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Abstract: Mobile robots represent one of the most relevant areas of study within robotics
due to their potential for designing and developing new nonlinear control structures that
can be implemented in simulations and applications in specific environments. In this work,
a fuzzy steering controller with a symmetric distribution of fuzzy numbers is proposed
and designed for implementation in the kinematic model of a non-holonomic mobile
robot. The symmetry in the distribution of triangular fuzzy numbers contributes to a
balanced response to disturbances and minimizes systematic errors in direction estimation.
Additionally, it improves the system’s adaptability to various reference paths, ensuring
accurate tracking and optimized performance in robot navigation. Furthermore, this fuzzy
logic-based controller emulates the behavior of a classic PID controller by offering a robust
and flexible alternative to traditional methods. A virtual environment was also developed
using the UNITY platform to evaluate the performance of the fuzzy controller. The results
were evaluated by considering the average tracking error, maximum error, steady-state
error, settling time, and total distance traveled, emphasizing the trajectory error. The
circular trajectory showed high accuracy with an average error of 0.0089 m, while the cross
trajectory presented 0.01814 m, reflecting slight deviations in the turns. The point-to-point
trajectory registered a more significant error of 0.9531 m due to abrupt transitions, although
with effective corrections in a steady state. The simulation results validate the robustness
of the proposed fuzzy controller, providing quantitative insights into its precision and
efficiency in a virtual environment, and demonstrating the effectiveness of the proposal.

Keywords: fuzzy controller; mobile robot; UNITY; kinematics control

1. Introduction
Mobile robots have gained remarkable popularity in recent years, extending their

presence to several areas, such as industrial, professional, and educational settings [1]. In
the latter, students actively participate in developing robots for school projects, contributing
to the continuous growth of mobile robotics. This growth has generated the need to locate
mobile robots at any point in space, which requires obtaining a kinematic model that allows
one to determine in real time the robot coordinates and its orientation for a fixed reference
frame [2].
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Within the field of mobile robotics, there is a wide variety of models with different
configurations, depending on their structural type or physical characteristics, resulting in
various types of movement and, therefore, different kinematics in each case. Ackerman-
type mobile robots are characterized because their movement is comparable to that of a
car [3]. For this reason, its kinematic model allows for applications such as autonomous
ground vehicles and exploration robots [4]; this same model, characterized by the inherent
turning restrictions of its directional system, poses significant challenges, such as designing
controllers that allow precise tracking of the trajectory.

The design of kinematic controllers is essential for ensuring that mobile robots follow
trajectories accurately and efficiently [5]. Among the most common and prominent tech-
niques is the use of proportional–integral–derivative (PID) controllers, whose simplicity
and effectiveness have always been characterized. However, for complex scenarios, inte-
grating fuzzy logic (FL) in the controller design offers a more robust strategy capable of
adapting to variable conditions [6]. However, implementing these controllers often requires
advanced navigation sensors that accurately measure the robot’s movement and orientation
in real applications. These sensors are essential to address environmental challenges and
ensure reliable performance.

Detailed simulations are crucial before implementing kinematic control systems in
a physical environment. These allow for the evaluation of the system’s behavior under
different conditions and the adjustment of parameters to optimize the design [7]. Today,
multiple virtual environments offer advanced tools for designing and testing controllers,
facilitating the development of more robust and secure solutions for mobile robots. Unity
is a 3D development engine widely used in video game development. However, its
applications are not limited to that; its great versatility has made it a key tool in numerous
fields, such as education, simulation, and autonomous system design [8,9]. Unity is a
flexible and powerful tool that allows one to model physical systems and replicate real-
world scenarios with great fidelity [10].

This article offers two significant contributions to the state of the art:

• The design of a fuzzy kinematic controller for an Ackermann-type robotic structure
offers an efficient and flexible solution for regulating robot motions, standing out
for its ability to adaptively adjust gains in real-time. Unlike traditional methods,
this controller does not require an exact mathematical model of the system, which
simplifies its implementation and improves robustness against uncertainties and
variations in the environment. The main innovation lies in the use of a fuzzy approach
to determine PID-type gains, allowing for greater precision and stability in tracking
specific trajectories. This dynamic adaptation capability makes the controller especially
useful in highly variable scenarios where conventional methods could fail to maintain
optimal system performance.

• A methodology for implementing the controller in a virtual environment developed in
UNITY, which accurately simulates the robot’s behavior. In this environment, control
data are received and applied to the virtual robot, allowing the robot to move along
predefined trajectories. This implementation validates the controller’s performance
and provides a clear and detailed view of the robot’s behavior in different scenarios,
facilitating the evaluation of its performance and the continuous improvement of the
system. Real-time visualization within the virtual environment allows the controller
to be efficiently tuned and optimized before its implementation on physical hardware.

This paper is structured as follows: Section 2 briefly discusses related works to our
proposed research. Section 3 presents the developed methodology, and is divided into three
main parts: the derivation of the kinematic model for the Ackermann-type robot, the design
of the fuzzy PID controller, and the development of the 3D simulation in Unity. Section 4
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presents the simulation results, considering different trajectories. Section 5 discusses the
performance of the kinematic fuzzy-logic-based controller for trajectory tracking. Finally,
Section 6 provides the conclusions and references.

2. Related Works
Trajectory tracking is one of the critical challenges in mobile robotics as it requires

advanced control techniques that are capable of handling uncertainty and nonlinearity [11].
To better understand the current landscape on this subject, we performed a bibliometric
analysis that visualized development trends and emerging areas of interest within the
literature, as shown in Figure 1. Our study revealed that traditional control methods, such
as PID and adaptive control laws, are highly cited. However, recent research shows a
growing interest in optimal control, reinforcement learning, fuzzy logic-based controllers
(FLCs), and other artificial intelligence techniques. Classical PID controllers are used due to
their simplicity and effectiveness in maintaining stability; however, their performance dete-
riorates in highly nonlinear systems, requiring parameter tuning and model linearization
as observed in [12]. Shojaei et al. [13] applied an adaptive control law to a differential-type
robot; in this, the kinematic model was obtained, and from it, the linearization of the
system was carried out using the feedback technique to obtain a model in which a control
system can be applied. Although this technique presents robust results and is applied
to a physical model, it is necessary to have a linear model to implement or resort to lin-
earization techniques to approximate a model. To address these limitations, optimal control
methods such as time-varying linear quadratic control (TVLQ) have been proposed by
Caran et al. [14]. Their optimal control-based algorithm is founded upon the direct numeri-
cal calculation of the time-varying elements of the control law matrix, avoiding formalism
of the set of linear matrix inequalities (LMIs) and the approximation of the solution of the
Riccati partial differential matrix equation. On the other hand, Veselov et al. [15] took into
account the nonlinear properties of a mobile tracked robot and employed an analytical
design of aggregated regulators (ADARs), a method derived from synergetic control theory
(SCT) that allows the synthesis of control laws for complex nonlinear systems without
using linearization procedures. Unlike model-based approaches, which require precise
system identification, reinforcement learning methods have been explored. Xie et al. [16]
solved the trajectory tracking problem using an optimized reward reinforcement learning
(ORRL) algorithm based on the Q-learning framework. Similarly, Ha et al. [17] evaluated
the performance of an intelligent controller built on a deep Q-network (DQN) algorithm.
While these approaches demonstrate good adaptive ability in complex driving environ-
ments, they demand significant computational resources and mathematical formulation,
which may limit their real-time applicability. In contrast, fuzzy-logic-based controllers
offer a viable alternative in such situations, as they dynamically adjust gains based on
system behavior, making them particularly well-suited for scenarios where uncertainties
or variations may arise. Several researchers have evaluated the effectiveness of FLCs in
mobile robotics. Khesrani et al. [18] employed FL to auto-tune the endogenous feedback
controller parameters, demonstrating good tracking of the desired tasks despite uncertain-
ties. Meanwhile, Thuong et al. [19] implemented a proportional–derivative FL controller
for trajectory following, while Mai et al. [20] combined a backstepping and adaptive fuzzy
PID approach for a nonholonomic mobile robot. These results demonstrated good per-
formance in terms of small distance errors, fast responses, and accuracy. Recent works
have further explored fuzzy controllers integrated with genetic algorithms [21] and neural
networks [22] to enhance system performance. A comprehensive description of fuzzy
hybridization with other artificial intelligence techniques, as well as current fuzzy logic
approaches, is reviewed in [23,24]. In order to evaluate the performances of different
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control strategies without the costs and risks associated with real-world implementations,
simulation platforms play a crucial role in the development of mobile robots. The bib-
liometric map in Figure 1 highlights the use of simulation environments for validating
control strategies. Bai et al. [25] simulated a path-tracking controller based on the dynamic
prediction model using MATLAB/Simulink, allowing for rapid prototyping and control
system analysis. In addition, Shamshiri et al. [26] carried out a numerical simulation for
an H∞ robust adaptive controller by integrating MATLAB/Simulink and CoppeliaSim.
Using a dedicated simulation environment highlights MATLAB’s limitations in 3D graph-
ics and interactive simulations. Mobile robots and their dynamic environment have been
simulated in Gazebo, an open-source 3D robotics simulator that can be synchronized with
ROS (a robot operating system). Molina-Leal et al. [27] employed Gazebo to evaluate the
performance of a long short-term memory (LSTM) neural network for trajectory planning,
whereas Zhang et al. [28] conducted simulations of mobile robots for obstacle avoidance in
environments with dynamic obstacles. More recently, Unity3D has gained popularity due
to its advanced rendering capabilities, physics engines, and accessibility. In [29], a Unity3D-
based simulation environment was used to test unmanned ground vehicle (UGV) motion
planning algorithms, demonstrating the viability of game engines for realistic robotic simu-
lations. Integrating physics engines and building information modeling (BIM) enhances
simulation realism. In addition, Liu et al. [30] proposed a mixed reality simulation as they
used sensor information from the real world to project into a virtual environment created
in Unity. Finally, it has been utilized for teleoperation, where mobile robots are remotely
controlled through virtual reality (VR) in immersive virtual environments [31,32]. Despite
advances in this field, certain gaps remain. While FLCs have demonstrated adaptation
capabilities in variable scenarios, few works have explored them in virtual environments
like Unity3D. By addressing the limitations of traditional control methods, the complexity
of advanced algorithms, and the enhancement of the simulation framework, this research
contributes to the development of efficient and scalable mobile robot designs.
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3. Materials and Methods
3.1. Mathematical Model

Within the group of four-wheeled mobile robots, the Ackerman-type configuration
consists of two groups of two wheels: the group of rear drive wheels that are responsible
for providing traction to the vehicle and the group of front wheels that are responsible for
giving direction to the robot. In both groups, there is a single actuator in charge of this
action, that is, traction and direction are combined. The movement of the Ackerman robot
is characterized by how it addresses turns. Like other robot models, the robot can move
in a straight line without a problem but cannot turn instantly since it requires a certain
minimum radius to act. In addition, the drive wheels will experience some slippage during
this action.

The representation of the Ackerman robot movement can be visualized in Figure 2;
from there, it is possible to obtain the mathematical model that describes the kinematics
of its movement; this kinematic model (KM) will be used to carry out the simulation. In
Table 1, it is possible to observe the description of each of the elements.

l

?i ?o
?

d

R

X

Y

Xi

Yi

v

Inner wheel Outer wheel

rt

ICC

? ? i ?o

l/2

Figure 2. Kinematic model of the Ackerman-type robot.

Table 1. Elements of the Ackermann-type robot’s kinematic model.

Variable Description

ICC Instantaneous center of curvature
l Separation distance between front wheels
d Separation distance between side wheels
δ Front wheels turning angle
δi Inner wheel turning angle
δo Outer wheel turning angle
v Linear speed of the robot
R Radius of gyration (radius of curvature of the path)
ωi Inner wheel angular velocity
ωo Outer wheel angular velocity
θ Turning angle
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Analyzing the Ackerman configuration displayed in Figure 2, we observe how the
turn occurs in this configuration. This model is distinctive in that it cannot rotate around
its own reference system. The Ackerman configuration, when turning, does so through a
circumference with a central point known as the instantaneous center of curvature (ICC).
The steering angles of the front wheels determine this rotation center. The ICC is located
precisely at the intersection of the extended axes of all the wheels, and the robot will rotate
around this point. The ICC is not a fixed point; it can change at any moment with the
slightest adjustment in the steering angle of the front wheels. Consequently, the dimensions
of the turning circle will also be affected. The ICC does not depend on the number of
wheels but rather on the number of constraints. In the case of the Ackerman configuration,
the ICC is determined by two kinematic constraints: 1. The front wheels produce one
constraint. Despite having two wheels, they generate the same set of constraints. 2. The
rear axle provides the second constraint, which is fixed and cannot rotate [33]. In short,
when the robot moves its front wheels, its entire body will turn around an instantaneous
circle of radius R. This angle can be estimated by Equation (1):

R =
d

tan δ
(1)

this equation describes how the curvature of the turning radius of the Ackerman robot is
inversely proportional to the tangent of the steering angle, δ, and the distance between
the lateral axles, d. When R tends to infinity, the movement is straight. Additionally, it
is possible to observe how the physical characteristics and movements of the robot affect
its trajectory.

The Ackerman robot’s mechanism allows movement so the rear wheels do not produce
a steering angle. Based on this, it is possible to determine the orientations of each wheel,
with each wheel producing a different angle concerning the ICC; the inner wheel must be
oriented at an angle, δi, greater than the outer wheel, δo; this allows the robot to turn around
the midpoint between the rear wheel axes. The resulting angle at the midpoint corresponds
to δ. The steering angles of the front wheels are determined by Equations (2) and (3).

δo =
π

2
+ arctan

R + l
2

d
(2)

δi =
π

2
+ arctan

R − l
2

d
(3)

Consequently,the inner wheel must move at a lower speed than the outer wheel, that
is, vi < vo. Due to this configuration and the fact that only one actuator is responsible for
the rotation of the rear wheels, both wheels rotate at the same angular speed, denoted as
ω, around ICC. Therefore, using Equations (4) and (5), it is possible to calculate the linear
velocities of each of the rear wheels:

vo = ω

(
R +

l
2

)
(4)

vi = ω

(
R − l

2

)
(5)

To obtain the direct KM (DKM) of this configuration, it must be assumed that the
steering angles of the front wheels are equal (as if there were only one steering wheel). This
is because the steering angle around ICC is taken at the center of this axis, resulting in an
average of both angles denoted by Equation (6):

δ =
π

2
+ arctan

(
R
d

)
(6)
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then, the DKM for an inertial reference system is constituted by Equation (7).ẋ
ẏ
θ̇

 =

cos θ 0
sin θ 0

0 1

[ v
ω

]
=

v cos θ

v sin θ

ω

 (7)

This model describes linear velocities for the values of ẋ and ẏ, and angular velocities
for the value of θ̇. In this model, it can be observed that the linear velocities ẋ and ẏ
depend on the system’s rotation angle θ, while the rotational velocity θ̇ strictly depends
on the angular velocity of the rear wheels, ω, since they are identical. This velocity can be
determined using Equation (8):

ω =
v
R

(8)

It is assumed that θ̇ can be expressed in terms of the linear speed (v) and the radius of ICC
(R). Still, it is also possible to express it in terms of the linear speed (v), the turning angle
of the front wheels (δ), and the distance between the lateral axles (d); therefore, θ̇ can be
expressed as shown in Equation (9):

θ̇ =
v
R

=
v
d

tan δ (9)

This equation can be used for the simulation process since ω corresponds to a physical
measurement. By substituting Equation (9) into Equation (7), the following DKM of the
Ackerman robot is obtained, as presented in Equation (10):ẋ

ẏ
θ̇

 =

v cos θ

v sin θ
v
d tan δ

 (10)

Equation (10) and the modification in Equation (9) are implemented for the simulation.
Since these equations are expressed in the continuous domain, it is necessary to apply
temporal discretization. To achieve this, we use the forward finite difference method. The
formulas obtained from this process are presented in Equations (11)–(13):

x[k] = x[k − 1] + ∆t · v cos(θ[k − 1]) (11)

y[k] = y[k − 1] + ∆t · v sin(θ[k − 1]) (12)

θ[k] = θ[k − 1] +
v · ∆t

d
tan(δ) (13)

The discrete model presented in Equations (11) and (12) does not consider possible
changes in the robot orientation during time intervals. Therefore, it can produce errors when
curved trajectories are performed or when ∆t is not small enough. Consequently, corrections
to the basic model based on numerical integration were added to obtain more precise
approximations. This adjustment in the model can be observed in Equations (14) and (15):

x[k] = x[k − 1] + ∆t · v cos
(

θ[k − 1] +
(

v · ∆t
2d

))
(14)

y[k] = y[k − 1] + ∆t · v sin
(

θ[k − 1] +
(

v · ∆t
2d

))
(15)

The term v·∆t
2d represents the midpoint of the angular change; this refinement signifi-

cantly enhances the accuracy for non-linear trajectories, resulting in more
precise approximations.
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Equations (13)–(15) will be used later in the design of the controller and for 3D
simulations within Unity.

3.2. Controller Proposal

The implemented controller corresponds to a PID control with adjustable gains using
FL. PID controllers are widely recognized and used for their efficiency and simplicity.
However, as mentioned before, their performance can be limited in systems with non-linear
dynamics or high uncertainty, factors that represent significant challenges in their imple-
mentation [34]. It is precisely in this context that FL demonstrates its usefulness. A fuzzy
PID controller can adjust its gains, adapting to changing environments dynamically. This
provides greater flexibility to the system and significantly improves the controller’s perfor-
mance [35]. The mathematical model of the PID controller is represented by Equation (16).

δ(t) = Kpe(t) + Ki

∫
e(t)dt + Kd

d
dt

e(t) (16)

where e(t) is the error, and Kp, Ki, and Kd are the proportional, integral, and derivative
gains, respectively. δ(t) is the orientation of the KM of the mobile robot. These are the
values that FL will adjust. The control diagram of the system can be seen in Figure 3.

Figure 3. Control structure proposed.

According to the control scheme presented in Figure 3, it can be observed that the
fuzzy PID control focuses on controlling the robot’s steering angle δ(t). The input to the
controller is a reference trajectory, from which the trajectory generated by the simulation is
subtracted to determine the directional error that can be visualized in Equation (17):

e(t) = θdes − θ(t) (17)

Considering the trajectory data, θ(t) is determined at each trajectory moment and
compared with the results obtained from the simulation. θdes is the desired orientation.
This comparison is made within the kinematic limitations of the model; in this study, δ(t)
is restricted to a range from π

4 to −π
4 rad.

Subsequently, δ(t) is utilized in the discrete DKM through Equations (13)–(15), yielding
the positions x and y, as well as the ICC angle θ(t). The obtained values of x and y are
employed to generate the trajectory for simulation, after which, the process returns to
the start for error comparison. On the other hand, to demonstrate the system’s stability,
the closed-loop transfer function of the orientation of the Ackermann structure must
be found [36]. First, the steering angle Equation (6) is substituted into Equation (17),
corresponding to the PID controller. This substitution yields Equation (17), describing the
behavior of the controller in terms of the variables δ(t) and ˙δ(t):

θ̇(t) =
v(t)

d
tan

(
Kpe(t) + Ki

∫
e(t)dt + Kd

de(t)
dt

)
(18)
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This equation exhibits non-linear behavior due to the function tan(·), which intro-
duces complexities in its analysis and a direct solution using conventional analytical
techniques. However, under the assumption of small deviations in the steering angle
(δ(t) ≈ 0), applying a linearization by first-order approximation is possible, considering
that tan(δ(t)) ≈ δ(t). This simplification reduces the complexity of the model, allowing the
system to be represented by linear equations that facilitate both the stability analysis and
the design of controllers using classical linear control methods, as shown in Equation (19):

θ̇(t) ≈ v(t)
d

(
Kpe(t) + Ki

∫
e(t)dt + Kd

de(t)
dt

)
(19)

If the velocity is assumed to be constant v(t) = V, Equation (20) can be obtained:

ė(t) +
V
d

Kpe(t) +
V
d

Ki

∫
e(t)dt +

V
d

Kd
de(t)

dt
= 0 (20)

The Laplace transform with zero initial conditions is applied to Equation (20) to obtain
Equation (21), which represents the behavior of the PID controller in the complex domain:(

s +
V
d

Kds +
V
d

Kp +
V
d

Ki
s

)
E(s) = 0 (21)

By applying the Laplace transform to Equation (17) and substituting the result into
Equation (21), followed by rearranging the terms, Equation (22) is derived:

Gcl(s) =
θ(s)

θre f (s)
=

V
d (Kds2 + Kps + Ki)(

1 + V
d Kd

)
s2 + V

d Kps + V
d Ki

(22)

The poles are evaluated by solving the characteristic equation derived from the transfer
function presented in Equation (22) to assess the stability of the system. This characteristic
equation corresponds to a second-order system, whose general form allows the identifica-
tion of the coefficients that determine the location of the poles in the complex plane. The
poles of the system, which define its dynamic behavior, are expressed by Equation (23). The
location of these poles is essential as it determines whether the system is stable, unstable,
or oscillatory. For the system to be stable, both poles must have a negative real part, thus
ensuring that the oscillations decrease over time and the system tends to a steady state:

s =
−V

d Kp ±
√(

V2

d2 K2
p

)
− 4 V

d Ki

(
1 + V

d Kd

)
2
(

1 + V
d Kd

) (23)

If K2
p − 4(1 + Kd)Ki > 0, the poles of the system are real and negative whenever

Kp > 0, which ensures that the system will be stable and free of oscillations. This condition
is especially suitable for robot orientation control since a non-oscillatory response ensures
more precise and smoother movements, avoiding unwanted overshoots that could affect the
robot’s trajectory. Based on this assumption, the fuzzy controller is designed to adjust the
control parameters dynamically to maintain stability under different operating conditions.
This ensures that the poles remain in the left half-plane and that the system responds stably
and efficiently. For the steering angle of an Ackermann robot, the linguistic variable error,
error derivative, and error integral are employed to replicate the structure of a classical
PID adapted to nonlinear systems. The error indicates the angular deviation from the
desired path, the error derivative anticipates abrupt changes in orientation to improve
dynamic response, and the error integral corrects persistent deviations, ensuring accurate
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tracking. Three fuzzy systems are designed to tune the controller gains, one for each control
gain (Kp, Ki, Kd), using the error, error integral, and error derivative as linguistic variables,
respectively. Linguistic values are described by the following descriptors: negative-large
(NB), negative-small (NS), zero (ZE), positive-small (PS), and positive-large (PL), allowing
continuous adaptation of the gains to optimize steering angle control while respecting the
holonomic constraints of the system.

For the gain Kp, five linguistic values are defined in Table 2, distributed symmetri-
cally to ensure an equitable adjustment in calculating the control gains. This symmetry
is essential to avoid biases in the controller response, ensuring that the corrections are
homogeneous when faced with deviations in both directions. Furthermore, it allows for a
smooth transition between the different gain levels, improving the accuracy of the system.
Triangular membership functions are used to represent each of the linguistic values. This
type of function is selected due to its practicality in situations with a clearly defined central
value or inflection point. Furthermore, they stand out for their mathematical simplicity and
computational efficiency, significantly reducing the load during the inference process. This
feature makes them an ideal choice for systems where performance is necessary. Thanks to
their ease of implementation and low computational costs, triangular membership func-
tions are particularly useful in simulation applications, where a balance between accuracy
and efficiency is required. The triangular membership functions corresponding to these
linguistic values, designed with a symmetrical distribution, are illustrated in Figure 4,
highlighting their impact on the linearity of the adjustment.
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Figure 4. Error linguistic variable distribution.

Table 2. Error linguistic variable.

Linguistic Value Positions

NL [−10,−10,−1]
NS [−10,−1,0]
ZE [−1,0,1]
PS [0,1,10]
PL [1,10,10]

For the output, singleton functions were chosen to reduce the computational costs; the
descriptions of the output values can be seen in Table 3. Only positive values were selected
for singletons because controller gains were restricted to positive values to ensure stability.
Therefore, three linguistic values, big (B), medium (M), and small (S), were selected to
compute the gain Kp.
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Table 3. Singleton distribution for Kp computing.

Linguistic Value Positions Pi

B 10.0
M 4.0
S 2.5

A similar methodology determines the linguistic values for Kd and Ki. Table 4 pro-
vides a description of the linguistic values for Kd, and Figure 5 illustrates its membership
functions.

Table 4. Error derivative linguistic variables.

Linguistic Value Positions

dNL [−10,−10,−1]
dNS [−10,−1,0]
dZE [−1,0,1]
dPS [0,1,10]
dPL [1,10,10]
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Figure 5. Error derivative linguistic variable distribution.

The values for the system output for the derivative gain, Kd, are shown in Table 5.

Table 5. Singleton distribution for Kd computing.

Linguistic Value Positions Pi

dB 0.9
dM 0.6
dS 0.0

For the integral gain, Ki, the input linguistic values are displayed in Table 6, and the
output values are displayed in Table 7. The membership functions are shown in Figure 6.
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Table 6. Integral of error linguistic variable.

Linguistic Value Positions

iNL [−10,−10,−2]
iNS [−10,−2,−0.5]
iZE [−0.5,0,0.5]
iPS [0.5,2,10]
iPL [2,10,10]

Table 7. Singleton distribution for Ki computing.

Linguistic Value Positions Pi

iB 8.0
iM 4.0
iS 0.0
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Figure 6. Integral of error linguistic variable distribution.

A one-to-one relationship is established with the input values and five corresponding
output values, allowing for direct fuzzification. Once this symmetric relationship is defined,
the output of the fuzzy system is determined using the centroid method. This approach
provides a smooth and gradual output, which is particularly useful in motor applications.
The centroid defuzzification method is derived from Equation (24):

kgains =
∑ µ(Pi) · Pi

∑ µ(Pi)
(24)

In this context, Pi denotes the position of the i-th singleton, while µ(Pi) represents a fuzzy
number. The rules for the controller are outlined in Table 8. These rules allow the fuzzy
PID controller to adapt to different system conditions. For large errors or rapid changes,
the controller increases gains to apply stronger corrections, while under stable conditions,
it reduces gains to minimize overfitting and maintain system stability. This is critical for
Ackermann-type robots, where rotational constraints require precise, dynamic adjustments
to the control response.
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Table 8. Fuzzy rules for the mobile robot.

Kp Kd Ki

If e(t) is NL, then Kp is B If de(t) is dNL, then Kd is dB If ie(t) is iNL, then Ki is iB
If e(t) is NS, then Kp is M If de(t) is dNS, then Kd is dM If ie(t) is iNS, then Ki is iM
If e(t) is ZE, then Kp is S If de(t) is dZE, then Kd is dS If ie(t) is iZE, then Ki is iS
If e(t) is PS, then Kp is M If de(t) is dPS, then Kd is dM If ie(t) is iPS, then Ki is iM
If e(t) is PL, then Kp is B If de(t) is dPL, then Kd is dB If ie(t) is iPL, then Ki is iB

3.3. 3D Simulation Environment Design

The controller simulation consists of two stages: first, a Python script calculates
and sends the route coordinates, and second, a C# script in Unity receives these data for
processing and simulation. Figure 7 illustrates the block diagram of the procedure. It is
important to note that this simulation method is chosen to prevent overloading processes
in Unity.

Computing of 
robot 

positions by 
the controller

Establishment 
of the 

trajectory

Robot 
orientation 
calculation

Storing data 
in a Python 

list

Sending the 
data

Reception of 
data

Data 
processing

Obtaining the 
position and 

rotation 
vectors

Updating the 
robot's 

transform 
property

Path 
simulation

Set-up client 
mode

Server mode 
configuration

Python Unity

TCP/IP

Figure 7. Virtual environment block diagram.

The fuzzy controller described in Section 3.2, programmed in Python 3.11.5, is im-
plemented in the first stage. Various trajectories to be followed are proposed, and, using
the controlled model, the positions of x, y, and the angle θ are obtained. As previously
discussed in the kinematic model presented in Section 3.1, for non-holonomic robots, θ

represents the instantaneous curvature angle generated by the robot relative to its ICC.
Therefore, data are still required to perform the 3D simulation. In order to implement
such data in the simulation in Unity, it is necessary to analyze the parameters from a
three-dimensional point of view (x, y, z). Conventional KMs, such as the one reviewed in
Section 3.1, are represented in a two-dimensional environment (x, y) and do not analyze the
robot’s orientation, an essential detail to be able to perform a 3D simulation. This problem
can be seen reflected in Figure 8.
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Figure 8. Determination of the yaw angle.

As illustrated in Figure 8, the steering mechanism does not consider how the object’s
rotation varies as it moves along the path. In 3D environments like Unity, each object has
its own reference frame independent of the global frame. This local frame allows the object
to not only move within the global frame (changing its x and y positions in a 2D view) but
also to orient or rotate around its own axis, reflecting more complex 3D dynamics. Within
Unity, these rotations correspond to Euler angles (pitch, roll, and yaw), which are angles
also used in robotics to identify the inclinations of robots. Yaw is the angle responsible for
determining orientation along the z-axis, representing the robot’s self-rotation; this is the
missing element needed to perform the 3D simulation.

From the analysis in Figure 8 and taking the orientation calculations used in SLAM
(simultaneous localization and mapping) navigation systems as a reference, it can be
observed that the angle yaw represents the rate of change of the position in the plane.
Graphically, this angle corresponds to the slope of the path followed by the system. The
angle yaw can be determined as the tangent of the angle formed between two consecutive
points on the path, which allows it to be calculated using Equation (25). In it, arctan2 is
used to account for the signs of the subtractions:

ψ = arctan 2
(

yi − yi−1

xi − xi−1

)
(25)

The Python script also calculates Equation (25). Once the method for obtaining all
necessary values is defined, these values are computed and stored in a list that organizes
the data in the following format (x, 0, y, 0, ψ, 0). This structure is used due to the way
Unity interprets positions. Subsequently, all the data stored in the list are sent sequentially
by a thread through the TCP/IP protocol, establishing a local communication where the
script acts as a client of the connection. The complete development of the program can be
observed in Figure 9.
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Figure 9. Flowchart of the first stage.

The second stage takes place in Unity, where the 3D simulation of the path taken
by the robot is carried out. This process uses a script in C#, Unity’s native language.
This script receives the reception of data sent from Python via the TCP/IP protocol.
Since the Python script is configured in client mode, Unity is the server that listens to
all incoming connections.

Once the connection is established, the data are read sequentially. As they are received,
the corresponding elements are interpreted and processed. The data arrive in the form of a
text string (string) with the format (x, 0, y, 0, θ, 0). This is attributed to how Unity manages
the positions and rotations of objects. In Unity, every object has two motion vectors: one
for the position coordinates, represented as (left/right, up/down, forward/backward), and one
for the rotation values, expressed as (pitch, yaw, roll). In this way, when receiving the data,
it is only necessary to split them into two vectors: one for the position and one for the
rotation. The splitting process begins by checking that a string containing precisely six
comma-separated values is received. The six elements are extracted and stored in an array
if this condition is met. A variable of the Vector3 type is then created to assign the first three
data points corresponding to the position. The remaining three data points, representing
the rotation values, are stored in a variable of the Quaternion type. Before being stored,
each datum is cast from string to float. Once each piece of data is processed, the robot’s
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position and orientation are updated in the Update method of the script. To trace the robot’s
path, within this method, each time the position is updated and it is detected that it is
different from the previous one, a new GameObject is generated, leaving a mark on the
position traveled by the robot. This process allows the complete path of the robot to be
visualized during the simulation. Figure 10 shows the flow diagram corresponding to the
described process.

Start

Setting up Unity 
as a server

Port reading
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data vector into 

position and 
orientation vector

Converting data 
from string to 

float

Was the 
data received 

correctly?

Updating robot 
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Is 
the current 

position different from 
the previous 

one?

Create a new 
GameObject with 

the current 
position

Yes

Yes

You are 
requested to 

send the data in 
the correct format

No

No

Is user 
interruption 
detected?

Yes

End

No

Figure 10. Flowchart of the second stage.

The simulation starts by initializing the scene in Unity, which includes opening the
port and waiting for the data to be received. The Python script then calculates all the data
corresponding to the robot’s path. Once this calculation is completed, the data are sent
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to Unity via the TCP/IP protocol. As the data are received, it is possible to visualize the
robot’s path in real time within the simulated environment.

To visualize the objects in the 3D environment, a scene is designed to allow the robot’s
path to be observed. This scene includes a base terrain, the GameObject representing the
robot, and other fundamental elements provided by the Unity environment to complete
the simulation. The design of the scene ensures a clear and understandable representation
of the path. The layout of this environment can be seen in Figure 11.

Figure 11. Virtual environment scene.

The 3D model of the robot was designed using Fusion 360 software, with dimensions
of 174 × 73 × 126 mm. This model was then scaled within Unity to fit the requirements
of each test. The model was exported in obj format. It was important to ensure that it
was oriented according to the Unity coordinate system, where the y-axis represents the
height, as opposed to classic formats where this corresponds to the z-axis. Likewise, the
reference system of the model had to be centered on the robot to ensure that the rotations
were accurate and corresponded to those expected. Figure 12 shows the 3D design of the
robot used in the simulation. Table 9 depicts the geometry of the 3D model of the robot.

Figure 12. A 3D model of the robot in Fusion 360.
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Table 9. Characteristics of the 3D model of the robot.

Description Measures

Width 73 mm
Long 174 mm

Height 12.6 mm
Distance between the axles 107.6 mm

Wheel separation 91.75 mm
Wheel radius 33.34 mm

4. Results
Three different path-tracking scenarios are analyzed. In the first scenario, the following

circular reference path is considered, which allows for the evaluation of the system’s ability
to maintain a smooth and continuous movement. In the second scenario, the tracking
of discrete points distributed on a map is proposed, simulating trajectories composed of
specific positions to be reached. Finally, in the third scenario, the following of crossed
paths is addressed, which implies more abrupt changes in direction and greater complexity
in control. In each of these cases, different initial configurations and variations in the
dimensions of the robot are analyzed, with the aim of evaluating the performance of the
system under different operating conditions. An ideal surface is always assumed for the
simulation process, which implies that rotations in pitch and roll are not considered.

4.1. Circular Trajectory

For this test, a constant linear speed of 2 m/s and a spacing between axes of 0.25 m are
used. The proposed path is circular with a radius of 10 m. Initially, the robot is located at
the coordinates (5,5) as a reference point, oriented at an angle of −π

2 rad. From these initial
parameters, the successive positions of the robot are determined during the path tracking.
Figure 13 illustrates both the proposed reference path and the one followed by the robot,
highlighting its performance in the simulation.
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Figure 13. First test: simulate circular path in Python.

The controller identifies the initial position of the robot and, based on the proposed
restrictions, begins the movement to correct its position continuously. Figure 14 shows how
the error evolves as the robot moves. In this case, it can be seen that the error never reaches
zero, which is consistent with the nature of the circular path. The angle δ must remain
constant to maintain the turn. If the angle δ were equal to zero, it would imply that the
robot would follow a straight-line path, which would be incompatible with the proposed
circular movement.
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Figure 15 illustrates the applied control signal, which shows its correlation with the
error. The signal is consistently directed to maintain the desired trajectory. The data
presented in the graph are confined to angles of π

4 and −π
4 rad due to the constraints

established in the model.
Figure 16, shows the simulation of the path in the Unity environment. In these images,

it can be observed how the positions generated along the route were marked, showing a
high coincidence with the trajectory previously obtained in Python. This correspondence
between both simulations validates the accuracy of the implemented model.

It is also noteworthy that the orientation of the robot in Unity is precisely aligned
with the direction of the path, which reflects the coherent and realistic behavior of the
control system. This detail allows us to appreciate not only the movement of the robot but
also its ability to dynamically adapt to the expected path. The combination of positional
accuracy and correct orientation demonstrates that the simulation process offers a faithful
and visually realistic representation of the robot’s performance in the virtual environment.
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Figure 14. Angular error for circular path.
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Figure 15. Circular path control signal
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(a) (b)

(c)
Figure 16. Simulation of the circular trajectory made in Unity. (a) View of the robot orientation for the
path. (b) Front view of the circular path simulation. (c) Aerial view of the circular path simulation.

4.2. Point-to-Point Trajectory

In this second case, multiple points distributed along the map were defined, and
straight lines were drawn from them to connect the points and form the desired path. This
test used a constant linear speed of 2 m/s and a separation between axes of 0.5 m. The
robot was initially positioned at the coordinates (2, 1) with an orientation of 3π

5 rad.
The result obtained in this simulation is shown in Figure 17, where the tracking

performed by the robot can be observed. This analysis allows it to evaluate the capacity of
the system to maintain a precise and continuous movement between the points of the path,
considering the geometric and dynamic restrictions established for the model.
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Figure 17. Second trajectory test: point-to-point case.

Figure 18 shows the error graph corresponding to the test performed in this section.
The changes that occur when the robot reaches one of the objectives and generates a zero
error can be observed. As mentioned above, this behavior indicates that the robot continues
moving in a straight line after correcting its trajectory.
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Figure 18. Angular error for point tracking path.

Figure 19 presents the control signal graph for the current case, highlighting the
overshoots that occur when reaching specific points along the path. These overshoots
are inherent consequences of the kinematic configuration of the Ackermann-type robot,
requiring turning maneuvers at reference points before continuing its movement. Since
the Ackermann robot has a geometry with a single steering axis, when reaching a turning
point, an adjustment in the steering angle is necessary to compensate for the path error,
which generates a small oscillation or overshoot in the control signal. In addition, a fast and
efficient response to the control action is observed, suggesting that the system possesses a
high capacity for making quick adjustments in the robot’s direction. This responsiveness
is critical for minimizing stabilization time after overshoots and ensuring that the robot
returns to its desired path as accurately as possible.
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Figure 19. Control signal for point-to-point trajectory.

The simulation in Unity is displayed in Figure 20, where it can be seen how the robot’s
path was carried out.
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(a) (b)
Figure 20. Point tracking path simulation done in Unity. (a) Partial path of the simulated robot in
Unity. (b) Complete robot path in Unity.

4.3. Crossed Trajectory

Finally, a case where the trajectory crosses the same area is proposed; the test configu-
rations are as follows: linear velocity of 3 m/s, a distance between the axes of 0.1 m, an
initial position at coordinates (8, 3.5), and an initial orientation of 0◦ rad. The results of this
test can be observed in Figure 21, demonstrating how the robot quickly integrates into the
trajectory and follows it almost perfectly.

Figure 22 shows the error graph, where it can be observed that the error is remarkably
small. This behavior is mainly attributed to the geometry of the trajectory, which includes
sections with linear segments. The controller effectively manages these straight sections,
allowing the error to remain low at all times. The controller’s ability to adjust the orientation
and maintain precision during linear sections contributes to the stability of the system and
minimizes the necessary corrections. On the other hand, in sections where the trajectory
presents greater complexity, the error tends to increase slightly. However, it remains
low, highlighting the controller’s efficiency in maintaining performance under various
geometric conditions.

Figure 23 presents the control signal generated for the third evaluated trajectory.
Given the geometry of this route, it can be observed that the required control actions are
significantly reduced, especially in the sections characterized by sharper curves. This is due
to the inherent smoothness of the trajectory, which limits the need for constant adjustments
in the robot’s orientation. Additionally, the control signal shows high stability in most
sections, indicating efficient performance of the control system by minimizing oscillations
and abrupt corrections even in scenarios with geometric variations.
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Figure 21. Third case of trajectories: movement always in change.
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Figure 22. Angular error of rotation δ for the crossed trajectory.
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Figure 23. Control signal for the cross path.

Finally, Figure 24 shows the simulation of the last trajectory, which runs correctly.
The simulation was carried out on a laptop equipped with an Intel Core i3-1115G4

processor with a frequency of 3.00 GHz, 12 GB of RAM, and integrated Intel(R) UHD
graphics. Different load levels were recorded on the system components during the
simulation process. On average, the CPU operated at 75% of its capacity, while the RAM
remained at 50% usage. On the other hand, the GPU was at 100% for most of the simulation,
although in the final stage, its consumption decreased to approximately 80%.

In the second case, a significantly larger volume of data was generated for processing
due to a higher sampling time, considerably impacting system performance. In this
scenario, the processor constantly worked at 100% of its capacity, the RAM reached an
average usage of 85%, and the GPU remained operating at 100% throughout the simulation
time. This behavior shows the increasing computational demands associated with more
intensive data processing and highlights the importance of optimizing resources for more
complex scenarios.
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(a) (b)
Figure 24. Simulation of the crossing trajectory implemented in Unity. (a) Partial robot path of the
crossed trajectory. (b) Full robot path of the cross trajectory.

5. Discussion
Table 10 shows the trajectory tracking metrics of the mobile robot controlled using a

fuzzy PID. The trajectories analyzed include a circular pattern, a point-to-point displace-
ment, and a cross path. Each of these trajectories presents different control challenges,
allowing the robustness and adaptability of the controller to be assessed. The metrics con-
sidered include the average tracking error, maximum error, steady-state error, settling time,
average orientation error in rad, total time, and total distance traveled. These indicators
provide a comprehensive view of the system’s performance in various scenarios. Also, it is
important to note that the average tracking error, the steady-state error, and the average
orientation error in rad are measured for times greater than the settling time in order to
validate the controller’s performance. The maximum error tends to be large because the
error exists from the robot’s position to the reference at t = 0.

For the circular path, the controller demonstrates highly accurate performance. The
average tracking error is 0.0089 m, while the maximum error reaches 3.7 m, which is
attributed to the robot starting at a point outside the path. This initial deviation highlights
the controller’s ability to correct significant initial errors and quickly converge toward the
desired reference. The steady-state error is only 0.0012 m, demonstrating the system’s ability
to stabilize near the desired reference once initial perturbations are mitigated. The settling
time of 7.246 s reflects the period required for the robot to stabilize within acceptable error
margins, demonstrating the controller’s robustness under adverse initial conditions. The
average orientation error is 0.015 rad, highlighting the effectiveness of the steering angle
control in maintaining proper orientation throughout the path. Finally, the total distance
traveled is 62.8 m, with a total time of 32.5 s—values that agree with the perimeter expected
for a circular path of 10 m radius, thus validating the overall accuracy of the system.

On the point-to-point trajectory, the results show significantly different behavior. The
average tracking error is considerably higher, at 0.9531 m, and the maximum error reaches
4.56 m. These deviations are mainly due to the robot’s need to correct its initial position
outside the trajectory, demonstrating the controller’s ability to handle abrupt transitions
and correct significant errors. Despite these initial deviations, the steady-state error is low,
at 0.001543 m, indicating that the robot is able to arrive with high precision at the endpoint.
The settling time is 5.784 s, reflecting how quickly the robot stabilizes its trajectory once the
initial errors are corrected. The average orientation error is the largest among the analyzed
trajectories, at 0.9743 rad, indicating that the steering angle control faces greater challenges
in direct displacements. The total distance traveled is 75.4 m, and the total time taken is
67 s, reflecting the length of the straight path plus the necessary corrections.

The cross-track path exhibits intermediate performance in terms of accuracy and
stability. The average tracking error is 0.01814 m, and the maximum error is 8.96 m, which
are significant deviations attributable to the complexity of the path and the robot’s initial
position outside the reference. However, the controller shows robustness by reducing the
steady-state error to 0.00232 m, evidencing its ability to correct complex deviations. The
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settling time is 9.940 s, indicating the time needed to stabilize after overcoming the abrupt
changes in direction that are characteristic of this path. The average orientation error is
0.021 rad, suggesting effective control of the steering angle despite the complexity of the
path. The total distance traveled is 58.3 m, and the total time is 40 s, which reflects efficiency
in navigating complex paths.

Overall, these findings highlight the effectiveness and reliability of the fuzzy PID
controller in tracking various trajectories. Despite starting at points outside the trajectory,
the controller is able to correct significant initial errors, reach the desired reference with high
accuracy, and maintain stable tracking under diverse conditions. The variation in settling
time and maximum errors highlights the system’s ability to adapt to control challenges,
validating its applicability in dynamic and complex scenarios.

Table 10. Trajectory tracking metrics.

Trajectory
Average
Tracking
Error (m)

Maximum
Error (m)

Steady-State
Error (m)

Settling
Time (s)

Average δ
Error (rad)

Total Time
(s)

Total
Distance

Traveled (m)

Circular 0.0089 3.7 0.0012 7.246 0.015 32.5 62.8
Point-to-point 0.9531 5.784 0.001543 4.564 0.9743 67 75.4

Cross 0.01814 8.96 0.00232 9.940 0.021 40 58.3

A FL-based kinematic controller designed to guide a mobile robot in a virtual environ-
ment shares fundamental principles with control systems used in autonomous vehicles.
When comparing this technique with others, such as the one presented in [26], where a
comparison is made between a traditional PID and an H∞-enhanced PID controller based
on robust adaptive learning, the work mainly focuses on accuracy when giving a curve
using the given references. In the results of the traditional PID, a turn with a minimum
radius of 3 m was obtained, but it was necessary to place more reference points to be
able to re-enter the trajectory. When using the H∞ improvement, they obtained precise
trajectory control, resulting in a radius of 2.9 m when turning, which improved stability and
accuracy. Despite these factors, these controllers present their details. For the traditional
PID, the disadvantages were previously discussed: it requires a well-identified plant and
performs inaccurately in the presence of non-linearities; in addition, when uncertainties
arise, its performance is not better. As for the adaptive controller based on H∞, although it
offers improvements in stability and precision, it entails a more exhaustive mathematical
analysis, which increases the computational cost. This greater complexity can represent a
limitation in applications where computational resources are restricted or computation time
efficiency is critical for its implementation. The work presented in [37] proposed a control
scheme based on adaptive dynamic programming combined with a critical neural network.
The results demonstrated accurate responses of the controller, achieving reduced errors
with RMSE values of 0.21 m in ex, 0.07 m in ey, and 0.01 rad in eδ. However, the authors
themselves recognized several disadvantages associated with this methodology. Adaptive
dynamic programming is a technique that has still not been explored, which limits the
availability of references and complementary studies in the literature. In addition, using a
critical neural network significantly increases the computational cost, which represents a
challenge for real-time applications. The network training process also requires consider-
able computational resources, which forces the use of high-performance equipment to carry
out this task efficiently. As a final case, the work proposed by [38] presented path-tracking
algorithms based on predictive control models, focusing on execution times and tracking
accuracy. The three algorithms developed are conflict-based search (CBS), spatiotempo-
ral hybrid A* conflict-based search (STH-CBS), and weighted spatiotemporal hybrid A*
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conflict-based search (WSTH-CBS), achieving success rates of 85.71%, 100%, and 100%,
respectively, in their best tests. Despite these promising results, an important limitation of
this technique lies in the mathematical complexity inherent in predictive controls, which
are susceptible to modeling errors. This can affect the robustness of the system in scenarios
where the dynamics of the environment or the system itself are not completely defined or
present uncertainties.

The ability of FL to handle uncertainty and imprecision, inherent characteristics of
real environments, makes it a valuable tool for precise trajectory tracking. Furthermore,
this technique is relatively easy for any designer to implement, as it allows for omitting
complex mathematical analyses that are indispensable in other methodologies. Unlike
learning-based approaches, it does not require training processes for its operation, repre-
senting a significant advantage in simplicity and development times. This feature also
contributes to reducing computational costs, facilitating its implementation on devices
with low processing capacity and making it a viable option for real-time applications or in
environments with limited resources. This technology can be applied to various systems
in urban mobility, from adaptive cruise control to fully autonomous driving. By enabling
smoother and more adaptive decision-making, fuzzy controllers contribute to safer and
more efficient driving, especially in complex and dynamic environments.

6. Conclusions
This paper presents a significant advancement in mobile robotics using a kinematic

controller based on FL for path following. The fuzzy controller overcomes the limitations
of traditional PID controllers, especially in dynamic and uncertain environments, offering
greater adaptability and precision. Simulations carried out within the virtual environment
developed in Unity demonstrated the effectiveness of the control system, recording an
average error of 0.0089 m in circular trajectories, 0.01814 m in cross trajectories, and 0.9531
m in point-to-point trajectories, where the most significant error is associated with the
system’s difficulties in maintaining precision during sudden changes in direction. However,
it manages to correct these deviations with a low steady-state error. A key contribution of
this work is the controller’s adaptability, which is crucial for autonomous mobile robots
navigating dynamic and unpredictable environments. This controller not only emulates
the responses of a classic PID but also improves the flexibility and performance of the
system, consolidating itself as a robust alternative. In addition, using Unity facilitates
real-time visualization and parameter adjustments, reducing physical testing risks and
costs and speeding up robotic development. Practical implications include applications
such as autonomous vehicles and robotic exploration, where precision and adaptability
are crucial. In the future, incorporating multi-sensory feedback and hybrid strategies with
machine learning could enhance their capabilities, improving interpretation and response
to complex environments.
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The following abbreviations are used in this manuscript:

PID proportional–integral–derivative
FL fuzzy logic
FLC fuzzy-logic-based controller
TVLQ time-varying linear quadratic
LMIs linear matrix inequalities
ADAR analytical design of aggregated regulators
SCT synergetic control theory
ORRL optimized reward reinforcement learning
DQN deep Q-network
ROS robot operating system
LSTM long short-term memory
UGV unmanned ground vehicle
BIM building information modeling
VR virtual reality
ICC instantaneous center of curvature
KM kinematic model
DKM direct kinematic model
NB negative-large
NS negative-small
ZE zero
PS positive-small
PL positive-large
B big
M medium
S small
CBS conflict-based search
STH-CBS spatiotemporal hybrid A* conflict-based search
WSTH-CBS weighted spatiotemporal hybrid A* conflict-based search
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