Deep Learning for Detection of Object-Based Forgery in Advanced Video
<p>Asymmetric data augmentation strategy. (<b>a</b>) Draw three image patches from the pristine frame; (<b>b</b>) Draw <span class="html-italic">M</span> image patches from the tampered frame.</p> "> Figure 2
<p>The network architecture of proposed method. Layer functions and parameters are displayed in the boxes. Kernels sizes of convolution in each layers are described in <math display="inline"> <semantics> <mrow> <mi>n</mi> <mi>u</mi> <mi>m</mi> <mi>b</mi> <mi>e</mi> <mi>r</mi> <mo>_</mo> <mi>o</mi> <mi>f</mi> <mo>_</mo> <mi>k</mi> <mi>e</mi> <mi>r</mi> <mi>n</mi> <mi>e</mi> <mi>l</mi> <mi>s</mi> <mo>×</mo> <mo>(</mo> <mi>w</mi> <mi>i</mi> <mi>d</mi> <mi>t</mi> <mi>h</mi> <mo>×</mo> <mi>h</mi> <mi>e</mi> <mi>i</mi> <mi>g</mi> <mi>h</mi> <mi>t</mi> <mspace width="3.33333pt"/> <mo>×</mo> <mi>n</mi> <mi>u</mi> <mi>m</mi> <mi>b</mi> <mi>e</mi> <mi>r</mi> <mo>_</mo> <mi>o</mi> <mi>f</mi> <mo>_</mo> <mi>i</mi> <mi>n</mi> <mi>p</mi> <mi>u</mi> <mi>t</mi> <mo>)</mo> </mrow> </semantics> </math>. Sizes of feature maps between different layers are described in <math display="inline"> <semantics> <mrow> <mi>n</mi> <mi>u</mi> <mi>m</mi> <mi>b</mi> <mi>e</mi> <mi>r</mi> <mo>_</mo> <mi>o</mi> <mi>f</mi> <mo>_</mo> <mi>f</mi> <mi>e</mi> <mi>a</mi> <mi>t</mi> <mi>u</mi> <mi>r</mi> <mi>e</mi> <mo>_</mo> <mi>m</mi> <mi>a</mi> <mi>p</mi> <mi>s</mi> <mo>×</mo> <mo>(</mo> <mi>w</mi> <mi>i</mi> <mi>d</mi> <mi>t</mi> <mi>h</mi> <mo>×</mo> <mi>h</mi> <mi>e</mi> <mi>i</mi> <mi>g</mi> <mi>h</mi> <mi>t</mi> <mo>)</mo> </mrow> </semantics> </math>. To keep the shape of image patches, padding is applied in each layer.</p> "> Figure 3
<p>Detection performance of the proposed method compared with Chen et al.’s methods [<a href="#B3-symmetry-10-00003" class="html-bibr">3</a>].</p> ">
Abstract
:1. Introduction
2. Proposed Method
2.1. Video Sequence Preprocessing
2.1.1. Absolute Difference of Consecutive Frames
2.1.2. Asymmetric Data Augmentation
2.2. Network Architecture
2.2.1. Max Pooling
2.2.2. High Pass Filter
2.2.3. CNN Based Model
3. Experimental
3.1. Dataset
3.2. Experimental Setup
3.3. Experimental Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rocha, A.; Scheirer, W.; Boult, T.; Goldenstein, S. Vision of the unseen: Current trends and challenges in digital image and video forensics. ACM Comput. Surv. 2011, 43, 26–40. [Google Scholar] [CrossRef]
- Stamm, M.C.; Wu, M.; Liu, K.R. Information forensics: An overview of the first decade. IEEE Access 2013, 1, 167–200. [Google Scholar] [CrossRef]
- Chen, S.; Tan, S.; Li, B.; Huang, J. Automatic Detection of Object-Based Forgery in Advanced Video. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 2138–2151. [Google Scholar] [CrossRef]
- Tan, S.; Chen, S.; Li, B. GOP based automatic detection of object-based forgery in advanced video. In Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Hong Kong, China, 16–19 December 2015; pp. 719–722. [Google Scholar]
- Qureshi, M.A.; Deriche, M. A bibliography of pixel-based blind image forgery detection techniques. Signal Process. Image Commun. 2015, 39, 46–74. [Google Scholar] [CrossRef]
- Birajdar, G.K.; Mankar, V.H. Digital image forgery detection using passive techniques: A survey. Digit. Investig. 2013, 10, 226–245. [Google Scholar] [CrossRef]
- Al-Qershi, O.M.; Khoo, B.E. Passive detection of copy-move forgery in digital images: State-of-the-art. Forensic Sci. Int. 2013, 231, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Sitara, K.; Mehtre, B.M. Digital video tampering detection: An overview of passive techniques. Digit. Investig. 2016, 18, 8–22. [Google Scholar] [CrossRef]
- Bestagini, P.; Milani, S.; Tagliasacchi, M.; Tubaro, S. Local tampering detection in video sequences. In Proceedings of the IEEE 15th International Workshop on Multimedia Signal Processing (MMSP), Pula, Italy, 30 September–2 October 2013; pp. 488–493. [Google Scholar]
- Lin, C.S.; Tsay, J.J. A passive approach for effective detection and localization of region-level video forgery with spatio-temporal coherence analysis. Digit. Investig. 2014, 11, 120–140. [Google Scholar] [CrossRef]
- Chen, R.; Yang, G.; Zhu, N. Detection of object-based manipulation by the statistical features of object contour. Forensic Sci. Int. 2014, 236, 164–169. [Google Scholar]
- Pandey, R.C.; Singh, S.K.; Shukla, K.K. Passive copy-move forgery detection in videos. In Proceedings of the International Conference on Computer and Communication Technology (ICCCT), Allahabad, India, 26–28 September 2014; pp. 301–306. [Google Scholar]
- Bondi, L.; Baroffio, L.; Güera, D.; Bestagini, P.; Delp, E.J.; Tubaro, S. First Steps Toward Camera Model Identification with Convolutional Neural Networks. IEEE Signal Process. Lett. 2017, 24, 259–263. [Google Scholar] [CrossRef]
- Tuama, A.; Comby, F.; Chaumont, M. Camera model identification with the use of deep convolutional neural networks. In Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS), Abu Dhabi, UAE, 4–7 December 2016; pp. 1–6. [Google Scholar]
- Xu, G.; Wu, H.Z.; Shi, Y.Q. Structural Design of Convolutional Neural Networks for Steganalysis. IEEE Signal Process. Lett. 2016, 23, 708–712. [Google Scholar] [CrossRef]
- Yang, P.; Ni, R.; Zhao, Y. Recapture Image Forensics Based on Laplacian Convolutional Neural Networks. In Proceedings of the 15th International Workshop on Digital Forensics and Watermarking (IWDW), Beijing, China, 17–19 September 2016; pp. 119–128. [Google Scholar]
- Bayar, B.; Stamm, M.C. A Deep Learning Approach to Universal Image Manipulation Detection Using a New Convolutional Layer. In Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security (IH&MMSec), Vigo, Spain, 20–22 June 2016; pp. 5–10. [Google Scholar]
- Rao, Y.; Ni, J. A deep learning approach to detection of splicing and copy-move forgeries in images. In Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS), Abu Dhabi, UAE, 4–7 December 2016; pp. 1–6. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Qian, Y.; Dong, J.; Wang, W.; Tan, T. Deep learning for steganalysis via convolutional neural networks. In Proceedings of the SPIE 9409, Media Watermarking, Security, and Forensics, San Francisco, CA, USA, 9–11 February 2015; Volume 9409, p. 94090J. [Google Scholar]
- Fridrich, J.; Kodovsky, J. Rich Models for Steganalysis of Digital Images. IEEE Trans. Inf. Forensics Secur. 2012, 7, 868–882. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning (ICML), Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML), Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional Architecture for Fast Feature Embedding. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 675–678. [Google Scholar]
- Kodovsky, J.; Fridrich, J. Steganalysis of JPEG images using rich models. In Proceedings of the SPIE 8303, Media Watermarking, Security, and Forensics, Burlingame, CA, USA, 23–25 January 2012; p. 83030A. [Google Scholar]
- Pevny, T.; Fridrich, J. Merging Markov and DCT features for multi-class JPEG steganalysis. In Proceedings of the SPIE, Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, CA, USA, 28 January 2007; Volume 6505, p. 650503. [Google Scholar]
- Kodovskỳ, J.; Fridrich, J. Calibration revisited. In Proceedings of the 11th ACM Workshop on Multimedia and Security (MMSec), Princeton, NJ, USA, 7–8 September 2009; pp. 63–74. [Google Scholar]
- Kodovsky, J.; Pevny, T.; Fridrich, J. Modern steganalysis can detect YASS. In Proceedings of the SPIE 7541, Media Forensics and Security II, San Jose, CA, USA, 18–20 January 2010; p. 754102. [Google Scholar]
- Kodovsky, J.; Fridrich, J.; Holub, V. Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 2012, 7, 432–444. [Google Scholar] [CrossRef]
- Pevny, T.; Bas, P.; Fridrich, J. Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 2010, 5, 215–224. [Google Scholar] [CrossRef]
- Shahriari, A. Distributed Deep Transfer Learning by Basic Probability Assignment. arXiv, 2017; arXiv:1710.07437. [Google Scholar]
- Nanni, L.; Ghidoni, S.; Brahnam, S. Handcrafted vs. non-handcrafted features for computer vision classification. Pattern Recognit. 2017, 71, 158–172. [Google Scholar] [CrossRef]
- Galanti, T.; Wolf, L.; Hazan, T. A theoretical framework for deep transfer learning. Inf. Inference J. IMA 2016, 5, 159–209. [Google Scholar] [CrossRef]
- Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Deep Transfer Learning with Joint Adaptation Networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2208–2217. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Shi, Y.; Weng, S.; Guan, B. Deep Learning for Detection of Object-Based Forgery in Advanced Video. Symmetry 2018, 10, 3. https://doi.org/10.3390/sym10010003
Yao Y, Shi Y, Weng S, Guan B. Deep Learning for Detection of Object-Based Forgery in Advanced Video. Symmetry. 2018; 10(1):3. https://doi.org/10.3390/sym10010003
Chicago/Turabian StyleYao, Ye, Yunqing Shi, Shaowei Weng, and Bo Guan. 2018. "Deep Learning for Detection of Object-Based Forgery in Advanced Video" Symmetry 10, no. 1: 3. https://doi.org/10.3390/sym10010003
APA StyleYao, Y., Shi, Y., Weng, S., & Guan, B. (2018). Deep Learning for Detection of Object-Based Forgery in Advanced Video. Symmetry, 10(1), 3. https://doi.org/10.3390/sym10010003