Kinematic Fuzzy Logic-Based Controller for Trajectory Tracking of Wheeled Mobile Robots in Virtual Environments
<p>Bibliometric map of related works.</p> "> Figure 2
<p>Kinematic model of the Ackerman-type robot.</p> "> Figure 3
<p>Control structure proposed.</p> "> Figure 4
<p>Error linguistic variable distribution.</p> "> Figure 5
<p>Error derivative linguistic variable distribution.</p> "> Figure 6
<p>Integral of error linguistic variable distribution.</p> "> Figure 7
<p>Virtual environment block diagram.</p> "> Figure 8
<p>Determination of the yaw angle.</p> "> Figure 9
<p>Flowchart of the first stage.</p> "> Figure 10
<p>Flowchart of the second stage.</p> "> Figure 11
<p>Virtual environment scene.</p> "> Figure 12
<p>A 3D model of the robot in Fusion 360.</p> "> Figure 13
<p>First test: simulate circular path in Python.</p> "> Figure 14
<p>Angular error for circular path.</p> "> Figure 15
<p>Circular path control signal.</p> "> Figure 16
<p>Simulation of the circular trajectory made in Unity. (<b>a</b>) View of the robot orientation for the path. (<b>b</b>) Front view of the circular path simulation. (<b>c</b>) Aerial view of the circular path simulation.</p> "> Figure 17
<p>Second trajectory test: point-to-point case.</p> "> Figure 18
<p>Angular error for point tracking path.</p> "> Figure 19
<p>Control signal for point-to-point trajectory.</p> "> Figure 20
<p>Point tracking path simulation done in Unity. (<b>a</b>) Partial path of the simulated robot in Unity. (<b>b</b>) Complete robot path in Unity.</p> "> Figure 21
<p>Third case of trajectories: movement always in change.</p> "> Figure 22
<p>Angular error of rotation <math display="inline"><semantics> <mi>δ</mi> </semantics></math> for the crossed trajectory.</p> "> Figure 23
<p>Control signal for the cross path.</p> "> Figure 24
<p>Simulation of the crossing trajectory implemented in Unity. (<b>a</b>) Partial robot path of the crossed trajectory. (<b>b</b>) Full robot path of the cross trajectory.</p> ">
Abstract
:1. Introduction
- The design of a fuzzy kinematic controller for an Ackermann-type robotic structure offers an efficient and flexible solution for regulating robot motions, standing out for its ability to adaptively adjust gains in real-time. Unlike traditional methods, this controller does not require an exact mathematical model of the system, which simplifies its implementation and improves robustness against uncertainties and variations in the environment. The main innovation lies in the use of a fuzzy approach to determine PID-type gains, allowing for greater precision and stability in tracking specific trajectories. This dynamic adaptation capability makes the controller especially useful in highly variable scenarios where conventional methods could fail to maintain optimal system performance.
- A methodology for implementing the controller in a virtual environment developed in UNITY, which accurately simulates the robot’s behavior. In this environment, control data are received and applied to the virtual robot, allowing the robot to move along predefined trajectories. This implementation validates the controller’s performance and provides a clear and detailed view of the robot’s behavior in different scenarios, facilitating the evaluation of its performance and the continuous improvement of the system. Real-time visualization within the virtual environment allows the controller to be efficiently tuned and optimized before its implementation on physical hardware.
2. Related Works
3. Materials and Methods
3.1. Mathematical Model
3.2. Controller Proposal
3.3. 3D Simulation Environment Design
4. Results
4.1. Circular Trajectory
4.2. Point-to-Point Trajectory
4.3. Crossed Trajectory
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PID | proportional–integral–derivative |
FL | fuzzy logic |
FLC | fuzzy-logic-based controller |
TVLQ | time-varying linear quadratic |
LMIs | linear matrix inequalities |
ADAR | analytical design of aggregated regulators |
SCT | synergetic control theory |
ORRL | optimized reward reinforcement learning |
DQN | deep Q-network |
ROS | robot operating system |
LSTM | long short-term memory |
UGV | unmanned ground vehicle |
BIM | building information modeling |
VR | virtual reality |
ICC | instantaneous center of curvature |
KM | kinematic model |
DKM | direct kinematic model |
NB | negative-large |
NS | negative-small |
ZE | zero |
PS | positive-small |
PL | positive-large |
B | big |
M | medium |
S | small |
CBS | conflict-based search |
STH-CBS | spatiotemporal hybrid A* conflict-based search |
WSTH-CBS | weighted spatiotemporal hybrid A* conflict-based search |
References
- Atchade-Adelomou, P.; Alonso-Linaje, G.; Albo-Canals, J.; Casado-Fauli, D. qRobot: A Quantum Computing Approach in Mobile Robot Order Picking and Batching Problem Solver Optimization. Algorithms 2021, 14, 194. [Google Scholar] [CrossRef]
- Amer, N.H.; Zamzuri, H.; Hudha, K.; Kadir, Z.A. Modelling and Control Strategies in Path Tracking Control for Autonomous Ground Vehicles: A Review of State of the Art and Challenges. Intell. Robot. Syst. 2017, 86, 225–254. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, B.; Yang, Y.; Liu, Y.; Jiang, P. Research on Running Performance Optimization of Four-Wheel-Driving Ackerman Chassis by the Combining Method of Quantitative Experiment with Dynamic Simulation. Machines 2024, 12, 198. [Google Scholar] [CrossRef]
- Cao, Y.; Li, B.; Deng, Z.; Guo, X. Parking Trajectory Planning for Autonomous Vehicles Under Narrow Terminal Constraints. Electronics 2024, 13, 5041. [Google Scholar] [CrossRef]
- Kang, Y.; Xue, B.; Zeng, R. Self-Adaptive Path Tracking Control for Mobile Robots under Slippage Conditions Based on an RBF Neural Network. Algorithms 2021, 14, 196. [Google Scholar] [CrossRef]
- Ju, J.; Zhao, Y.; Zhang, C.; Liu, Y. Vibration Suppression of a Flexible-Joint Robot Based on Parameter Identification and Fuzzy PID Control. Algorithms 2018, 11, 189. [Google Scholar] [CrossRef]
- Grosset, J.; Oukacha, O.; Fougères, A.-J.; Djoko-Kouam, M.; Bonnin, J.-M. Fuzzy Multi-Agent Simulation for Collective Energy Management of Autonomous Industrial Vehicle Fleets. Algorithms 2024, 17, 484. [Google Scholar] [CrossRef]
- Hussein, A.; García, F.; Olaverri-Monreal, C. ROS and Unity Based Framework for Intelligent Vehicles Control and Simulation. In Proceedings of the 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Madrid, Spain, 12–14 September 2018; pp. 1–6. [Google Scholar]
- Eisenträger, K.; Haubner, J.; Brade, J.; Einhäuser, W.; Bendixen, A.; Winkler, S.; Klimant, P.; Jahn, G. Evaluating the Effects of Virtual Reality Environment Learning on Subsequent Robot Teleoperation in an Unfamiliar Building. IEEE Trans. Vis. Comput. Graph. 2023, 29, 2220–2229. [Google Scholar] [CrossRef] [PubMed]
- Haces-Garcia, A.; Zhu, W. Building an Accessible and Flexible Multi-User Robotic Simulation Framework with Unity-MATLAB Bridge. Computers 2024, 13, 282. [Google Scholar] [CrossRef]
- Pham, T.T.; Le, M.T.; Nguyen, C.N. Omnidirectional Mobile Robot Trajectory Tracking Control with Diversity of Inputs. Int. J. Mech. Eng. Robot. Res. 2021, 10, 639–644. [Google Scholar] [CrossRef]
- Carmona, R.R.; Sung, H.G.; Kim, Y.S.; Vazquez, H.A. Stable PID Control for Mobile Robots. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; IEEE: New York, NY, USA, 2018; pp. 1891–1896. [Google Scholar]
- Shojaei, K.; Shahri, A.M.; Tarakameh, A.; Tabibian, B. Adaptive Trajectory Tracking Control of a Differential Drive Wheeled Mobile Robot. Robotica 2011, 29, 391–402. [Google Scholar] [CrossRef]
- Ćaran, B.; Milić, V.; Švaco, M.; Jerbić, B. Optimal Control-Based Algorithm Design and Application for Trajectory Tracking of a Mobile Robot with Four Independently Steered and Four Independently Actuated Wheels. Actuators 2024, 13, 279. [Google Scholar] [CrossRef]
- Veselov, G.; Sklyarov, A.; Chávez, J.V. Non-linear Control of a Tracked Robot. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; pp. 641–646. [Google Scholar]
- Xie, H.; Ma, X.; Qin, Q.; Sun, X. Trajectory Tracking Control for Ackerman Vehicle Based on Improved Reward Function. In Proceedings of the 2024 43rd Chinese Control Conference (CCC), Kunming, China, 26–28 July 2024; pp. 519–524. [Google Scholar]
- Ha, T.N.; Tu, T.N.; Dung, N.T.; Mien, T.L.; Thuy, C.T. Deep Q-Network (DQN) Approach for Automatic Vehicles Applied in the Intelligent Transportation System (ITS). In Proceedings of the 2023 International Conference on System Science and Engineering (ICSSE), Ho Chi Minh, Vietnam, 27–28 July 2023; pp. 527–532. [Google Scholar]
- Khesrani, S.; Hassam, A.; Boutalbi, O.; Boubezoula, M. Motion Planning and Control of Nonholonomic Mobile Robot Using Flatness and Fuzzy Logic Concepts. Int. J. Dyn. Control 2021, 9, 1660–1671. [Google Scholar] [CrossRef]
- Thuong, T.T.; Ha, V.T.; Truc, L.N. Intelligent Control for Mobile Robots Based on Fuzzy Logic Controller. In Proceedings of the International Conference on Intelligent Systems & Networks, Hanoi, Vietnam, 18–19 March 2023; Springer Nature: Singapore, 2023; pp. 566–573. [Google Scholar]
- Mai, T.A.; Dang, T.S.; Duong, D.T.; Le, V.C.; Banerjee, S. A combined backstepping and adaptive fuzzy PID approach for trajectory tracking of autonomous mobile robots. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 1–13. [Google Scholar] [CrossRef]
- Tolossa, T.D.; Gunasekaran, M.; Halder, K.; Verma, H.K.; Parswal, S.S.; Jorwal, N.; Maria Joseph, F.O.; Hote, Y.V. Trajectory tracking control of a mobile robot using fuzzy logic controller with optimal parameters. Robotica 2024, 42, 2801–2824. [Google Scholar] [CrossRef]
- Zhao, T.; Qin, P.; Zhong, Y. Trajectory Tracking Control Method for Omnidirectional Mobile Robot Based on Self-Organizing Fuzzy Neural Network and Preview Strategy. Entropy 2023, 25, 248. [Google Scholar] [CrossRef]
- Tang, H.H.; Ahmad, N.S. Fuzzy logic approach for controlling uncertain and nonlinear systems: A comprehensive review of applications and advances. Syst. Sci. Control Eng. 2024, 12, 2394429. [Google Scholar] [CrossRef]
- Hentout, A.; Maoudj, A.; Aouache, M. A review of the literature on fuzzy-logic approaches for collision-free path planning of manipulator robots. Artif. Intell. Rev. 2023, 56, 3369–3444. [Google Scholar] [CrossRef]
- Bai, G.; Liu, L.; Meng, Y.; Luo, W.; Gu, Q.; Wang, J. Path Tracking of Wheeled Mobile Robots Based on Dynamic Prediction Model. IEEE Access 2019, 7, 39690–39701. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Azimi, A.; Behjati, M.; Ghasemzadeh, A.; Dworak, V.; Weltzien, C.; Karydis, K.; Cheein, F.A.A. Online path tracking with an integrated H∞ robust adaptive controller for a double-Ackermann steering robot for orchard waypoint navigation. In International Journal of Intelligent Robotics and Applications; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–21. [Google Scholar]
- Molina-Leal, A.; Gómez-Espinosa, A.; Escobedo Cabello, J.A.; Cuan-Urquizo, E.; Cruz-Ramírez, S.R. Trajectory Planning for a Mobile Robot in a Dynamic Environment Using an LSTM Neural Network. Appl. Sci. 2021, 11, 10689. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, W.; Zheng, Q.; Zhai, X.; Zhang, W.; Zhang, T.; Wang, S. Path Planning of Mobile Robot in Dynamic Obstacle Avoidance Environment Based on Deep Reinforcement Learning. IEEE Access 2024, 12, 189136–189152. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, K.; Song, C.; Zhang, X.; Cheng, J.C.P.; Li, D. Global Path Planning Based on BIM and Physics Engine for UGVs in Indoor Environments. Autom. Constr. 2022, 139, 104263. [Google Scholar] [CrossRef]
- Liu, Y.; Novotny, G.; Smirnov, N.; Morales-Alvarez, W.; Olaverri-Monreal, C. Mobile Delivery Robots: Mixed Reality-Based Simulation Relying on ROS and Unity 3D. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19–21 October 2020; pp. 15–20. [Google Scholar]
- Pantusin, F.J.; Carvajal, C.P.; Ortiz, J.S.; Andaluz, V.H. Virtual Teleoperation System for Mobile Manipulator Robots Focused on Object Transport and Manipulation. Technologies 2024, 12, 146. [Google Scholar] [CrossRef]
- Galarza, B.R.; Ayala, P.; Manzano, S.; Garcia, M.V. Virtual Reality Teleoperation System for Mobile Robot Manipulation. Robotics 2023, 12, 163. [Google Scholar] [CrossRef]
- Figueroa-Olmedo, J.R.; Montalvo-Lopez, W.M.; Bayas-Sampedro, M.M. Cinemática y Dinámica de Robots Móviles con Ruedas, 1st ed.; CILADI: Guayaquil, Ecuador, 2023; pp. 136–138. [Google Scholar]
- Carlucho, I.; De Paula, M.; Acosta, G.G. An Adaptive Deep Reinforcement Learning Approach for MIMO PID Control of Mobile Robots. ISA Trans. 2020, 102, 280–294. [Google Scholar] [CrossRef]
- Saidi, S.M.; Mellah, R.; Fekik, A.; Azar, A.T. Real-Time Fuzzy-PID for Mobile Robot Control and Vision-Based Obstacle Avoidance. Int. J. Serv. Sci. Manag. Eng. Technol. 2022, 13, 1–32. [Google Scholar] [CrossRef]
- Klancar, G.; Zdesar, A.; Blazic, S.; Skrjanc, I. Wheeled Mobile Robotics: From Fundamentals Towards Autonomous Systems; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Azimi, A.; Shamshiri, R.R.; Ghasemzadeh, A. Adaptive Dynamic Programming for Robust Path Tracking in an Agricultural Robot Using Critic Neural Networks. Agric. Eng. EU 2025, 80, 1. [Google Scholar]
- Shen, Z.; Du, H.; Yu, L.; Zhu, W.; Zhu, M. A Path Planning and Tracking Control Algorithm for Multi-Autonomous Mobile Robot Systems Based on Spatiotemporal Conflicts and Nonholonomic Constraints. Actuators 2024, 13, 399. [Google Scholar] [CrossRef]
Variable | Description |
---|---|
Instantaneous center of curvature | |
l | Separation distance between front wheels |
d | Separation distance between side wheels |
Front wheels turning angle | |
Inner wheel turning angle | |
Outer wheel turning angle | |
v | Linear speed of the robot |
R | Radius of gyration (radius of curvature of the path) |
Inner wheel angular velocity | |
Outer wheel angular velocity | |
Turning angle |
Linguistic Value | Positions |
---|---|
NL | [−10,−10,−1] |
NS | [−10,−1,0] |
ZE | [−1,0,1] |
PS | [0,1,10] |
PL | [1,10,10] |
Linguistic Value | Positions |
---|---|
B | 10.0 |
M | 4.0 |
S | 2.5 |
Linguistic Value | Positions |
---|---|
dNL | [−10,−10,−1] |
dNS | [−10,−1,0] |
dZE | [−1,0,1] |
dPS | [0,1,10] |
dPL | [1,10,10] |
Linguistic Value | Positions |
---|---|
dB | 0.9 |
dM | 0.6 |
dS | 0.0 |
Linguistic Value | Positions |
---|---|
iNL | [−10,−10,−2] |
iNS | [−10,−2,−0.5] |
iZE | [−0.5,0,0.5] |
iPS | [0.5,2,10] |
iPL | [2,10,10] |
Linguistic Value | Positions |
---|---|
iB | 8.0 |
iM | 4.0 |
iS | 0.0 |
If e(t) is , then is B | If is , then is | If is , then is |
If is , then is M | If is , then is | If is , then is |
If is , then is S | If is , then is | If is , then is |
If is , then is M | If is , then is | If is , then is |
If is , then is B | If is , then is | If is , then is |
Description | Measures |
---|---|
Width | 73 mm |
Long | 174 mm |
Height | 12.6 mm |
Distance between the axles | 107.6 mm |
Wheel separation | 91.75 mm |
Wheel radius | 33.34 mm |
Trajectory | Average Tracking Error (m) | Maximum Error (m) | Steady-State Error (m) | Settling Time (s) | Average Error (rad) | Total Time (s) | Total Distance Traveled (m) |
---|---|---|---|---|---|---|---|
Circular | 0.0089 | 3.7 | 0.0012 | 7.246 | 0.015 | 32.5 | 62.8 |
Point-to-point | 0.9531 | 5.784 | 0.001543 | 4.564 | 0.9743 | 67 | 75.4 |
Cross | 0.01814 | 8.96 | 0.00232 | 9.940 | 0.021 | 40 | 58.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Juárez, J.G.; García-Martínez, J.R.; Medina Santiago, A.; Cruz-Miguel, E.E.; Olmedo-García, L.F.; Barra-Vázquez, O.A.; Rojas-Hernández, M.A. Kinematic Fuzzy Logic-Based Controller for Trajectory Tracking of Wheeled Mobile Robots in Virtual Environments. Symmetry 2025, 17, 301. https://doi.org/10.3390/sym17020301
Pérez-Juárez JG, García-Martínez JR, Medina Santiago A, Cruz-Miguel EE, Olmedo-García LF, Barra-Vázquez OA, Rojas-Hernández MA. Kinematic Fuzzy Logic-Based Controller for Trajectory Tracking of Wheeled Mobile Robots in Virtual Environments. Symmetry. 2025; 17(2):301. https://doi.org/10.3390/sym17020301
Chicago/Turabian StylePérez-Juárez, José G., José R. García-Martínez, Alejandro Medina Santiago, Edson E. Cruz-Miguel, Luis F. Olmedo-García, Omar A. Barra-Vázquez, and Miguel A. Rojas-Hernández. 2025. "Kinematic Fuzzy Logic-Based Controller for Trajectory Tracking of Wheeled Mobile Robots in Virtual Environments" Symmetry 17, no. 2: 301. https://doi.org/10.3390/sym17020301
APA StylePérez-Juárez, J. G., García-Martínez, J. R., Medina Santiago, A., Cruz-Miguel, E. E., Olmedo-García, L. F., Barra-Vázquez, O. A., & Rojas-Hernández, M. A. (2025). Kinematic Fuzzy Logic-Based Controller for Trajectory Tracking of Wheeled Mobile Robots in Virtual Environments. Symmetry, 17(2), 301. https://doi.org/10.3390/sym17020301