976. [Google Scholar]
- Li, H.; Tang, S. Enhanced bidirectional authentication scheme for RFID communications in internet of things environment. Int. J. Simul. Syst. Sci. Technol. 2016, 17. [Google Scholar] [CrossRef]
- Hamza, K.; Amir, F. Evolutionary Clustering for Integrated WSN-RFID Networks; Association for Computing Machinery, Inc.: New York, NY, USA, 2016; pp. 267–272. [Google Scholar]
- Zhu, J.; Sun, N. Research on Integration of WSN and RFID Technology for Agricultural Product Inspection. In Proceedings of the 2012 International Conference on Industrial Control and Electronics Engineering, Xi’an, China, 23–25 August 2012; pp. 908–911. [Google Scholar]
- Wu, D.; Du, J.; Zhu, D.; Wang, S. A Simple RFID-Based Architecture for Privacy Preservation; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; Volume 1, pp. 1224–1229. [Google Scholar]
- Burmester, M.; Munilla, J. Pre vs post state update: Trading privacy for availability in RFID. IEEE Wirel. Commun. Lett. 2014, 3, 317–320. [Google Scholar] [CrossRef]
- Yan, B.; Hu, D.; Shi, P. A traceable platform of aquatic foods supply chain based on RFID and EPC Internet of Things. Int. J. RF Technol. Res. Appl. 2012, 4, 55–70. [Google Scholar]
- Xu, H.; Wang, S.P.; Wang, R.C.; Wang, Z.Q. Efficient P2P-based mutual authentication protocol for RFID system security of EPC network using asymmetric encryption algorithm. J. China Univ. Posts Telecommun. 2011, 18, 40–47. [Google Scholar] [CrossRef]
- Castellani, A.; Rossi, M.; Zorzi, M. Back pressure congestion control for CoAP/6LoWPAN networks. Ad Hoc Netw. 2014, 18, 71–84. [Google Scholar] [CrossRef]
- Bimschas, D.; Kleine, O.; Pfisterer, D. Debugging the Internet of Things: A 6LoWPAN/CoAP Testbed Infrastructure. In Ad-hoc, Mobile, and Wireless Networks, Proceedings of the 11th International Conference, ADHOC-NOW 2012, Belgrade, Serbia, 9–11 July 2012; Li, X.Y., Papavassiliou, S., Ruehrup, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 207–220. [Google Scholar]
- Pongle, P.; Chavan, G. A survey: Attacks on RPL and 6LoWPAN in IoT; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015. [Google Scholar]
- Hellaoui, H.; Koudil, M. Bird Flocking Congestion Control for CoAP/RPL/6LoWPAN Networks; Association for Computing Machinery, Inc.: New York, NY, USA, 2015; pp. 25–30. [Google Scholar]
- Bragg, G.; Martinez, K.; Basford, P.; Hart, J. 868MHz 6LoWPAN with ContikiMAC for an Internet of Things Environmental Sensor Network; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 1273–1277. [Google Scholar]
- Caputo, D.; Mainetti, L.; Patrono, L.; Vilei, A. Implementation of the EXI schema on wireless sensor nodes using Contiki. In Proceedings of the 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), Palermo, Italy, 4–6 July 2012; pp. 770–774. [Google Scholar]
- Wang, K.K.; Dubey, S.; Rajamohan, A.; Salcic, Z. An Android-Based Mobile 6LoWPAN Network Architecture for Pervasive Healthcare; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 49–56. [Google Scholar]
- Schleiss, P.; Tørring, N.; Mikkelsen, S.; Jacobsen, R. Interconnecting IPv6 wireless sensors with an Android smartphone in the Future Internet. In Proceedings of the 2012 2nd Baltic Congress on Future Internet Communications (BCFIC), Vilnius, Lithuania, 25–27 April 2012; pp. 14–18. [Google Scholar]
- Fan, C.; Wen, Z.; Wang, F.; Wu, Y. A middleware of internet of things(iot) based on Zigbee and RFID. In Proceedings of the IET International Conference on Communication Technology and Application (ICCTA 2011), Beijing, China, 14–16 October 2012; Volume 2011, pp. 732–736. [Google Scholar]
- Alharbe, N.; Atkins, A.; Akbari, A. Application of ZigBee and RFID technologies in healthcare in conjunction with the internet of things. In Proceedings of the International Conference on Advances in Mobile Computing & Multimedia, Vienna, Austria, 2–4 December 2013; pp. 191–195. [Google Scholar]
- Zhang, Q.H.; Cheng, G.Q.; Wang, Z.; Cheng, J.; Zhang, D. The Implementation of Workshop Production Information Acquisition System Based on RFID and ZigBee. Appl. Mech. Mater. 2014, 556, 6324–6327. [Google Scholar] [CrossRef]
- Yi, X.J.; Zhou, M.; Liu, J. Design of Smart Home Control System by Internet of Things Based On ZigBee; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 128–133. [Google Scholar]
- Wang, Y.M. The Internet of Things Smart Home System Design Based on ZigBee/GPRS Technology. Appl. Mech. Mater. 2013, 263, 2849–2852. [Google Scholar] [CrossRef]
- Kodali, R.; Swamy, G.; Lakshmi, B. An Implementation of IoT for Healthcare; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 411–416. [Google Scholar]
- Spanò, E.; Di Pascoli, S.; Iannaccone, G. Low-Power Wearable ECG Monitoring System for Multiple-Patient Remote Monitoring. IEEE Sens. J. 2016, 16, 5452–5462. [Google Scholar] [CrossRef]
- Rosner, D.; Tataroiu, R.; Gheorghe, L.; Tilimpea, R. UNCHAIN—Ubiquitous Wireless Network Communication Architecture For Ambient Intelligence and Health Scenarios; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 44–51. [Google Scholar]
- Gomez, C.; Oller, J.; Paradells, J. Overview and evaluation of bluetooth low energy: An emerging low-power wireless technology. Sensors 2012, 12, 11734–11753. [Google Scholar] [CrossRef]
- Horvat, I.; Lukac, N.; Pavlovic, R.; Starcevic, D. Smart Plug Solution Based on Bluetooth Low Energy; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 435–437. [Google Scholar]
- Pham-Huu, D.N.; Nguyen, V.H.; Trinh, V.A.; Bui, V.H.; Pham, H.A. Towards an Open Framework for Home Automation Development; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 75–81. [Google Scholar]
- Papp, I.; Velikic, G.; Lukac, N.; Horvat, I. Uniform Representation and Control of Bluetooth Low Energy Devices in Home Automation Software; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 366–368. [Google Scholar]
- Kudeshia, P.; Shah, S.; Bhattacharjee, A. A Cost-Effective Solution for Pedestrian Localization in Complex Indoor Environment; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 1–7. [Google Scholar]
- Peng, Y.; Fan, W.; Dong, X.; Zhang, X. An Iterative Weighted KNN (IW-KNN) Based Indoor Localization Method in Bluetooth Low Energy (BLE) Environment; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 794–800. [Google Scholar]
- Vasilateanu, A.; Goga, N.; Guta, L.; Mihailescu, M.; Pavaloiu, B. Testing Wi-Fi and Bluetooth Low Energy Technologies for a Hybrid Indoor Positioning System; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016. [Google Scholar]
- Kang, H.W.; Kim, C.M.; Koh, S.J. ISO/IEEE 11073-Based Healthcare Services Over Iot Platform Using 6LoWPAN and BLE: Architecture and Experimentation; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 313–318. [Google Scholar]
- Touati, F.; Mnaouer, A.; Erdene-Ochir, O.; Mehmood, W.; Hassan, A.; Gaabab, B. Feasibility and performance evaluation of a 6LoWPAN-enabled platform for ubiquitous healthcare monitoring. Wirel. Commun. Mob. Comput. 2016, 16, 1271–1281. [Google Scholar] [CrossRef]
- Fafoutis, X.; Tsimbalo, E.; Mellios, E.; Hilton, G.; Piechocki, R.; Craddock, I. A residential maintenance-free long-term activity monitoring system for healthcare applications. Eurasip J. Wirel. Commun. Netw. 2016, 2016, 1–20. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, B.; Li, S. A 220-Volts Power Switch Controlled Through WiFi; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 526–529. [Google Scholar]
- Airola, A.; Jousimaa, O.; Niemi, K.; Vuokko, S.; Kiviluoma, P.; Kuosmanen, P. Integration of household appliances to the existing internet infrastructure. In Proceedings of the 10th International DAAAM Baltic Conference “Industrial Engineering”, Tallinn, Estonia, 12–13 May 2015; pp. 111–116. [Google Scholar]
- Nambiar, V.; Vattapparamban, E.; Yurekli, A.; Guvenc, I.; Mozaffari, M.; Saad, W. SDR Based Indoor Localization Using Ambient WiFi and GSM Signals; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 952–957. [Google Scholar]
- Zhang, Z.L.; Chen, H.M.; Huang, T.P.; Cui, L.; Zhao, Z. A channel allocation scheme to mitigate Wifi interference for wireless sensor networks. Chin. J. Comput. 2012, 35, 504–517. [Google Scholar] [CrossRef]
- Samuel, S. A Review of Connectivity Challenges in IoT-Smart Home; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 364–367. [Google Scholar]
- Rajandekar, A.; Sikdar, B. The feasibility of using WiFi White spaces for opportunistic m2m communications. IEEE Wirel. Commun. Lett. 2015, 4, 681–684. [Google Scholar] [CrossRef]
- King, A.; Brown, J.; Roedig, U. DCCA: Differentiating Clear Channel Assessment for Improved 802.11/802.15.4 Coexistence; IEEE Computer Society: Washington, DC, USA, 2014; pp. 45–50. [Google Scholar]
- Lim, C.; Bolt, M.; Syed, A.; Ng, P.; Goh, C.; Li, Y. Dynamic Performance of IEEE 802.15.4 Devices under Persistent WiFi Traffic; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015. [Google Scholar]
- Shi, G.; Xu, R.; Shu, Y.; Luo, J. Exploiting temporal and spatial variation for WiFi interference avoidance in ZigBee networks. Int. J. Sens. Netw. 2015, 18, 204–216. [Google Scholar] [CrossRef]
- Ndih, E.; Cherkaoui, S. On Enhancing Technology Coexistence in the IoT Era: ZigBee and 802.11 Case. IEEE Access 2016, 4, 1835–1844. [Google Scholar] [CrossRef]
- Gupta, A.; Jha, R. A Survey of 5G Network: Architecture and Emerging Technologies. IEEE Access 2015, 3, 1206–1232. [Google Scholar] [CrossRef]
- Costa-Requena, J.; Santos, J.; Guasch, V.; Ahokas, K.; Premsankar, G.; Luukkainen, S.; Pérez, O.; Itzazelaia, M.; Ahmad, I.; Liyanage, M.; et al. SDN and NFV Integration in Generalized Mobile Network Architecture; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 154–158. [Google Scholar]
- Uher, J.; Harper, J.; Mennecke, R.G.I.; Patton, P.; Farroha, B. Investigating end-to-end security in the fifth generation wireless capabilities and IoT extensions. SPIE 2016, 9826. [Google Scholar] [CrossRef]
- Kljaic, Z.; Skorput, P.; Amin, N. The Challenge of Cellular Cooperative ITS Services Based on 5G Communications Technology; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 587–594. [Google Scholar]
- Alexander, R.; Brandt, A.; Vasseur, J.; Hui, J.; Pister, K.; Thubert, P.; Levis, P.; Struik, R.; Kelsey, R.; Winter, T. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks; RFC 6550; 2012; Available online: https://rfc-editor.org/rfc/rfc6550.txt (accessed on 12 August 2017).
- Gautham Krishna, G.; Krishna, G.; Bhalaji, N. Analysis of Routing Protocol for Low-power and Lossy Networks in IoT Real Time Applications. Elsevier 2016, 87, 270–274. [Google Scholar]
- Ancillotti, E.; Bruno, R.; Conti, M. On the interplay between RPL and address autoconfiguration protocols in LLNs. In Proceedings of the 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC), Sardinia, Italy, 1–5 July 2013; pp. 1275–1282. [Google Scholar]
- Vittecoq, S. A radio mesh platform for the IOT. In Proceedings of the 2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), Taichung, Taiwan, 3–5 July 2013; pp. 530–534. [Google Scholar]
- Duquennoy, S.; Al Nahas, B.; Landsiedel, O.; Watteyne, T. Orchestra: Robust Mesh Networks through Autonomously Scheduled TSCH; Association for Computing Machinery, Inc.: New York, NY, USA, 2015; pp. 337–350. [Google Scholar]
- Sebastian, E.; Yushev, A.; Sikora, A.; Schappacher, M.; Prasetyo, J. Performance Investigation of 6Lo with RPL Mesh Networking for Home and Building Automation; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 127–133. [Google Scholar]
- Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP); RFC 7252; 2014; Available online: https://rfc-editor.org/rfc/rfc7252.txt (accessed on 12 August 2017).
- Mohiuddin, J.; Bhadram, V.; Palli, S.; Koshy, S. 6LoWPAN Based Service Discovery and RESTful Web Accessibility for Internet of Things; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 24–30. [Google Scholar]
- Bhattacharyya, A.; Bose, T.; Bandyopadhyay, S.; Ukil, A.; Pal, A. LESS: Lightweight Establishment of Secure Session: A Cross-Layer Approach Using CoAP and DTLS-PSK Channel Encryption; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 682–687. [Google Scholar]
- Lakkundi, V.; Singh, K. Lightweight DTLS Implementation in CoAP-Based Internet of Things; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 7–11. [Google Scholar]
- Hillar, G. Mqtt Essentials—A Lightweight Iot Protocol; Packt Publishing: Birmingham, UK, 2017. [Google Scholar]
- Rescorla, E.; Modadugu, N. Datagram Transport Layer Security Version 1.2. RFC 6347. 2012. Available online: https://rfc-editor.org/rfc/rfc6347.txt (accessed on 12 August 2017).
- Lessa Dos Santos, G.; Guimaraes, V.; Da Cunha Rodrigues, G.; Granville, L.; Tarouco, L. A DTLS-Based Security Architecture for the Internet of Things; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 809–815. [Google Scholar]
- Raza, S.; Shafagh, H.; Hewage, K.; Hummen, R.; Voigt, T. Lithe: Lightweight secure CoAP for the internet of things. IEEE Sens. J. 2013, 13, 3711–3720. [Google Scholar] [CrossRef]
- Newman, N. Apple iBeacon technology briefing. J. Direct Data Digit. Mark. Pract. 2014, 15, 222–225. [Google Scholar] [CrossRef]
- Xiong, M.; Wu, Y.; Ding, Y.; Mao, X.; Fang, Z.; Huang, H. A Smart Home Control System Based on Indoor Location and Attitude Estimation; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016. [Google Scholar]
- Wu, D.; Jennings, C.; Terpenny, J.; Kumara, S. Cloud-Based Machine Learning for Predictive Analytics: Tool Wear Prediction in Milling; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 2062–2069. [Google Scholar]
- Han, J.H.; Chi, S.Y. Consideration of Manufacturing Data to Apply Machine Learning Methods for Predictive Manufacturing; IEEE Computer Society: Washington, DC, USA, 2016; pp. 109–113. [Google Scholar]
- Al Safadi, E.; Mohammad, F.; Iyer, D.; Smiley, B.; Jain, N. Generalized Activity Recognition Using Accelerometer in Wearable Devices for IoT Applications; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 73–79. [Google Scholar]
- Jatti, A.; Kannan, M.; Alisha, R.M.; Vijayalakshmi, P.; Sinha, S. Design and development of an IOT based wearable device for the safety and security of women and girl children. In Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT), Bangalore, India, 20–21 May 2016; pp. 1108–1112. [Google Scholar]
- Khan, M.; Khan, A.; Khan, M.; Anwar, S. A Novel Learning Method to Classify Data Streams in the Internet of Things; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 61–66. [Google Scholar]
- Keshan, N.; Parimi, P.; Bichindaritz, I. Machine Learning for Stress Detection From ECG Signals in Automobile Drivers; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 2661–2669. [Google Scholar]
- Kholod, I.; Kuprianov, M.; Petukhov, I. Distributed Data Mining Based on Actors for Internet of Things; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 480–484. [Google Scholar]
- Bhuiyan, M.; Wu, J. Event Detection through Differential Pattern Mining in Internet of Things; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 109–117. [Google Scholar]
- Tseng, J.C.C.; Gu, J.Y.; Wang, P.F.; Chen, C.Y.; Tseng, V.S. A Novel Complex-Events Analytical System Using Episode Pattern Mining Techniques. In Proceedings of the International Conference on Intelligent Science and Big Data Engineering (IScIDE 2015), Suzhou, China, 14–16 June 2015; He, X., Gao, X., Zhang, Y., Zhou, Z.H., Liu, Z.Y., Fu, B., Hu, F., Zhang, Z., Eds.; Springer: Cham, Switzerland, 2015; pp. 487–498. [Google Scholar]
- Luckham, D.C. The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 2001. [Google Scholar]
- Li, J.; Cheng, X.; Liu, B. Research on complex event of Internet of Things for supply chain decision support. ICIC Express Lett. Part B Appl. 2013, 4, 1481–1487. [Google Scholar]
- Li, J.T.; Lin, G.; Cheng, X.L. Research of IOT Context-Aware Processing Framework Based on Complex Event for Supply Chain Application. Appl. Mech. Mater. 2012, 263–266, 1677–1687. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, G.; Li, J. Research on Information Services Architecture of IOT Oriented Supply Chain Application. In LISS 2013: Proceedings of 3rd International Conference on Logistics, Informatics and Service Science; Zhang, R., Zhang, Z., Liu, K., Zhang, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 477–482. [Google Scholar]
- Mohamedali, F.; Matoorian, N. Support Dementia: Using Wearable Assistive Technology and Analysing Real-Time Data; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 50–54. [Google Scholar]
- Sheriff, C.; Naqishbandi, T.; Geetha, A. Healthcare Informatics and Analytics Framework; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015. [Google Scholar]
- White, T. Hadoop: The Definitive Guide, 1st ed.; O’Reilly Media, Inc.: Newton, MA, USA, 2009. [Google Scholar]
- Ji, Z.; Ganchev, I.; O’Droma, M.; Zhao, L.; Zhang, X. A cloud-based car parking middleware for IoT-based smart cities: Design and implementation. Sensors 2014, 14, 22372–22393. [Google Scholar] [CrossRef] [PubMed]
- Hans, V.; Sethi, P.; Kinra, J. An Approach to IoT Based Car Parking and Reservation System on Cloud; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 352–354. [Google Scholar]
- Tahmassebpour, M.; Otaghvari, A. Increase Efficiency Big Data in Intelligent Transportation System with Using Iot Integration Cloud. J. Fundam. Appl. Sci. 2016, 8, 2443–2461. [Google Scholar]
- Ahmad, A.; Rathore, M.; Paul, A.; Rho, S. Defining Human Behaviors Using Big Data Analytics in Social Internet of Things; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 1101–1107. [Google Scholar]
- Chen, M.; Wang, J.; Li, P.; Zhou, J.; Xia, D. Development of intelligent gateway for heterogeneous networks environment monitoring in greenhouse based on Android system. Trans. Chin. Soc. Agric. Eng. 2015, 31, 218–225. [Google Scholar]
- Bian, J.; Fan, D.; Zhang, J. The new intelligent home control system based on the dynamic and intelligent gateway. In Proceedings of the 2011 4th IEEE International Conference on Broadband Network and Multimedia Technology (IC-BNMT), Shenzhen, China, 28–30 October 2011; pp. 526–530. [Google Scholar]
- Carlson, D.; Altakrouri, B.; Schrader, A. In Proceedings of the An ad-hoc smart gateway platform for the web of things. In Proceedings of the IEEE International Conference on and IEEE Cyber, Physical and Social Computing Green Computing and Communications (GreenCom), Beijing, China, 20–23 August 2013; pp. 619–625. [Google Scholar]
- Garcia, C.; Eckard, D.; Netto, J.; Pereira, C.; Muller, I. Bluetooth Enabled Data Collector for Wireless Sensor Networks; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 54–57. [Google Scholar]
- Prakash, M.; Gowshika, U.; Ravichandran, T. A smart device integrated with an android for alerting a person’s health condition: Internet of Things. Indian J. Sci. Technol. 2016, 9, 1–2. [Google Scholar] [CrossRef]
- Sutar, S.; Koul, R.; Suryavanshi, R. Integration of Smart Phone and IOT for Development of Smart Public Transportation System; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 73–78. [Google Scholar]
- Hossain, A.; Canning, J.; Ast, S.; Rutledge, P.J.; Li, Y.T.; Jamalipour, A. Lab-in-a-Phone: Smartphone-Based Portable Fluorometer for pH Measurements of Environmental Water. IEEE Sens. J. 2015, 15, 5095–5102. [Google Scholar] [CrossRef]
- Dunkels, A.; Gronvall, B.; Voigt, T. Contiki—A lightweight and flexible operating system for tiny networked sensors. In Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, Tampa, FL, USA, 16–18 November 2004; pp. 455–462. [Google Scholar]
- Anjana, S.; Sahana, M.; Ankith, S.; Natarajan, K.; Shobha, K.; Paventhan, A. An IoT Based 6LoWPAN Enabled Experiment for Water Management; IEEE Computer Society: Washington, DC, USA, 2016. [Google Scholar]
- Yassein, M.; Abuein, Q.; Amer, A. Energy saving in constrained application protocol of internet of things. Int. J. Commun. Antenna Propag. 2016, 6, 160–168. [Google Scholar]
- Gonizzi, P.; Ferrari, G.; Medagliani, P.; Leguay, J. Data storage and retrieval with RPL routing. In Proceedings of the 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC), Sardinia, Italy, 1–5 July 2013; pp. 1400–1404. [Google Scholar]
- Banh, M.; Mac, H.; Nguyen, N.; Phung, K.H.; Thanh, N.; Steenhaut, K. Performance Evaluation of Multiple RPL Routing Tree Instances For Internet of Things Applications; IEEE Computer Society: Washington, DC, USA, 2016; pp. 206–211. [Google Scholar]
- Sitanayah, L.; Sreenan, C.; Fedor, S. Demo Abstract: A Cooja-Based Tool for Maintaining Sensor Network Coverage Requirements in a Building; Association for Computing Machinery, Inc.: New York, NY, USA, 2013. [Google Scholar]
- Dinesh, M.; Sudhaman, K. Real Time Intelligent Image Processing System With High Speed Secured Internet of Things: Image Processor with IOT; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016. [Google Scholar]
- Xu, Z. Design and Implementation of Intelligent Gateway for Smart Home; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 4713–4718. [Google Scholar]
- Kovalcik, M.; Vapenik, R.; Fecil’Ak, P.; Jakab, F. Smart Home Control Module as IOT/IOE Learning; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016. [Google Scholar]
- Culic, I.M.; Radovici, A. Extending the wyliodrin platform for windows 10 IoT core. In Proceedings of the 2016 15th RoEduNet Conference: Networking in Education and Research, Bucharest, Romania, 7–9 September 2016; pp. 1–5. [Google Scholar]
- Suresh, S.; Vadivukkarasi, K. Multifunction sensor node for home intelligent system and Raspberry Pi as gateway. Int. J. Appl. Eng. Res. 2015, 10, 17163–17170. [Google Scholar]
- Kim, B.; Oh, S. Sensors control of smart farm system using gateway based on raspberry Pi. Adv. Sci. Lett. 2017, 23, 1533–1537. [Google Scholar] [CrossRef]
- Glória, A.; Cercas, F.; Souto, N. Design and implementation of an IoT gateway to create smart environments. Elsevier 2017, 109, 568–575. [Google Scholar] [CrossRef]
- Gupta, M.S.D.; Patchava, V.; Menezes, V. Healthcare based on IoT using Raspberry Pi. In Proceedings of the 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), Noida, India, 8–10 October 2015; pp. 796–799. [Google Scholar]
- Balasubramaniyan, C.; Manivannan, D. IoT enabled Air Quality Monitoring System (AQMS) using Raspberry Pi. Indian J. Sci. Technol. 2016, 9. [Google Scholar] [CrossRef]
- Bogdanovic, Z.; Simic, K.; Milutinovic, M.; Radenkovic, B.; Despotović-Zrakic, M. A platform for learning internet of things. In Proceedings of the Multi Conference on Computer Science and Information Systems, Lisbon, Portugal, 15–19 July 2014; pp. 259–266. [Google Scholar]
- Raikar, M.; Desai, P.; Naragund, J. Active Learning Explored in Open Elective Course: Internet of Things (IoT); Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 15–18. [Google Scholar]
- Amin, A.; Rahman, A.; Salim, S.; Aris, I.; Suliaman, M.; Mohamad, R.; Zulkefle, A. Cost effective remote monitoring for mini hybrid automation system. Int. J. Appl. Eng. Res. 2015, 10, 43663–43668. [Google Scholar]
- Fuertes, W.; Carrera, D.; Villacis, C.; Toulkeridis, T.; Galarraga, F.; Torres, E.; Aules, H. Distributed System as Internet of Things for a New Low-Cost, Air Pollution Wireless Monitoring on Real Time; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 58–67. [Google Scholar]
- Ashwini, M.; Gowrishankar, S.; Siddaraju. Internet of Things based intelligent monitoring and reporting from agricultural fields. Int. J. Control Theory Appl. 2016, 9, 4311–4320. [Google Scholar]
- Behringer, R.; Ramachandran, M.; Chang, V. A Low-Cost Intelligent Car Break-in Alert System: Using Smartphone Accelerometers for Detecting Vehicle Break-Ins; SciTePress: Setúbal, Portugal, 2016; pp. 179–184. [Google Scholar]
- Kothandaraman, D.; Chellappan, C. Human movement tracking system with smartphone sensing and Bluetooth Low Energy in Internet of Things. Asian J. Inf. Technol. 2016, 15, 661–669. [Google Scholar]
- Seol, S.; Shin, Y.; Kim, W. Design and realization of personal IoT architecture based on mobile gateway. Int. J. Smart Home 2015, 9, 133–144. [Google Scholar] [CrossRef]
- Gupta, B.; Jyoti, K. Theoretical Framework for Physiological Profiling Using Sensors and Big Data Analytics; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 416–420. [Google Scholar]
- Pereira, C.; Pinto, A.; Aguiar, A.; Rocha, P.; Santiago, F.; Sousa, J. IoT Interoperability for Actuating Applications Through Standardised M2M Communications; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016. [Google Scholar]
- Mayer, S.; Soros, G. User Interface Beaming—Seamless Interaction with Smart Things Using Personal Wearable Computers; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 46–49. [Google Scholar]
- Lee, K.Y.; Kang, M.S.; Kang, J.J.; Choi, S.J.; Im, Y.S.; Kang, E.Y.; Jeong, Y.M. Home automation system using wireless communication. Information 2016, 19, 3777–3782. [Google Scholar]
- Compton, K.; Hauck, S. Reconfigurable Computing: A Survey of Systems and Software. ACM Comput. Surv. 2002, 34, 171–210. [Google Scholar] [CrossRef]
- Prasetyo, K.; Purwanto, Y.; Darlis, D. An Implementation of Data Encryption for Internet of Things Using Blowfish Algorithm on FPGA; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 75–79. [Google Scholar]
- Rao, M.; Newe, T.; Grout, I.; Lewis, E.; Mathur, A. FPGA Based Reconfigurable IPSec AH Core Suitable for IoT Applications; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 2212–2216. [Google Scholar]
- Prathiba, A.; Kanchana Bhaaskaran, V. FPGA implementation and analysis of the block cipher mode architectures for the PRESENT light weight encryption algorithm. Indian J. Sci. Technol. 2016, 9. [Google Scholar] [CrossRef]
- Qu, L.; Sun, X.; Huang, Y.; Tang, C.; Ling, L. FPGA implementation of QoS multicast routing algorithm of mine internet of things perception layer based on ant colony algorithm. Adv. Inf. Sci. Serv. Sci. 2012, 4, 124–131. [Google Scholar]
- Wehner, P.; Gohringer, D. Parallel and Distributed Simulation of Networked Multi-Core Systems; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014. [Google Scholar]
- Lee, S.S.; Jung, W.C.; Park, J.H. Design of IoT based fire-watching and atmospheric environment monitoring systems applied with compound sensors and image processing. Int. J. Smart Home 2016, 10, 155–168. [Google Scholar] [CrossRef]
- Lim, Y.; Daas, S.; Hashim, S.; Sidek, R.; Kamsani, N.; Rokhani, F. Reduced Hardware Architecture for Energy-Efficient IoT Healthcare Sensor Nodes; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 90–95. [Google Scholar]
- Sushmitha, S.; Malathi, K. Home automation bymeansof Internet of Things. Int. J. Pharm. Technol. 2016, 8, 19874–19883. [Google Scholar]
- Zhang, K.; Li, H.; Ma, J.; Liu, X. Efficient large-universe multi-authority ciphertext-policy attribute-based encryption with white-box traceability. Sci. China Inf. Sci. 2018, 61. [Google Scholar] [CrossRef]
- Suo, H.; Wan, J.; Zou, C.; Liu, J. Security in the internet of things: A review. In Proceedings - 2012 International Conference on Computer Science and Electronics Engineering. ICCSEE 2012, 3, 648–651. [Google Scholar] [CrossRef]
- Jing, Q.; Vasilakos, A.V.; Wan, J.; Lu, J.; Qiu, D. Security of the Internet of Things: perspectives and challenges. Wirel. Netw. 2014, 20, 2481–2501. [Google Scholar] [CrossRef]
- Roman, R.; Alcaraz, C.; Lopez, J.; Sklavos, N. Key management systems for sensor networks in the context of the Internet of Things. Comput. Electr. Eng. 2011, 37, 147–159. [Google Scholar] [CrossRef]
- Ziegeldorf, J.; Morchon, O.; Wehrle, K. Privacy in the internet of things: Threats and challenges. Secur. Commun. Netw. 2014, 7, 2728–2742. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, T.; Zhou, L. Industry 4.0: Towards future industrial opportunities and challenges. In Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, China, 15–17 August 2015; pp. 2147–2152. [Google Scholar]
- Weinberger, M.; Bilgeri, D.; Fleisch, E. IoT business models in an industrial context. At-Automatisierungstechnik 2016, 64, 699–706. [Google Scholar] [CrossRef]
- Gonzalez, N.; Goya, W.; De Fatima Pereira, R.; Langona, K.; Silva, E.; De Brito Carvalho, T.; Miers, C.; Mangs, J.E.; Sefidcon, A. Fog Computing: Data Analytics and Cloud Distributed Processing on The Network Edges; IEEE Computer Society: Washington, DC, USA, 2017. [Google Scholar]
- Yangui, S.; Ravindran, P.; Bibani, O.; Glitho, R.H.; Hadj-Alouane, N.B.; Morrow, M.J.; Polakos, P.A. A platform as-a-service for hybrid cloud/fog environments. In Proceedings of the 2016 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN), Rome, Italy, 13–15 June 2016; pp. 1–7. [Google Scholar]
- Madsen, H.; Burtschy, B.; Albeanu, G.; Popentiu-Vladicescu, F. Reliability in the utility computing era: Towards reliable Fog computing. In Proceedings of the 2013 20th International Conference on Systems, Signals and Image Processing (IWSSIP), Bucharest, Romania, 7–9 July 2013; pp. 43–46. [Google Scholar]
- Flauzac, O.; Gonzalez, C.; Hachani, A.; Nolot, F. SDN Based Architecture for IoT and Improvement of the Security; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 688–693. [Google Scholar]
- Oh, Y.; Kim, G.; Lee, S. Multi-RAT Mobile Node Architecture for Efficient Handover Using Software Defined Network; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016. [Google Scholar]
- El-Mougy, A.; Ibnkahla, M.; Hegazy, L. Software-defined wireless network architectures for the Internet-of-Things. In Proceedings of the 2015 IEEE 40th Local Computer Networks Conference Workshops (LCN Workshops), Clearwater Beach, FL, USA, 26–29 October 2015; pp. 804–811. [Google Scholar]
- Vilalta, R.; Ciungu, R.; Mayoral, A.; Casellas, R.; Martinez, R.; Pubill, D.; Serra, J.; Munoz, R.; Verikoukis, C. Improving Security in Internet of Things With Software Defined Networking; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016. [Google Scholar]
- Hafeez, I.; Ding, A.; Suomalainen, L.; Kirichenko, A.; Tarkoma, S. Securebox: Toward Safer and Smarter IoT Networks; Association for Computing Machinery, Inc.: New York, NY, USA, 2016; pp. 55–60. [Google Scholar]
Source | Article | Conference Paper | Proceedings Paper | Review | Duplicated Removed |
---|---|---|---|---|---|
WoS | 3112 | 0 | 8215 | 130 | 55 |
Scopus | 5283 | 10,068 | 0 | 312 | 8030 |
Original | Replacement |
---|---|
Republic of China | China |
USA | United States |
England, Scotland, and Wales | United Kingdom |
U Arab Emirates | United Arab Emirates |
Russia | Russian Federation |
Viet Nam | Vietnam |
Trinid & Tobago | Trinidad and Tobago |
N. | Country | Total | Average Growth | h-Ind. |
---|---|---|---|---|
1 | China | 4822 | 16% | 47 |
2 | United States | 1561 | 116% | 42 |
3 | India | 1089 | 169% | 15 |
4 | South Korea | 894 | 206% | 16 |
5 | Italy | 874 | 61% | 32 |
6 | Germany | 811 | 64% | 24 |
7 | United King. | 711 | 71% | 25 |
8 | France | 543 | 126% | 21 |
9 | Spain | 463 | 42% | 23 |
10 | Japan | 449 | 166% | 11 |
11 | Taiwan | 438 | 68% | 16 |
12 | Brazil | 272 | 90% | 9 |
13 | Finland | 266 | 50% | 20 |
14 | Canada | 259 | 104% | 15 |
15 | Australia | 249 | 59% | 22 |
16 | Sweden | 216 | 68% | 17 |
17 | Switzerland | 193 | 31% | 19 |
18 | Portugal | 191 | 45% | 13 |
19 | Greece | 180 | 46% | 14 |
20 | Romania | 169 | 72% | 9 |
21 | Belgium | 164 | 87% | 11 |
22 | Austria | 146 | 113% | 12 |
23 | Malaysia | 137 | 71% | 9 |
24 | Russian Fed. | 134 | 271% | 8 |
25 | Ireland | 126 | 116% | 9 |
26 | Netherlands | 109 | 122% | 12 |
27 | Singapore | 109 | 112% | 8 |
28 | Poland | 104 | 77% | 6 |
29 | Czech Rep. | 101 | 153% | 5 |
30 | Turkey | 92 | 319% | 5 |
31 | Pakistan | 82 | 210% | 7 |
32 | Saudi Arabia | 80 | 122% | 7 |
33 | Norway | 72 | 119% | 11 |
34 | UAE | 71 | 180% | 6 |
35 | South Africa | 60 | 162% | 9 |
36 | Denmark | 59 | 39% | 11 |
37 | Tunisia | 55 | 163% | 6 |
38 | Serbia | 53 | −1% | 6 |
39 | Croatia | 51 | 159% | 6 |
40 | Hungary | 51 | 24% | 6 |
41 | Indonesia | 51 | 410% | 3 |
42 | Egypt | 49 | 159% | 4 |
43 | Morocco | 47 | 163% | 4 |
44 | Iran | 42 | 94% | 5 |
45 | Colombia | 39 | 146% | 3 |
46 | Algeria | 38 | 113% | 5 |
47 | Jordan | 38 | 108% | 5 |
48 | New Zealand | 38 | 86% | 6 |
49 | Mexico | 36 | 172% | 5 |
50 | Thailand | 32 | 107% | 4 |
N. | Author | Total Documents | h-Index | Most Cited | Top Author Topics |
---|---|---|---|---|---|
1 | Zhang, Y. | 130 | 12 | [40] | RFID, security, Electric vehicle |
2 | Liu, Y. | 115 | 11 | [33] | RFID, name service, ZigBee |
3 | Li, Y. | 97 | 9 | [41] | RFID, big data, database |
4 | Wang, Y. | 97 | 5 | [42] | RFID, smart grid, secirity |
5 | Li, J. | 96 | 9 | [43] | RFID, ZigBee, standarized breeding |
6 | Zhang, J. | 82 | 6 | [44] | RFID, WSN, monitoring system |
7 | Wang, J. | 80 | 8 | [45] | RFID, 5G, sampling |
8 | Zhang, L. | 79 | 13 | [46] | Cloud computing, cloud manufacturing, ZigBee |
9 | Wang, X. | 78 | 6 | [47] | RFID, ZigBee, service selection |
10 | Chen, Y. | 72 | 8 | [48] | RFID, WSN, ZigBee |
11 | Jara, A.J. | 72 | 13 | [49] | 6LoWPAN, smart cities, big data |
12 | Zhang, X. | 72 | 6 | [50] | Logistics, RFID, WSN |
13 | Li, H. | 71 | 7 | [51] | RFID, authentication, security |
14 | Wang, H. | 70 | 9 | [52] | RFID, monitoring, cloud computing |
15 | Li, X. | 67 | 8 | [53] | RFID, recommendation, smart grid |
16 | Liu, J. | 65 | 10 | [54] | Cloud computing, RFID, security |
17 | Kim, J. | 62 | 7 | [55] | WSN, video streaming, HEVC |
18 | Wang, Z. | 60 | 8 | [56] | RFID, GPRS, EPC network |
19 | Liu, X. | 59 | 9 | [57] | Cloud computing, RFID, Landsenses ecology |
20 | Kim, D. | 58 | 7 | [58] | EPCIS, 6LoWPAN, security |
N. | First Author | Document Reference | Times Cited | Publication Year | Country |
---|---|---|---|---|---|
Articles documents | |||||
1 | Atzori L | [12] | 3239 | 2010 | Italy |
2 | Gubbi J | [13] | 1369 | 2013 | Australia |
3 | Miorandi D | [59] | 721 | 2012 | Italy |
4 | Kortuem G | [65] | 506 | 2010 | United Kingdom |
5 | Ganti RK | [66] | 494 | 2011 | United States |
6 | Bobadilla J | [67] | 482 | 2013 | Spain |
7 | Li B-H | [46] | 471 | 2010 | China |
8 | Perera C | [68] | 454 | 2014 | Australia |
9 | Zanella A | [69] | 404 | 2014 | Italy |
10 | Chen M | [70] | 370 | 2014 | China |
Conference and proceedings documents | |||||
1 | Bonomi F | [60] | 508 | 2012 | United States |
2 | Tao F | [61] | 228 | 2011 | China |
3 | Tan L | [62] | 169 | 2010 | China |
4 | Spiess P | [71] | 156 | 2009 | Not specified |
5 | Mainetti L | [72] | 142 | 2011 | Italy |
6 | Zhu Q | [33] | 134 | 2010 | China |
7 | Dohr A | [73] | 132 | 2010 | Austria |
8 | Kovatsch M | [74] | 112 | 2011 | Switzerland |
9 | Khan R | [75] | 101 | 2012 | Italy |
10 | Su KH | [43] | 97 | 2011 | China |
Review documents | |||||
1 | Gershenfeld N | [21] | 271 | 2004 | United States |
2 | Meng X | [63] | 172 | 2013 | China |
3 | Aziz AA | [64] | 139 | 2013 | Malaysia |
4 | Domingo MC | [76] | 138 | 2012 | Spain |
5 | Borgia E | [14] | 132 | 2014 | Italy |
6 | Hancke GP | [77] | 101 | 2013 | South Africa |
7 | Wang ZL | [78] | 98 | 2010 | United States |
8 | Wang SH | [79] | 83 | 2015 | United States |
9 | Keoh SL | [80] | 69 | 2014 | Singapore |
10 | Malhotra A | [81] | 64 | 2013 | United States |
Layer | IoT Communication Protocols | |
---|---|---|
Host layers | 7. Application | CoAP, MQTT, JSON, iBeacon |
6. Presentation | ||
5. Session | ||
4. Transport | TCP, UDP, DTLS | |
Media layers | 3. Network | IPv6, 6LowPAN, ZigBee, BLE, RPL |
2. Data link | RFID, 802.15.4, WiFi, BLE, 5G | |
1. Physical |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Rosero, J.; Ramirez-Gonzalez, G.; Williams, J.M.; Liu, H.; Khanna, R.; Pisharody, G. Internet of Things: A Scientometric Review. Symmetry 2017, 9, 301. https://doi.org/10.3390/sym9120301
Ruiz-Rosero J, Ramirez-Gonzalez G, Williams JM, Liu H, Khanna R, Pisharody G. Internet of Things: A Scientometric Review. Symmetry. 2017; 9(12):301. https://doi.org/10.3390/sym9120301
Chicago/Turabian StyleRuiz-Rosero, Juan, Gustavo Ramirez-Gonzalez, Jennifer M. Williams, Huaping Liu, Rahul Khanna, and Greeshma Pisharody. 2017. "Internet of Things: A Scientometric Review" Symmetry 9, no. 12: 301. https://doi.org/10.3390/sym9120301
APA StyleRuiz-Rosero, J., Ramirez-Gonzalez, G., Williams, J. M., Liu, H., Khanna, R., & Pisharody, G. (2017). Internet of Things: A Scientometric Review. Symmetry, 9(12), 301. https://doi.org/10.3390/sym9120301