Behaviour of Charged Spinning Massless Particles
<p>Particle trajectories in the <math display="inline"> <semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> plane for <math display="inline"> <semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>5</mn> </mrow> </semantics> </math>. Charge <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>, constant electric field <span class="html-italic">E</span> in the positive <span class="html-italic">y</span> direction, constant magnetic field <span class="html-italic">B</span> in the positive <span class="html-italic">z</span> direction. Energy <math display="inline"> <semantics> <mrow> <mi mathvariant="script">E</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics> </math>, initial velocity <math display="inline"> <semantics> <msub> <mi mathvariant="bold">v</mi> <mn>0</mn> </msub> </semantics> </math> = <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.995</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics> </math>. Solid line: <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>1.6</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>; dotted line: <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>=</mo> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>; dashed line: <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>; dotted-dashed line: <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>. The <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> trajectory would be on the upper vertical axis in the case of <math display="inline"> <semantics> <msub> <mi mathvariant="bold">v</mi> <mn>0</mn> </msub> </semantics> </math> = <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics> </math>.</p> "> Figure 2
<p>(<b>a</b>) particle trajectories in the <math display="inline"> <semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> plane for <math display="inline"> <semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>5</mn> </mrow> </semantics> </math>. Charge <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>, constant electric field <math display="inline"> <semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> in the positive <span class="html-italic">y</span> direction, constant magnetic field <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics> </math> in the positive <span class="html-italic">z</span> direction. Initial velocity <math display="inline"> <semantics> <msub> <mi mathvariant="bold">v</mi> <mn>0</mn> </msub> </semantics> </math> = <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics> </math>. Dashed line: <math display="inline"> <semantics> <mrow> <mi mathvariant="script">E</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics> </math>; dotted line: <math display="inline"> <semantics> <mrow> <mi mathvariant="script">E</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics> </math>; solid line: <math display="inline"> <semantics> <mrow> <mi mathvariant="script">E</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics> </math>; (<b>b</b>) Particle trajectories in the <math display="inline"> <semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> plane for <math display="inline"> <semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mn>5</mn> </mrow> </semantics> </math>. Charge <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>, constant electric field <math display="inline"> <semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> in the positive <span class="html-italic">y</span> direction, constant magnetic field <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>1.6</mn> </mrow> </semantics> </math> in the positive <span class="html-italic">z</span> direction. Initial velocity <math display="inline"> <semantics> <msub> <mi mathvariant="bold">v</mi> <mn>0</mn> </msub> </semantics> </math> = <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.995</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics> </math>. Dashed line: <math display="inline"> <semantics> <mrow> <mi mathvariant="script">E</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics> </math>; dotted line: <math display="inline"> <semantics> <mrow> <mi mathvariant="script">E</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics> </math>; solid line: <math display="inline"> <semantics> <mrow> <mi mathvariant="script">E</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics> </math>.</p> "> Figure 3
<p>(a) Particle trajectories in the <math display="inline"> <semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> plane, (b) spin <math display="inline"> <semantics> <mrow> <msub> <mi>s</mi> <mi>z</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> and (c) velocity <math display="inline"> <semantics> <mrow> <mo>|</mo> <mi mathvariant="bold">v</mi> <mo>|</mo> </mrow> </semantics> </math> = <math display="inline"> <semantics> <mrow> <mrow> <mo>|</mo> </mrow> <mover accent="true"> <mi mathvariant="bold">x</mi> <mo>˙</mo> </mover> <mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math> for a constant electric field <span class="html-italic">E</span> in the positive <span class="html-italic">y</span> direction and a constant magnetic field <span class="html-italic">B</span> in the positive <span class="html-italic">z</span> direction. Parameters’ values are chosen as: charge <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>, energy <math display="inline"> <semantics> <mrow> <mi mathvariant="script">E</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math>, initial spin <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">s</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics> </math> = <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0.5</mn> <mo>)</mo> </mrow> </semantics> </math> and initial velocity <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">v</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics> </math> = <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mrow> <mn>0</mn> <mi>x</mi> </mrow> </msub> <mo>,</mo> <mn>0.9</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics> </math>, <math display="inline"> <semantics> <msub> <mi>v</mi> <mrow> <mn>0</mn> <mi>x</mi> </mrow> </msub> </semantics> </math> being the largest of the solutions of the constraint (<a href="#FD50-symmetry-10-00002" class="html-disp-formula">50</a>). The following field configurations have been chosen: <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>3.2</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>E</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> (solid lines); <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>=</mo> <mi>E</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> (dotted lines); <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>E</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> (dashed lines); <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>E</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> (dotted-dashed lines). The <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> trajectory would be on the upper vertical axis in the case of <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">v</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics> </math> = <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mrow> <mn>0</mn> <mi>x</mi> </mrow> </msub> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics> </math>.</p> ">
Abstract
:1. Introduction
2. The Spinless Relativistic Particle
2.1. The Massive Case
Example
2.2. The Massless Case
2.2.1. Equations of Motion
2.2.2. Energy Equation
2.2.3. Example of a Constant Electromagnetic Field
3. The Spinning Charged and Massless Particle
3.1. Time Parametrization
3.2. Conservation Laws
3.3. Physical Interpretation of the Classical Theory
3.4. Constant Electromagnetic Field
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Geim, A.K.; MacDonal, A.H. Graphene: Exploring carbon flatland. Phys. Today 2007, 60. [Google Scholar] [CrossRef]
- Castro, A.H.; Guinea, N.F.; Peres, N.M.P.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef]
- Frenkel, J. Zur Elektrodynamik punktförmiger Elektronen. Z. Phys. 1925, 32, 518–534. [Google Scholar] [CrossRef]
- Frenkel, J. Die Elektrodynamik des Rotierenden Electrons. Z. Phys. 1926, 37, 243–262. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifschitz, E.M. The Classical Theory of Fields. In Course of Theoretical Physics; Oxford-Pergamon Press: Oxford, UK, 1975; Volume 2. [Google Scholar]
- Martin, J.L. Generalized Classical Dynamics and the ‘Classical Analogue’ of a Fermi Oscillator. Proc. R. Soc. Lond. A 1959, 251, 536. [Google Scholar]
- Berezin, F.A.; Marinov, M.S. Classical Spin and Grassmann Algebra. Pisma Zh. Eksp. Teor. Fiz. 1975, 21, 678–680. (In Russian) [Google Scholar]
- Berezin, F.A.; Marinov, M.S. Particle Spin Dynamics as the Grassmann Variant of Classical Mechanics. Ann. Phys. 1977, 104, 336–362. [Google Scholar]
- Casalbuoni, R. Relativity and supersymmetries. Phys. Lett. B 1976, 62, 49. [Google Scholar] [CrossRef]
- Casalbuoni, R. The classical mechanics for Bose-Fermi systems. Nuovo Cimento A 1976, 33, 389–431. [Google Scholar] [CrossRef]
- Brink, L.; Deser, S.; Zumino, B.; Di Vecchia, P.; Howe, P. Local supersymmetry for spinning particles. Phys. Lett. B 1976, 64, 435–438, Errata. Phys. Lett. B 1977, 64, 488. [Google Scholar]
- Brink, L.; Di Vecchia, P.; Howe, P. A Lagrangian formulation of the classical and quantum dynamics of spinning particles. Nucl. Phys. B 1977, 118, 76–94. [Google Scholar] [CrossRef]
- Balachandran, A.P.; Salomonson, P.; Skagerstam, B.-S.; Winnberg, J.-O. Classical description of a particle interacting with a non-Abelian gauge field. Phys. Rev. D 1977, 15, 2308. [Google Scholar] [CrossRef]
- Salomonson, P. Sypersymmetric actions for spinning particles. Phys. Rev. D 1978, 18, 1868. [Google Scholar] [CrossRef]
- Carlos, G.A.P.; Teitelboim, C. Classical supersymmetric particles. J. Math. Phys. 1980, 21, 1863–1880. [Google Scholar]
- Van Holten, J.W. Quantum theory of a massless spinning particle. Z. Phys. C 1988, 41, 497–504. [Google Scholar] [CrossRef]
- Van Holten, J.W. On the electrodynamics of spinning particles. Nucl. Phys. B 1991, 356, 3–26. [Google Scholar] [CrossRef]
- Fainberg, V.Y.; Marshakov, A.V. Local Supersymmetry and Dirac Particle Propagator as a Path Integral. Nucl. Phys. B 1988, 306, 659–676. [Google Scholar] [CrossRef]
- Aliev, T.M.; Fainberg, V.Y.; Pak, N.K. Path integral for spin: A New approach. Nucl. Phys. B 1994, 429, 321–343. [Google Scholar] [CrossRef]
- Geyer, B.; Dmitry, G.; Shapiro, I.L. Path integral and pseudoclassical action for spinning particle in external electromagnetic and torsion fields. Int. J. Mod. Phys. A 2000, 15, 3861–3876. [Google Scholar] [CrossRef]
- Bittencourt, J.A. Fundamentals of Plasma Physics, 3rd ed.; Springer: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Rohrlich, F. Classical Charged Particles, 3rd ed.; World Scientific Publishing: Singapore, 2007. [Google Scholar]
- Kosyakov, B. Introduction to the Classical Theory of Particles and Fields; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Kosyakov, B.P. Massless interacting particles. J. Phys. A 2008, 41, 465401. [Google Scholar] [CrossRef]
- Azzurli, F.; Lechner, K. The Lienard-Wiechert field of accelerated massless charges. Phys. Lett. A 2013, 377, 1025–1029. [Google Scholar] [CrossRef]
- Azzurli, F.; Lechner, K. Electromagnetic fields and potentials generated by massless charged particles. Ann. Phys. 2014, 349, 1–32. [Google Scholar] [CrossRef]
- Lechner, K. Electrodynamics of massless charged particles. J. Math. Phys. 2015, 56, 022901. [Google Scholar] [CrossRef]
- Deriglazov, A.A.; Walberto, G.R. World-line geometry probed by fast spinning particle. Mod. Phys. Lett. A 2015, 30, 1550101. [Google Scholar] [CrossRef]
- Deriglazov, A.A.; Walberto, G.R. Ultrarelativistic Spinning Particle and a Rotating Body in External Fields. Adv. High Energy Phys. 2016, 2016, 1376016. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, I.; Neves, B.; Oporto, Z.; Piguet, O. Behaviour of Charged Spinning Massless Particles. Symmetry 2018, 10, 2. https://doi.org/10.3390/sym10010002
Morales I, Neves B, Oporto Z, Piguet O. Behaviour of Charged Spinning Massless Particles. Symmetry. 2018; 10(1):2. https://doi.org/10.3390/sym10010002
Chicago/Turabian StyleMorales, Ivan, Bruno Neves, Zui Oporto, and Olivier Piguet. 2018. "Behaviour of Charged Spinning Massless Particles" Symmetry 10, no. 1: 2. https://doi.org/10.3390/sym10010002
APA StyleMorales, I., Neves, B., Oporto, Z., & Piguet, O. (2018). Behaviour of Charged Spinning Massless Particles. Symmetry, 10(1), 2. https://doi.org/10.3390/sym10010002