A Review: Potential of Earth Observation (EO) for Mapping Small-Scale Agriculture and Cropping Systems in West Africa
<p>Overview of the study area. (<b>a</b>) Displays the terrestrial ecosystems by Olson et al. [<a href="#B53-land-14-00171" class="html-bibr">53</a>] and the bioclimatic zones, (<b>b</b>) is the localization map of the study area based on USGS [<a href="#B52-land-14-00171" class="html-bibr">52</a>], (<b>c</b>) climate graphs of Mauretania, Niger, Senegal, Sierra Leone, and Ghana averaged from 1991 to 2020 and over the area of each country; based on WorldBank Climate Change Knowledge Portal [<a href="#B56-land-14-00171" class="html-bibr">56</a>], (<b>d</b>) total population and population by age group based on UN World Population Prospects [<a href="#B26-land-14-00171" class="html-bibr">26</a>], (<b>e</b>) shares of agricultural land and population working in agriculture based on FAO STAT [<a href="#B57-land-14-00171" class="html-bibr">57</a>], and (<b>f</b>) fact sheet on West Africa based on UN World Population Prospects and FAO STAT [<a href="#B26-land-14-00171" class="html-bibr">26</a>,<a href="#B57-land-14-00171" class="html-bibr">57</a>].</p> "> Figure 2
<p>(<b>a</b>) Workflow chart outlining the literature search process used to identify n = 163 relevant scientific articles about the potential of RS for mapping small-scale agriculture and cropping systems in West Africa. (<b>b</b>) Outline of the Web of Science “topic” search.</p> "> Figure 3
<p>Distribution of publications subdivided into different journal categories: (<b>a</b>) temporal and (<b>b</b>) overall.</p> "> Figure 4
<p>The bar plot displays the first author affiliation by country and by continent in the donut chart.</p> "> Figure 5
<p>Map showing the spatial distribution of study areas by country, with numbers indicating the exact number of studies conducted in each country. Ten studies covering the entire West Africa region are excluded from this map. Individual studies may be associated with multiple countries.</p> "> Figure 6
<p>Sankey diagram showing the connections between funding countries (left nodes) and study areas (right nodes) of the reviewed publications. Self-referential connections indicate studies funded by sources within the studied country. The categorization represents the country of origin, without differentiating between types of funding source, such as governmental programs, non-governmental organizations (NGOs), or private investments. If no specific funding source was listed, the first authors primary affiliation was used as the funding organization. The category “Other” includes all countries with only one study’s funding source. The color scheme categorizes funding sources by continent: blue for Europe, orange North America, grey for Asia, and yellow for Africa. The numbers represent the study counts.</p> "> Figure 7
<p>Overview of the different RS sensors, their platform, and the sensor type combination used in the reviewed publications. Abbreviations: MODIS, Moderate Resolution Imaging Spectrometer; UAV, Unmanned Aerial Vehicle; AVHRR, Advanced High-Resolution Radiometer; SPOT, Satellite Pour l’Observation de la Terre; GEDI, Global Ecosystem Dynamics Investigation; ENVISAT, Environmental Satellite; ALOS, Advanced Land Observing Satellite; SMAP, Soil Moisture Active Passive; ASAR, Advanced Synthetic Aperture Radar; PALSAR, Phased Array L-band Synthetic Aperture Radar; SRTM, Shuttle Radar Topography Mission; ERS, European Remote Sensing Satellite.</p> "> Figure 8
<p>Overview of the time periods covered by the RS data in relation to the publication dates of the studies, providing a visual comparison of data collection timelines and the timing of the studies release.</p> "> Figure 9
<p>Overview of the study area compared to the pixel size used in the reviewed publications. (<b>a</b>) Scatterplot showing the study area compared to pixel size, with scatter size indicating the proportion of each category in the total reviewed articles. (<b>b</b>) Donut chart displaying the distribution of the study area coverage. (<b>c</b>) Donut chart showing the distribution of the spatial resolution of RS data used in the studies.</p> "> Figure 10
<p>Histogram showing the distribution of analyzed crops by type.</p> "> Figure 11
<p>(<b>a</b>) Heatmap illustrating the frequency of studies on different crop categories across the West African countries, and (<b>b</b>) scatterplot comparing the importance of crop categories using crop area proportion and economic value contribution as metrics.</p> "> Figure 12
<p>Histogram showing the distribution of the main thematic focuses of the reviewed publications over time.</p> ">
Abstract
:1. Introduction
1.1. Small-Scale Agriculture in the Context of Global Change
1.2. Remote Sensing Perspective
1.3. Structure and Objectives of This Review
- The introduction in Section 1 presents the relevance of the potential of RS to monitor and map agricultural and cropping systems in West Africa amid increasing and multidimensional challenges of global change.
- Section 2 first provides a geographical overview of the study area and secondly explains the literature selection process by providing an overview of the literature databases used and the filters applied.
- Section 3 presents the results of the review process. It aims to identify the potential of EO for mapping small-scale agriculture and cropping systems in West Africa. First, the evolution of the research field over time is described. This is followed by a detailed spatial breakdown based on the affiliation of the first authors, the origin of the study funding and the location of the study area. The sensors used and the temporal and spatial scales are presented in the next subsection. Section 3 concludes with an in-depth analysis of the research foci. The classified studies are analyzed on their main findings, RS potential and their challenges and limitations in order to identify relevant research gaps.
- The discussion of the results, the limitations of the review, the need for integrating high-resolution RS data and future research directions are presented in Section 4.
- Section 5 highlights the main findings, and concludes with the potential of RS to detect the impacts of global change in West Africa and how RS can support sustainable intensification.
2. Materials and Methods
2.1. Study Area—West Africa
2.2. Review Process
3. Results
- First, the distribution of publications in different journal categories over time is shown in Section 3.1.
- In Section 3.2., the publications are subdivided spatially, both with regard to the affiliation of the first author, the origin of the funding and with regard to the study area.
- The analysis of the sensor name and sensor type, as well as their carrier system, is presented in Section 3.3.
- In Section 3.4, the spatial and temporal resolutions, as well as the different study periods, are analyzed in detail.
- This is followed by an in-depth examination of the crops of interest in Section 3.5, including the comparison of the crops represented in the studies versus their contribution to the overall agricultural economic value and their proportion of agricultural land.
- Subsequently, in Section 3.6, an in-depth analysis of the thematic foci of the respective studies is presented in order to identify conclusive research gaps.
3.1. Development of Research Interest over Time
3.2. Spatial Analysis on Affiliations and Study Areas
3.3. Sensors and Sensor Types
3.4. Temporal and Spatial Resolution
3.5. Croptype Analyses
- Crop area proportion (blue scatters): the size and color of the blue scatters represent the proportion of agricultural land dedicated to each crop category within a country. Larger scatters indicate a higher percentage of the country’s total agricultural land is allocated to that specific crop. This metric reflects the physical footprint of crops, showing their relative importance in terms of land use.
- Economic value contribution (red scatters): the size and color of the red scatters correspond to the contribution of each crop category to the country’s overall agricultural economic value. A larger red scatter means that a particular crop plays a more important role in generating agricultural revenue. This metric highlights the financial impact of crops, regardless of their land usage, providing insides into which crops are economically more important.
3.6. Focus of the Studies
4. Discussion
4.1. Comparative Analysis of Crop Importance in West African Agriculture: Limitations and Key Findings
4.2. The Need for Integration of New and High-Resolution RS Datasets and High Quality Reference Data
- i.
- Many studies have already employed multiple sensors in their analyses to address issues such as sparse data coverage, cloud cover, or the need to combine UAV data with satellite imagery [134]. This highlights the importance of integrating various sensors and satellite data to overcome some of the limitations related to the spatial-temporal-radiometric resolution restrictions. The topic of data fusion is extensively discussed in the recent literature [23,190,197]. Data fusion in RS offers substantial advantages by combining datasets of different modalities and resolutions to maximize their utility. For example, very high-resolution imagery can be fused with lower-resolution but more temporally frequent data, enabling precise field mapping while capturing dynamic processes such as crop growth. Advanced methods, such as deep learning, further enhance these applications, making data fusion a powerful tool for agricultural monitoring. However, challenges such as scalability for regional studies, high computational demands, and data compatibility issues limit its broader adoption, especially in resource-constrained regions. Despite these challenges, data fusion remains essential for addressing the complex needs of small-scale agriculture in West Africa [23,190,197]. In addition, several studies [67,99,106] point out that radar data are underutilized, a finding supported by the analysis of this review, which shows that only 8.8% of the reviewed articles employed radar data. Moreover, incorporating textural feature data or canopy height information retrieved from RS data have shown to enhance the results [29,78,98,193].
- ii.
- More than 70% of the studies use spatial resolutions higher than 50 m, with over 50% using resolutions higher than 30 m. This clearly illustrates the importance of the spatial resolution in addressing the variety, heterogeneity, small and irregularly shaped fields, and varied crop calendars of small-holder farming systems. The wide range of farming practices and resource availability (e.g., fertilizer, irrigation) emphasize the need for high temporal resolution in satellite data collection [7,110]. This is further supported by the prevalence of time-series analyses and studies with multiple observations in a single year, showing the importance of time resolution for retrieving information through RS data. To effectively link household food security to satellite data, high resolution in both time and space is crucial [7,47]. The rapid advancement of methods, especially in artificial intelligence, combined with the increasing availability of high-resolution spaceborne data are expected to noticeably influence the trends of future satellite-based research. These innovations enable the extraction of more nuanced and accurate insights from vast datasets, improving applications like crop monitoring, land use classification, and yield prediction. As big data analyses continue to evolve, challenges such as processing efficiency, model scalability, and the integration of multi-model datasets may be mitigated, paving the way for more robust, scalable, and actionable insights in satellite-based research [198]. To overcome the limitations, future research could require smaller and more cost-effective platforms, such as CubeSats, which function as a unified system or constellation. They provide higher spatial resolution well below 10 m, daily revisit times, and present substantial opportunities when paired with data fusion to assess remaining challenges [199].
- iii.
- Forkuor et al. (2015) [64] found that overlapping crop calendars can result in similarities in the spectral profiles of different crops. This can be attributed to similarities in their growth stages and cropping schedules. Moreover, high spectral variability and within-field heterogeneity, which may be influenced by factors such as soil fertility, soil moisture conditions and pests or diseases, further complicate crop differentiation. Cropland systems across West Africa are highly diverse and often adapted to very specific environmental conditions, making it challenging to distinguish different land use types based on their spectral phenological signatures alone. To address these challenges, one potential solution is the use of higher radiometric resolution, as offered by hyperspectral missions like EnMAP [128,200]. Integrating such data could, for instance, enhance the effectiveness of approaches aimed at distinguishing similar crops and land use types. Similarly, Gano et al. [120] (2021) suggest using data from other modalities like thermal or LiDAR to improve the models in the future.Hyperspectral, thermal, and LiDAR missions offer transformative potential for improving the monitoring and management of small-scale agriculture in complex and diverse regions such as West Africa. Hyperspectral missions excel in capturing fine spectral details across a broad range of wavelengths, allowing for precise differentiation of crop health, soil properties, and environmental variables. This capability supports more accurate yield forecasts, soil assessments, and early detection of crop stress and disease, allowing for timely interventions and optimized resource use However, their application is hindered by the computational intensity of data processing, limited spatial resolution for small-scale contexts, and relatively high cost and restricted availability of hyperspectral sensors compared to multispectral systems [200]. Thermal RS complements hyperspectral data by providing critical insights into crop and soil thermal properties, directly linked to water stress, irrigation needs, and soil moisture content. In West Africa, where agriculture is highly dependent on seasonal rainfall and vulnerable to drought, thermal data becomes invaluable for identifying water-deficient zones and improving irrigation practices. When integrated with hyperspectral and multispectral data, thermal sensing enhances the depth and reliability of agricultural assessments. Nevertheless, its lower spatial resolution and susceptibility to atmospheric conditions, such as cloud cover, can limit its precision and effectiveness [201]. LiDAR further enriches the potential of remote sensing by offering three-dimensional structural information about crop canopies and terrain. These data can improve biomass estimation and land use mapping, critical for understanding the dynamics of small-scale agricultural systems. As these technologies evolve, integrating hyperspectral, thermal, and LiDAR data, alongside advancements in computing capacity, holds promise for overcoming current limitations and unlocking new applications tailored to the challenges of small-scale farming in West Africa [46,202].
- iv.
- As indicated in Table 2, several studies criticize the lack and quality of reference data for small-holder farms in West Africa. High quality and abundant unbiased reference data are crucial to improve and validate the accuracy of RS methodologies, particularly in heterogenous landscapes [117,119,203]. Such data, used for training and validation, are critical for enhancing results. Inadequate or insufficient data can lead to overfitting and pose challenges in maintaining the performance of deep learning methods [50]. Several articles noted the scarcity of validation and trainings data [29,33,36,50,144,160], underscoring the need for reliable reference datasets. Zhang et al. 2018 [36] employed a phenology-based classification method as it has shown advantages when reference data, here field survey data, is too scarce. While sampling plays a key role in mapping agricultural systems, obtaining reliable data, for instance from remote areas, can be difficult [144]. Addressing these gaps could involve sharing databases or using very high-resolution satellite imagery as validation. Mapping croplands requires extensive and up-to-date training and validation datasets, which is why Sedano et al. [160] for instance, proposed a mapping approach tailored to overcome the limitations of the agricultural systems of the Sudan-Sahel region.
4.3. Socio-Economic Barriers to Remote Sensing Adoption in West Africa
4.4. Limitations of This Review
4.5. Future Research Directions
- Integrating multiple data sources from RS and non-RS origins, such as field measurements and socio-economic datasets, will help to overcome the spatial, temporal, and radiometric constraints. This integration enhances crop monitoring, yield predictions, and contextual understanding, enabling more accurate and targeted solutions for small-scale agriculture.
- Future research should focus on leveraging advancements in artificial intelligence and data fusion to revolutionize satellite-based applications. By integrating diverse datasets, including high-resolution and multi-sensor data, these methods could enable breakthroughs in precision crop monitoring, yield prediction, and land use analysis. Addressing challenges such as processing efficiency, model scalability, and effective multi-source data fusion will be key to unlocking the full potential of these technologies for more robust and actionable insights [198].
- Advancing crop monitoring and management practices through the development of new methods for the detection of phenology and agricultural interventions, including irrigation plans, number of cropping seasons, and plant residue management. This progress will help optimize resource use and inform targeted interventions [62,100,107,108].
- An increased prominence of radar data, in particular SAR will play a crucial role in overcoming challenges posed by cloud cover in West Africa. The anticipated launch of Sentinel-1C in late 2024 is expected to further expand capabilities for all-weather monitoring of agricultural areas [209].
- Advances in daily high-resolution imagery will support near real-time crop monitoring, enabling timely decision-making for farmers and stakeholders to improve productivity and respond effectively to environmental challenges.
- Enhanced retrieval of plant parameters, such as LAI and chlorophyll content, will provide more detailed and frequent information on crop health, growth, and conditions, improving precision agriculture practices.
- The evolution of methods to derive field plot properties, such as soil characteristics, landscape organization [71], and field boundaries, will provide critical data to support smallholder farmers. This includes facilitating access to financing and insurance for smallholder cropping systems by offering accurate and actionable insights [203,210].
- The continued refinement of hyperspectral data will enhance the detection of non-photosynthetic vegetation (NPV), leading to better quantification f crop residues and biochemical traits. This will contribute to a deeper understanding of soil health and sustainable farming practices [211].
- The development of monitoring systems for sustainable intensification practices is set to enhance resource use efficiency, encompassing water, energy, fertilizers, and soil. By transforming farm management into an information- and knowledge-driven business, these systems aim to optimize agricultural productivity while minimizing environmental impacts. “Smart Farming” leverages crop-growth models and remote sensing data to make precise decisions on crop selection, sowing schedules, fertilizer and pesticide applications, and harvesting times. This approach enables efficient, location-specific management of fields, contributing to both sustainable agriculture and food security [200].
- Embedding climate adaption considerations into the design and interpretation of RS datasets will enhance their relevance for addressing climate resilience challenges.
- Establishing new publicly accessible reference databases, such as the World Cereal database provided by ESA, will facilitate broader sharing of high-quality reference data for future research and applications [212].
5. Conclusions
- We identified an overall increase in research activity over time on mapping small-scale agricultural and cropping systems in West Africa, with over 53% of the reviewed publications since 2019.
- Europe dominates both the number of first author affiliations (49.7%) and the origin of funding (54%). The second-highest percentage of first author affiliations are from Africa (20.9%). Additionally, the United States shows a great research interest with 25 first author affiliations and 59 studies funded. The research hotspots in West Africa are identified as Senegal, Burkina Faso und Mali, together accounting for over 50% of the reviewed articles.
- Multispectral optical data are employed in 88.3% of all studies. About 86.4% use satellite data as a carrier system and over 58% of studies utilize more than one sensor in their analyses.
- Time-series is the predominant temporal resolution (39.4% of studies), followed by multi-temporal (multiple observations in a single year) with 31.9%, multitemporal (single observations in multiple years) 15.6% and mono-temporal with 13.1%.
- Sensors with a spatial resolution of below 30 m dominate, making up 53.7% of all studies. In addition, 66% of the reviewed articles focus on a study area at regional or local scales.
- The analysis of crop categories analyzed in the reviewed studies revealed:
- ◦
- Cereals, particularly millet, maize, and sorghum dominate the literature, with high research attention in countries like Mali, Burkina Faso, Senegal, and Niger, reflecting their land use and economic importance of those crops in these regions
- ◦
- Groundnuts are a major focus in Senegal’s “Groundnut basin”, highlighting their dual role in land area and economic output, while crops like “Beans/Legumes”, though underrepresented in the literature, contribute largely to food security and account for a large share of agricultural area in countries such as Côte d’Ivoire, Ghana, Niger, and Mauretania
- ◦
- The category “Tree”, notably cocoa and oil palm, are economically prominent in Ghana and Côte d’Ivoire and is well-represented in the reviewed literature
- ◦
- There is a potential research gap of RS on high economic important vegetables in West Africa
- The analysis of possibilities and remaining challenges of RS on small-scale agricultural and cropping systems in West Africa reveals two major findings:
- ◦
- Major advancements in agricultural monitoring and LULUC mapping have occurred. Key findings include enhanced crop yield estimation in heterogeneous landscapes, accurate agroforestry system mapping, refined assessments of plant and field characteristics and crop management responses. Additionally, the integration of various data sources supports decision-making on various levels for climate change adaptation, flood risk management, and public health.
- ◦
- Clear needs include (i) integrating various sensor data and existing data sources, (ii) employing very high-resolution data, (iii) discovering new data sources, and (iv) basing the methods on high-quality reference data
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Busetto, L.; Zwart, S.J.; Boschetti, M. Analysing Spatial–Temporal Changes in Rice Cultivation Practices in the Senegal River Valley Using MODIS Time-Series and the PhenoRice Algorithm. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 15–28. [Google Scholar] [CrossRef]
- The State of Food Security and Nutrition in the World 2024; FAO, Ed.; FAO: Rome, Italy; IFAD: Rome, Italy; UNICEF: New York, NY, USA; WFP: Rome, Italy; WHO: Geneva, Switzerland, 2024; ISBN 978-92-5-138882-2. [Google Scholar]
- Lowder, S.K.; Skoet, J.; Raney, T. The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef]
- Persello, C.; Tolpekin, V.A.; Bergado, J.R.; De By, R.A. Delineation of Agricultural Fields in Smallholder Farms from Satellite Images Using Fully Convolutional Networks and Combinatorial Grouping. Remote Sens. Environ. 2019, 231, 111253. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.E.; Delaune, T.; Silva, J.V.; Van Wijk, M.; Hammond, J.; Descheemaeker, K.; Van De Ven, G.; Schut, A.G.T.; Taulya, G.; Chikowo, R.; et al. Small Farms and Development in Sub-Saharan Africa: Farming for Food, for Income or for Lack of Better Options? Food Sec. 2021, 13, 1431–1454. [Google Scholar] [CrossRef]
- Smallholders and Family Farmers; FAO: Rome, Italy, 2012.
- Karst, I.G.; Mank, I.; Traoré, I.; Sorgho, R.; Stückemann, K.-J.; Simboro, S.; Sié, A.; Franke, J.; Sauerborn, R. Estimating Yields of Household Fields in Rural Subsistence Farming Systems to Study Food Security in Burkina Faso. Remote Sens. 2020, 12, 1717. [Google Scholar] [CrossRef]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield Gap Analysis with Local to Global Relevance—A Review. Field Crops Res. 2013, 143, 4–17. [Google Scholar] [CrossRef]
- Blaes, X.; Chomé, G.; Lambert, M.-J.; Traoré, P.; Schut, A.; Defourny, P. Quantifying Fertilizer Application Response Variability with VHR Satellite NDVI Time Series in a Rainfed Smallholder Cropping System of Mali. Remote Sens. 2016, 8, 531. [Google Scholar] [CrossRef]
- Aguilar, R.; Zurita-Milla, R.; Izquierdo-Verdiguier, E.; De By, R.A. A Cloud-Based Multi-Temporal Ensemble Classifier to Map Smallholder Farming Systems. Remote Sens. 2018, 10, 729. [Google Scholar] [CrossRef]
- Diack, I.; Diene, S.M.; Louise, L.; Aziz, D.A.; Benjamin, H.; Olivier, R.; Philippe, L.; Alain, A.; Idrissa, S.; Moussa, D. Combining UAV and Sentinel-2 Imagery for Estimating Millet FCover in a Heterogeneous Agricultural Landscape of Senegal. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7305–7322. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Coyne, D.; Gockowski, J.; Hauser, S.; Huising, J.; Masso, C.; Nziguheba, G.; Schut, M.; Van Asten, P. Sustainable Intensification and the African Smallholder Farmer. Curr. Opin. Environ. Sustain. 2014, 8, 15–22. [Google Scholar] [CrossRef]
- Walker, C. Limited Growth in Smallholder Farm Productivity in Sub-Saharan Africa. Nat. Plants 2024, 10, 834. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.; Orr, A. Is Rainfed Agriculture Really a Pathway from Poverty? Agric. Syst. 2014, 123, 84–96. [Google Scholar] [CrossRef]
- Padgham, J.; Abubakari, A.; Ayivor, J.; Dietrich, K.; Fosu-Mensah, B.; Gordon, C.; Habtezion, S.; Lawson, E.; Mensah, A.; Nukpezah, D.; et al. Vulnerability and Adaption to Climate Change in Semi-Arid Areas in West Africa: ASSAR Regional Diagnostic Study; IDRC: Ottawa, Canada, 2015. [Google Scholar]
- Giller, K.E.; Tittonell, P.; Rufino, M.C.; Van Wijk, M.T.; Zingore, S.; Mapfumo, P.; Adjei-Nsiah, S.; Herreno, M.; Chikowo, R.; Rowe, E.C.; et al. Communicating Complexity: Integrated Assessment of Trade-Offs Concerning Soil Fertility Management within African Farming Systems to Support Innovation and Development. Agric. Syst. 2011, 104, 191–203. [Google Scholar] [CrossRef]
- Attia, A.; Qureshi, A.S.; Kane, A.M.; Alikhanov, B.; Kheir, A.M.S.; Ullah, H.; Datta, A.; Samasse, K. Selection of Potential Sites for Promoting Small-Scale Irrigation across Mali Using Remote Sensing and GIS. Sustainability 2022, 14, 12040. [Google Scholar] [CrossRef]
- Wu, B. Mapping Global Maximum Irrigation Extent at 30m Resolution Using the Irrigation Performances under Drought Stress. Glob. Environ. Change 2023, 79, 102652. [Google Scholar] [CrossRef]
- Working with Smallholders; International Finance Corporation: Washington, DC, USA, 2023.
- Building a Resilient and Sustainable Agriculture in Sub-Saharan Africa; Shimeles, A., Verdier-Chouchane, A., Boly, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-76221-0. [Google Scholar]
- Kanmegne Tamga, D.; Latifi, H.; Ullmann, T.; Baumhauer, R.; Thiel, M.; Bayala, J. Modelling the Spatial Distribution of the Classification Error of Remote Sensing Data in Cocoa Agroforestry Systems. Agrofor. Syst. 2023, 97, 109–119. [Google Scholar] [CrossRef]
- Guzinski, R.; Nieto, H.; Ramo Sánchez, R.; Sánchez, J.M.; Jomaa, I.; Zitouna-Chebbi, R.; Roupsard, O.; López-Urrea, R. Improving Field-Scale Crop Actual Evapotranspiration Monitoring with Sentinel-3, Sentinel-2, and Landsat Data Fusion. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103587. [Google Scholar] [CrossRef]
- Wu, B.; Gommes, R.; Zhang, M.; Zeng, H.; Yan, N.; Zou, W.; Zheng, Y.; Zhang, N.; Chang, S.; Xing, Q.; et al. Global Crop Monitoring: A Satellite-Based Hierarchical Approach. Remote Sens. 2015, 7, 3907–3933. [Google Scholar] [CrossRef]
- Junge, B.; Alabi, T.; Sonder, K.; Marcus, S.; Abaidoo, R.; Chikoye, D.; Stahr, K. Use of Remote Sensing and GIS for Improved Natural Resources Management: Case Study from Different Agroecological Zones of West Africa. Int. J. Remote Sens. 2010, 31, 6115–6141. [Google Scholar] [CrossRef]
- United Nations, DESA, Population Division World Population Prospects. 2024. Available online: http://population.un.org/wpp/ (accessed on 20 August 2024).
- Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote. Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Berger, K.; Machwitz, M.; Kycko, M.; Kefauver, S.C.; Van Wittenberghe, S.; Gerhards, M.; Verrelst, J.; Atzberger, C.; Van Der Tol, C.; Damm, A.; et al. Multi-Sensor Spectral Synergies for Crop Stress Detection and Monitoring in the Optical Domain: A Review. Remote Sens. Environ. 2022, 280, 113198. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, M.B.; Marshall, M.; Estes, L.; De Bie, C.A.J.M.; Chang, L.; Nelson, A. Cropland Mapping in Tropical Smallholder Systems with Seasonally Stratified Sentinel-1 and Sentinel-2 Spectral and Textural Features. Remote Sens. 2023, 15, 3014. [Google Scholar] [CrossRef]
- Alkhalil, A.; Kadaoure, I.; Kouadio, M. An Evaluation of 20-m ESA-CCI S2 Prototype LC Product. Front. Sustain. Food Syst. 2020, 4, 504334. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Global Strategy to Improve Agricultural and Rural Statistics; FAO: Rome, Italy, 2011. [Google Scholar]
- Nabil, M.; Zhang, M.; Bofana, J.; Wu, B.; Stein, A.; Dong, T.; Zeng, H.; Shang, J. Assessing Factors Impacting the Spatial Discrepancy of Remote Sensing Based Cropland Products: A Case Study in Africa. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 102010. [Google Scholar] [CrossRef]
- Leroux, L.; Castets, M.; Baron, C.; Escorihuela, M.-J.; Bégué, A.; Lo Seen, D. Maize Yield Estimation in West Africa from Crop Process-Induced Combinations of Multi-Domain Remote Sensing Indices. Eur. J. Agron. 2019, 108, 11–26. [Google Scholar] [CrossRef]
- Forkuor, G.; Conrad, C.; Thiel, M.; Zoungrana, B.; Tondoh, J. Multiscale Remote Sensing to Map the Spatial Distribution and Extent of Cropland in the Sudanian Savanna of West Africa. Remote Sens. 2017, 9, 839. [Google Scholar] [CrossRef]
- Mechiche-Alami, A.; Abdi, A.M. Agricultural Productivity in Relation to Climate and Cropland Management in West Africa. Sci. Rep. 2020, 10, 3393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiong, Q.; Di, L.; Tang, J.; Yang, J.; Wu, H.; Qin, Y.; Su, R.; Zhou, W. Phenological Metrics-Based Crop Classification Using HJ-1 CCD Images and Landsat 8 Imagery. Int. J. Digit. Earth 2018, 11, 1219–1240. [Google Scholar] [CrossRef]
- Soti, V.; Thiaw, I.; Debaly, Z.M.; Sow, A.; Diaw, M.; Fofana, S.; Diakhate, M.; Thiaw, C.; Brévault, T. Effect of Landscape Diversity and Crop Management on the Control of the Millet Head Miner, Heliocheilus Albipunctella (Lepidoptera: Noctuidae) by Natural Enemies. Biol. Control. 2019, 129, 115–122. [Google Scholar] [CrossRef]
- Sidibé, A.; Olabisi, L.S.; Doumbia, H.; Touré, K.; Niamba, C.A. Barriers and Enablers of the Use of Digital Technologies for Sustainable Agricultural Development and Food Security. Elem. Sci. Anthr. 2021, 9, 00106. [Google Scholar] [CrossRef]
- Meier, J.; Zabel, F.; Mauser, W. A Global Approach to Estimate Irrigated Areas—A Comparison between Different Data and Statistics. Hydrol. Earth Syst. Sci. 2018, 22, 1119–1133. [Google Scholar] [CrossRef]
- Alabi, T.R.; Adewopo, J.; Duke, O.P.; Kumar, P.L. Banana Mapping in Heterogenous Smallholder Farming Systems Using High-Resolution Remote Sensing Imagery and Machine Learning Models with Implications for Banana Bunchy Top Disease Surveillance. Remote Sens. 2022, 14, 5206. [Google Scholar] [CrossRef]
- Mei, W.; Wang, H.; Fouhey, D.; Zhou, W.; Hinks, I.; Gray, J.M.; Berkel, D.V.; Jain, M. Using Deep Learning and Very-High-Resolution Imagery to Map Smallholder Field Boundaries. Remote. Sens. 2022, 14, 3046. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Daloye, A.M.; Erkbol, H.; Fritschi, F.B. Crop Monitoring Using Satellite/UAV Data Fusion and Machine Learning. Remote. Sens. 2020, 12, 1357. [Google Scholar] [CrossRef]
- Knauer, K.; Gessner, U.; Fensholt, R.; Forkuor, G.; Kuenzer, C. Monitoring Agricultural Expansion in Burkina Faso over 14 Years with 30 m Resolution Time Series: The Role of Population Growth and Implications for the Environment. Remote Sens. 2017, 9, 132. [Google Scholar] [CrossRef]
- Fensholt, R.; Anyamba, A.; Stisen, S.; Sandholt, I.; Pak, E.; Small, J. Comparisons of Compositing Period Length for Vegetation Index Data from Polar-Orbiting and Geostationary Satellites for the Cloud-Prone Region of West Africa. Photogramm. Eng. Remote Sens. 2007, 73, 297–309. [Google Scholar] [CrossRef]
- Vintrou, E.; Desbrosse, A.; Bégué, A.; Traoré, S.; Baron, C.; Lo Seen, D. Crop Area Mapping in West Africa Using Landscape Stratification of MODIS Time Series and Comparison with Existing Global Land Products. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 83–93. [Google Scholar] [CrossRef]
- Tsao, A.; Nzewi, I.; Jayeoba, A.; Ayogu, U.; Lobell, D.B. Canopy Height Mapping for Plantations in Nigeria Using GEDI, Landsat, and Sentinel-2. Remote Sens. 2023, 15, 5162. [Google Scholar] [CrossRef]
- Samasse, K.; Hanan, N.P.; Anchang, J.Y.; Diallo, Y. A High-Resolution Cropland Map for the West African Sahel Based on High-Density Training Data, Google Earth Engine, and Locally Optimized Machine Learning. Remote Sens. 2020, 12, 1436. [Google Scholar] [CrossRef]
- Chabalala, Y.; Adam, E.; Ali, K.A. Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data towards Mapping Fruit Plantations in Highly Heterogenous Landscapes. Remote Sens. 2022, 14, 2621. [Google Scholar] [CrossRef]
- Faye, G.; Mbengue, F.; Coulibaly, L.; Sarr, M.A.; Mbaye, M.; Tall, A.; Tine, D.; Marigo, O.; Ndour, M.M.M. Complementarity of Sentinel-1 and Sentinel-2 Data for Mapping Agricultural Areas in Senegal. ARS 2020, 09, 101–115. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- United Nations Statistical Division (UNSD) UNSD—Methodology. Available online: https://unstats.un.org/unsd/methodology/m49/ (accessed on 19 August 2024).
- Alfari, I.; Botoni, E.; Soulé, A.; Cotillon, S.; Cushing, W.M.; Giese, K.; Hutchinson, J.; Pengra, B.; Tappan, G.; Herrmann, S.; et al. Landscapes of West Africa: A Window on the Changing World; Comité Inter-états de Lutte contre la Sécheresse dans le Sahel (CILSS), Ed.; USGS: Reston, VA, USA, 2016. [Google Scholar]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 2001, 51, 933. [Google Scholar] [CrossRef]
- Zwarts, L.; Bijlsma, R.G.; van der Kamp, J.; Wymenga, E. Living on the Edge: Wetlands and Birds in a Changing Sahel, 2nd ed.; (reprint with minor corrections); KNNV Publishing: Zeist, The Netherlands, 2010; ISBN 978-90-5011-280-2. [Google Scholar]
- Schultz, J. Die Ökozonen Der Erde. Available online: https://www.utb.de/doi/book/10.36198/9783838546285 (accessed on 30 September 2024).
- World Bank Group World Bank Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/ (accessed on 15 October 2024).
- FAOSTAT FAOSTAT Data. Available online: https://www.fao.org/faostat/en/#data/QV (accessed on 2 October 2024).
- Family Farming Knowledge—Ghana; FAO: Rome, Italy, 2024.
- Thome, K. About Terra|Terra. Available online: https://terra.nasa.gov/about (accessed on 26 October 2024).
- Fifteen Years of Open Data Allows Advancements in Landsat Use and Research|Landsat Science. Available online: https://landsat.gsfc.nasa.gov/article/fifteen-years-of-open-data-allows-advancements-in-landsat-use-and-research/ (accessed on 26 October 2024).
- Abubakar, G.A.; Wang, K.; Shahtahamssebi, A.; Xue, X.; Belete, M.; Gudo, A.J.A.; Mohamed Shuka, K.A.; Gan, M. Mapping Maize Fields by Using Multi-Temporal Sentinel-1A and Sentinel-2A Images in Makarfi, Northern Nigeria, Africa. Sustainability 2020, 12, 2539. [Google Scholar] [CrossRef]
- Abubakar, G.A.; Wang, K.; Koko, A.F.; Husseini, M.I.; Shuka, K.A.M.; Deng, J.; Gan, M. Mapping Maize Cropland and Land Cover in Semi-Arid Region in Northern Nigeria Using Machine Learning and Google Earth Engine. Remote Sens. 2023, 15, 2835. [Google Scholar] [CrossRef]
- Forkuor, G.; Conrad, C.; Thiel, M.; Ullmann, T.; Zoungrana, E. Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa. Remote Sens. 2014, 6, 6472–6499. [Google Scholar] [CrossRef]
- Forkuor, G.; Conrad, C.; Thiel, M.; Landmann, T.; Barry, B. Evaluating the Sequential Masking Classification Approach for Improving Crop Discrimination in the Sudanian Savanna of West Africa. Comput. Electron. Agric. 2015, 118, 380–389. [Google Scholar] [CrossRef]
- Forkuor, G.; Hounkpatin, O.K.L.; Welp, G.; Thiel, M. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models. PLoS ONE 2017, 12, e0170478. [Google Scholar] [CrossRef] [PubMed]
- Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: Examining the Added Value of Sentinel-2′s Red-Edge Bands to Land-Use and Land-Cover Mapping in Burkina Faso. GIScience Remote Sens. 2018, 55, 331–354. [Google Scholar] [CrossRef]
- Leroux, L.; Baron, C.; Zoungrana, B.; Traore, S.B.; Lo Seen, D.; Begue, A. Crop Monitoring Using Vegetation and Thermal Indices for Yield Estimates: Case Study of a Rainfed Cereal in Semi-Arid West Africa. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 347–362. [Google Scholar] [CrossRef]
- Leroux, L.; Falconnier, G.N.; Diouf, A.A.; Ndao, B.; Gbodjo, J.E.; Tall, L.; Balde, A.A.; Clermont-Dauphin, C.; Bégué, A.; Affholder, F.; et al. Using Remote Sensing to Assess the Effect of Trees on Millet Yield in Complex Parklands of Central Senegal. Agric. Syst. 2020, 184, 102918. [Google Scholar] [CrossRef]
- Leroux, L.; Faye, N.F.; Jahel, C.; Falconnier, G.N.; Diouf, A.A.; Ndao, B.; Tiaw, I.; Senghor, Y.; Kanfany, G.; Balde, A.; et al. Exploring the Agricultural Landscape Diversity-Food Security Nexus: An Analysis in Two Contrasted Parklands of Central Senegal. Agric. Syst. 2022, 196, 103312. [Google Scholar] [CrossRef]
- Vintrou, E.; Soumaré, M.; Bernard, S.; Bégué, A.; Baron, C.; Lo Seen, D. Mapping Fragmented Agricultural Systems in the Sudano-Sahelian Environments of Africa Using Random Forest and Ensemble Metrics of Coarse Resolution MODIS Imagery. Photogramm. Eng. Remote Sens. 2012, 78, 839–848. [Google Scholar] [CrossRef]
- Vintrou, E.; Ienco, D.; Bégué, A.; Teisseire, M. Data Mining, A Promising Tool for Large-Area Cropland Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2132–2138. [Google Scholar] [CrossRef]
- Vintrou, E.; Bégué, A.; Baron, C.; Saad, A.; Lo Seen, D.; Traoré, S. A Comparative Study on Satellite- and Model-Based Crop Phenology in West Africa. Remote Sens. 2014, 6, 1367–1389. [Google Scholar] [CrossRef]
- Diuk-Wasser, M.A.; Bagayoko, M.; Sogoba, N.; Dolo, G.; TourÉ, M.B.; TraorÉ, S.F.; Taylor, C.E. Mapping Rice Field Anopheline Breeding Habitats in Mali, West Africa, Using Landsat ETM+ Sensor Data. Int. J. Remote Sens. 2004, 25, 359–376. [Google Scholar] [CrossRef] [PubMed]
- Diuk-Wasser, M.A.; Dolo, G.; Bagayoko, M.; Sogoba, N.; Toure, M.B.; Moghaddam, M.; Manoukis, N.; Rian, S.; Traore, S.F.; Taylor, C.E. Patterns of Irrigated Rice Growth and Malaria Vector Breeding in Mali Using Multi-temporal ERS-2 Synthetic Aperture Radar. Int. J. Remote Sens. 2006, 27, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Diuk-Wasser, M.A.; Dolo, G.; Bagayoko, M.; Touré, M.B.; Traoré, S.F.; Sogoba, N.; Taylor, C.E.; Sissoko, I. Effect of rice cultivation patterns on malaria vector abundance in rice-growing villages in mali. Am. J. Trop. Med. Hyg. 2007, 76, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Odiji, C.; James, G.; Oyewumi, A.; Karau, S.; Odia, B.; Idris, H.; Aderoju, O.; Taminu, A. Decadal Mapping of Flood Inundation and Damage Assessment in the Confluence Region of Rivers Niger and Benue Using Multi-Sensor Data and Google Earth Engine. J. Water Clim. Change 2024, 15, 348–369. [Google Scholar] [CrossRef]
- Eniolorunda, N.B.; Mashi, S.A.; Nsofor, G.N. Toward Achieving a Sustainable Management: Characterization of Land Use/Land Cover in Sokoto Rima Floodplain, Nigeria. Environ. Dev. Sustain. 2017, 19, 1855–1878. [Google Scholar] [CrossRef]
- Kalischek, N.; Lang, N.; Renier, C.; Daudt, R.C.; Addoah, T.; Thompson, W.; Blaser-Hart, W.J.; Garrett, R.; Schindler, K.; Wegner, J.D. Cocoa Plantations Are Associated with Deforestation in Côte d’Ivoire and Ghana. Nat. Food 2023, 4, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Kanmegne Tamga, D.; Latifi, H.; Ullmann, T.; Baumhauer, R.; Bayala, J.; Thiel, M. Estimation of Aboveground Biomass in Agroforestry Systems over Three Climatic Regions in West Africa Using Sentinel-1, Sentinel-2, ALOS, and GEDI Data. Sensors 2022, 23, 349. [Google Scholar] [CrossRef] [PubMed]
- Maselli, F.; Romanelli, S.; Bottai, L.; Maracchi, G. Processing of GAC NDVI Data for Yield Forecasting in the Sahelian Region. Int. J. Remote Sens. 2000, 21, 3509–3523. [Google Scholar] [CrossRef]
- Lee, D.; Davenport, F.; Shukla, S.; Husak, G.; Funk, C.; Harrison, L.; McNally, A.; Rowland, J.; Budde, M.; Verdin, J. Maize Yield Forecasts for Sub-Saharan Africa Using Earth Observation Data and Machine Learning. Glob. Food Secur. 2022, 33, 100643. [Google Scholar] [CrossRef]
- Gerard, B.; Hiernaux, P.; Muehlig-Versen, B.; Buerkert, A. Destructive and Non-Destructive Measurements of Residual Crop Residue and Phosphorus Effects on Growth and Composition of Herbaceous Fallow Species in the Sahel. Plant Soil 2001, 228, 265–273. [Google Scholar] [CrossRef]
- Thiam, S.; Villamor, G.B.; Faye, L.C.; Sène, J.H.B.; Diwediga, B.; Kyei-Baffour, N. Monitoring Land Use and Soil Salinity Changes in Coastal Landscape: A Case Study from Senegal. Environ. Monit. Assess. 2021, 193, 259. [Google Scholar] [CrossRef]
- Traoré, F.; Bonkoungou, J.; Compaoré, J.; Kouadio, L.; Wellens, J.; Hallot, E.; Tychon, B. Using Multi-Temporal Landsat Images and Support Vector Machine to Assess the Changes in Agricultural Irrigated Areas in the Mogtedo Region, Burkina Faso. Remote Sens. 2019, 11, 1442. [Google Scholar] [CrossRef]
- Roupsard, O.; Audebert, A.; Ndour, A.P.; Clermont-Dauphin, C.; Agbohessou, Y.; Sanou, J.; Koala, J.; Faye, E.; Sambakhe, D.; Jourdan, C.; et al. How Far Does the Tree Affect the Crop in Agroforestry? New Spatial Analysis Methods in a Faidherbia Parkland. Agric. Ecosyst. Environ. 2020, 296, 106928. [Google Scholar] [CrossRef]
- Soti, V.; Lelong, C.; Goebel, F.-R.; Brévault, T. Designing a Field Sampling Plan for Landscape-Pest Ecological Studies Using VHR Optical Imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 26–33. [Google Scholar] [CrossRef]
- Lloyd, B.J.; Dennison, P.E. Evaluating the Response of Conventional and Water Harvesting Farms to Environmental Variables Using Remote Sensing. Agric. Ecosyst. Environ. 2018, 262, 11–17. [Google Scholar] [CrossRef]
- Moraiti, N.; Mullissa, A.; Rahn, E.; Sassen, M.; Reiche, J. Critical Assessment of Cocoa Classification with Limited Reference Data: A Study in Côte d’Ivoire and Ghana Using Sentinel-2 and Random Forest Model. Remote Sens. 2024, 16, 598. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Stucky, N.; Griscom, B.W.; Ashton, M.S.; Diels, J.; Van Der Meer, B.; Enclona, E. Biomass Estimations and Carbon Stock Calculations in the Oil Palm Plantations of African Derived Savannas Using IKONOS Data. Int. J. Remote Sens. 2004, 25, 5447–5472. [Google Scholar] [CrossRef]
- Descals, A.; Wich, S.; Meijaard, E.; Gaveau, D.L.A.; Peedell, S.; Szantoi, Z. High-Resolution Global Map of Smallholder and Industrial Closed-Canopy Oil Palm Plantations. Earth Syst. Sci. Data 2021, 13, 1211–1231. [Google Scholar] [CrossRef]
- Kounta, A.; El-Aboudi, A.; Loum, M.; Ngom, E.M.D.; Diongue, D.M.L.; Hanadé Houmma, I. Agro-Meteorological Drought Risk Assessment in the Groundnut Basin of Senegal: The Case of the Municipalities of Djilor, Diossong, Keur Samba Gueye and Toubacouta. Geocarto Int. 2022, 37, 18546–18568. [Google Scholar] [CrossRef]
- Adebayo, W.G. Cassava Production in Africa: A Panel Analysis of the Drivers and Trends. Heliyon 2023, 9, e19939. [Google Scholar] [CrossRef]
- Vidican, R.; Mălinaș, A.; Ranta, O.; Moldovan, C.; Marian, O.; Ghețe, A.; Ghișe, C.R.; Popovici, F.; Cătunescu, G.M. Using Remote Sensing Vegetation Indices for the Discrimination and Monitoring of Agricultural Crops: A Critical Review. Agronomy 2023, 13, 3040. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Gachoki, S.; Muthoni, F. Drivers of Maize Yield Variability at Household Level in Northern Ghana and Malawi. Geocarto Int. 2023, 38, 2230948. [Google Scholar] [CrossRef]
- Schwarz, M.; Ouédraogo, W.A.; Traoré, I.; Müller, C.; Sié, A.; Barteit, S.; Mank, I.; Siegert, F.; Sauerborn, R.; Franke, J. Satellite-Based Multi-Annual Yield Models for Major Food Crops at the Household Field Level for Nutrition and Health Research: A Case Study from the Nouna HDSS, Burkina Faso. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103203. [Google Scholar] [CrossRef]
- Gbodjo, Y.J.E.; Ienco, D.; Leroux, L. Benchmarking Statistical Modelling Approaches with Multi-Source Remote Sensing Data for Millet Yield Monitoring: A Case Study of the Groundnut Basin in Central Senegal. Int. J. Remote Sens. 2021, 42, 9285–9308. [Google Scholar] [CrossRef]
- Adewopo, J.; Peter, H.; Mohammed, I.; Kamara, A.; Craufurd, P.; Vanlauwe, B. Can a Combination of UAV-Derived Vegetation Indices with Biophysical Variables Improve Yield Variability Assessment in Smallholder Farms? Agronomy 2020, 10, 1934. [Google Scholar] [CrossRef]
- Lobell, D.B.; Di Tommaso, S.; You, C.; Yacoubou Djima, I.; Burke, M.; Kilic, T. Sight for Sorghums: Comparisons of Satellite- and Ground-Based Sorghum Yield Estimates in Mali. Remote Sens. 2019, 12, 100. [Google Scholar] [CrossRef]
- Samasse, K.; Hanan, N.; Tappan, G.; Diallo, Y. Assessing Cropland Area in West Africa for Agricultural Yield Analysis. Remote Sens. 2018, 10, 1785. [Google Scholar] [CrossRef]
- Lambert, M.-J.; Traoré, P.C.S.; Blaes, X.; Baret, P.; Defourny, P. Estimating Smallholder Crops Production at Village Level from Sentinel-2 Time Series in Mali’s Cotton Belt. Remote Sens. Environ. 2018, 216, 647–657. [Google Scholar] [CrossRef]
- Imran, M.; Stein, A.; Zurita-Milla, R. Using Geographically Weighted Regression Kriging for Crop Yield Mapping in West Africa. Int. J. Geogr. Inf. Sci. 2015, 29, 234–257. [Google Scholar] [CrossRef]
- Brown, M.E.; Pinzon, J.E.; Prince, S.D. The Effect of Vegetation Productivity on Millet Prices in the Informal Markets of Mali, Burkina Faso and Niger. Clim. Chang. 2006, 78, 181–202. [Google Scholar] [CrossRef]
- Tottrup, C.; Rasmussen, M.S. Mapping Long-Term Changes in Savannah Crop Productivity in Senegal through Trend Analysis of Time Series of Remote Sensing Data. Agric. Ecosyst. Environ. 2004, 103, 545–560. [Google Scholar] [CrossRef]
- Pignède, E.; Roudier, P.; Diedhiou, A.; N’Guessan Bi, V.H.; Kobea, A.T.; Konaté, D.; Péné, C.B. Sugarcane Yield Forecast in Ivory Coast (West Africa) Based on Weather and Vegetation Index Data. Atmosphere 2021, 12, 1459. [Google Scholar] [CrossRef]
- Ouattara, B.; Forkuor, G.; Zoungrana, B.J.B.; Dimobe, K.; Danumah, J.; Saley, B.; Tondoh, J.E. Crops Monitoring and Yield Estimation Using Sentinel Products in Semi-Arid Smallholder Irrigation Schemes. Int. J. Remote Sens. 2020, 41, 6527–6549. [Google Scholar] [CrossRef]
- Ibrahim, S.; Kaduk, J.; Tansey, K.; Balzter, H.; Lawal, U.M. Detecting Phenological Changes in Plant Functional Types over West African Savannah Dominated Landscape. Int. J. Remote Sens. 2021, 42, 567–594. [Google Scholar] [CrossRef]
- Fiorillo, E.; Di Giuseppe, E.; Fontanelli, G.; Maselli, F. Lowland Rice Mapping in Sédhiou Region (Senegal) Using Sentinel 1 and Sentinel 2 Data and Random Forest. Remote Sens. 2020, 12, 3403. [Google Scholar] [CrossRef]
- Ujoh, F.; Igbawua, T.; Ogidi Paul, M. Suitability Mapping for Rice Cultivation in Benue State, Nigeria Using Satellite Data. Geo-Spat. Inf. Sci. 2019, 22, 332–344. [Google Scholar] [CrossRef]
- Hall, O.; Dahlin, S.; Marstorp, H.; Archila Bustos, M.; Öborn, I.; Jirström, M. Classification of Maize in Complex Smallholder Farming Systems Using UAV Imagery. Drones 2018, 2, 22. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Hideto, F.; Nelson, A.; Dheeravath, V.; Busia, D.; Rala, A. Mapping Irrigated Areas of Ghana Using Fusion of 30 m and 250 m Resolution Remote-Sensing Data. Remote Sens. 2011, 3, 816–835. [Google Scholar] [CrossRef]
- Marshall, M.T.; Husak, G.J.; Michaelsen, J.; Funk, C.; Pedreros, D.; Adoum, A. Testing a High-Resolution Satellite Interpretation Technique for Crop Area Monitoring in Developing Countries. Int. J. Remote Sens. 2011, 32, 7997–8012. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S. Spatial Models for Selecting the Most Suitable Areas of Rice Cultivation in the Inland Valley Wetlands of Ghana Using Remote Sensing and Geographic Information Systems. J. Appl. Remote Sens. 2009, 3, 033537. [Google Scholar] [CrossRef]
- Higginbottom, T.P.; Adhikari, R.; Foster, T. Rapid Expansion of Irrigated Agriculture in the Senegal River Valley Following the 2008 Food Price Crisis. Environ. Res. Lett. 2023, 18, 014037. [Google Scholar] [CrossRef]
- Pitarch, Y.; Ienco, D.; Vintrou, E.; Bégué, A.; Laurent, A.; Poncelet, P.; Sala, M.; Teisseire, M. Spatio-Temporal Data Classification through Multidimensional Sequential Patterns: Application to Crop Mapping in Complex Landscape. Eng. Appl. Artif. Intell. 2015, 37, 91–102. [Google Scholar] [CrossRef]
- Traoré, F.; Cornet, Y.; Denis, A.; Wellens, J.; Tychon, B. Monitoring the Evolution of Irrigated Areas with Landsat Images Using Backward and Forward Change Detection Analysis in the Kou Watershed, Burkina Faso. Geocarto Int. 2013, 28, 733–752. [Google Scholar] [CrossRef]
- Mohammadi, S.; Belgiu, M.; Stein, A. Few-Shot Learning for Crop Mapping from Satellite Image Time Series. Remote Sens. 2024, 16, 1026. [Google Scholar] [CrossRef]
- Rian, S.; Xue, Y.; MacDonald, G.M.; Touré, M.B.; Yu, Y.; De Sales, F.; Levine, P.A.; Doumbia, S.; Taylor, C.E. Analysis of Climate and Vegetation Characteristics along the Savanna-Desert Ecotone in Mali Using MODIS Data. GIScience Remote Sens. 2009, 46, 424–450. [Google Scholar] [CrossRef]
- Gómez-Dans, J.L.; Lewis, P.E.; Yin, F.; Asare, K.; Lamptey, P.; Aidoo, K.K.Y.; MacCarthy, D.S.; Ma, H.; Wu, Q.; Addi, M.; et al. Location, Biophysical and Agronomic Parameters for Croplands in Northern Ghana. Earth Syst. Sci. Data 2022, 14, 5387–5410. [Google Scholar] [CrossRef]
- Gano, B.; Dembele, J.S.B.; Ndour, A.; Luquet, D.; Beurier, G.; Diouf, D.; Audebert, A. Using UAV Borne, Multi-Spectral Imaging for the Field Phenotyping of Shoot Biomass, Leaf Area Index and Height of West African Sorghum Varieties under Two Contrasted Water Conditions. Agronomy 2021, 11, 850. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I.; Rasmussen, M.S. Evaluation of MODIS LAI, fAPAR and the Relation between fAPAR and NDVI in a Semi-Arid Environment Using in Situ Measurements. Remote Sens. Environ. 2004, 91, 490–507. [Google Scholar] [CrossRef]
- Begue, A.; Madec, S.; Lemettais, L.; Leroux, L.; Interdonato, R.; Becker-Reshef, I.; Barker, B.; Justice, C.; Kerdiles, H.; Meroni, M. How Well Do EO-Based Food Security Warning Systems for Food Security Agree? Comparison of NDVI-Based Vegetation Anomaly Maps in West Africa. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1641–1653. [Google Scholar] [CrossRef]
- Sawadogo, A.; Gundogdu, K.S.; Traoré, F.; Kouadio, L.; Hessels, T. Estimating In-Season Actual Evapotranspiration over a Large-Scale Irrigation Scheme in Resource-Limited Conditions; “Prof. Marin Drinov” Publishing House of Bulgarian Academy of Sciences: Sofia, Bulgaria, 2020. [Google Scholar]
- Defourny, P.; Bontemps, S.; Bellemans, N.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Nicola, L.; Rabaute, T.; et al. Near Real-Time Agriculture Monitoring at National Scale at Parcel Resolution: Performance Assessment of the Sen2-Agri Automated System in Various Cropping Systems around the World. Remote Sens. Environ. 2019, 221, 551–568. [Google Scholar] [CrossRef]
- Kergoat, L.; Hiernaux, P.; Dardel, C.; Pierre, C.; Guichard, F.; Kalilou, A. Dry-Season Vegetation Mass and Cover Fraction from SWIR1.6 and SWIR2.1 Band Ratio: Ground-Radiometer and MODIS Data in the Sahel. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 56–64. [Google Scholar] [CrossRef]
- Gérard, B.; Buerkert, A. Estimation of spatial variability in pearl millet growth with non-destructive methods. Ex. Agric. 2001, 37, 373–389. [Google Scholar] [CrossRef]
- Dembele, J.S.B.; Gano, B.; Mbaye, M.; Doumbia, M.; Dembele, L.L.; Kouressy, M.; Teme, N.; Vaksman, M.; Diouf, D.; Audebert, A. Unmanned Aerial Vehicle Imagery Prediction of Sorghum Leaf Area Index under Water Stress, Seeding Density, and Nitrogen Fertilization Conditions in the Sahel. Agron. J. 2024, 116, 1003–1014. [Google Scholar] [CrossRef]
- Ekwe, M.C.; Adeluyi, O.; Verrelst, J.; Kross, A.; Odiji, C.A. Estimating Rainfed Groundnut’s Leaf Area Index Using Sentinel-2 Based on Machine Learning Regression Algorithms and Empirical Models. Precis. Agric. 2024, 25, 1404–1428. [Google Scholar] [CrossRef]
- Sawadogo, A.; Dossou-Yovo, E.R.; Kouadio, L.; Zwart, S.J.; Traoré, F.; Gündoğdu, K.S. Assessing the Biophysical Factors Affecting Irrigation Performance in Rice Cultivation Using Remote Sensing Derived Information. Agric. Water Manag. 2023, 278, 108124. [Google Scholar] [CrossRef]
- Moussa, I.; Walter, C.; Michot, D.; Adam Boukary, I.; Nicolas, H.; Pichelin, P.; Guéro, Y. Soil Salinity Assessment in Irrigated Paddy Fields of the Niger Valley Using a Four-Year Time Series of Sentinel-2 Satellite Images. Remote Sens. 2020, 12, 3399. [Google Scholar] [CrossRef]
- Rilwani, M.L.; Ikhuoria, I.A. Prospects for Geoinformatics-Based Precision Farming in the Savanna River Basin, Nigeria. Int. J. Remote Sens. 2011, 32, 3539–3549. [Google Scholar] [CrossRef]
- Nguru, W.; Abera, W.; Ouedraogo, I.; Chege, C.; Kane, B.; Bougouma, K.; Mwongera, C. Spatial Estimation of Flood Residual Water Cultivation (FRWC) Potential for Food Security in Sédhiou and Tambacounda Regions of Sénégal. Agric. Water Manag. 2023, 287, 108445. [Google Scholar] [CrossRef]
- Sawadogo, A.; Kouadio, L.; Traoré, F.; Zwart, S.J.; Hessels, T.; Gündoğdu, K.S. Spatiotemporal Assessment of Irrigation Performance of the Kou Valley Irrigation Scheme in Burkina Faso Using Satellite Remote Sensing-Derived Indicators. ISPRS Int. J. Geo-Inf. 2020, 9, 484. [Google Scholar] [CrossRef]
- Schut, A.G.T.; Traore, P.C.S.; Blaes, X.; De By, R.A. Assessing Yield and Fertilizer Response in Heterogeneous Smallholder Fields with UAVs and Satellites. Field Crops Res. 2018, 221, 98–107. [Google Scholar] [CrossRef]
- Denis, A.; Tychon, B. Remote Sensing Enables High Discrimination between Organic and Non-Organic Cotton for Organic Cotton Certification in West Africa. Agron. Sustain. Dev. 2015, 35, 1499–1510. [Google Scholar] [CrossRef]
- Borgia, C.; García-Bolaños, M.; Mateos, L. Patterns of Variability in Large-Scale Irrigation Schemes in Mauritania. Agric. Water Manag. 2012, 112, 1–12. [Google Scholar] [CrossRef]
- Zwart, S.J.; Leclert, L.M.C. A Remote Sensing-Based Irrigation Performance Assessment: A Case Study of the Office Du Niger in Mali. Irrig. Sci. 2010, 28, 371–385. [Google Scholar] [CrossRef]
- Tappan, G.; McGahuey, M. Tracking Environmental Dynamics and Agricultural Intensification in Southern Mali. Agric. Syst. 2007, 94, 38–51. [Google Scholar] [CrossRef]
- Fastner, K.; Djibrilla, S.; Nguyen, T.T.; Buerkert, A. Telecoupled Urban Demand from West African Cities Causes Social-Ecological Land Use Transformation in Saharan Oases. PLoS ONE 2023, 18, e0289694. [Google Scholar] [CrossRef] [PubMed]
- Koglo, Y.S.; Gaiser, T.; Agyare, W.A.; Sogbedji, J.M.; Kouami, K. Implications of Some Major Human-Induced Activities on Forest Cover Using Extended Change Matrix Quantity and Intensity Analysis Based on Historical Landsat Data from the Kloto District, Togo. Ecol. Indic. 2019, 96, 628–634. [Google Scholar] [CrossRef]
- Laris, P.; Foltz, J.D.; Voorhees, B. Taking from Cotton to Grow Maize: The Shifting Practices of Small-Holder Farmers in the Cotton Belt of Mali. Agric. Syst. 2015, 133, 1–13. [Google Scholar] [CrossRef]
- Grinblat, Y.; Kidron, G.J.; Karnieli, A.; Benenson, I. Simulating Land-Use Degradation in West Africa with the ALADYN Model. J. Arid. Environ. 2015, 112, 52–63. [Google Scholar] [CrossRef]
- Idohou, R.; Townsend Peterson, A.; Assogbadjo, A.E.; Vihotogbe, R.L.; Padonou, E.; Glèlè Kakaï, R. Identification of Potential Areas for Wild Palm Cultivation in the Republic of Benin through Remote Sensing and Ecological Niche Modeling. Genet. Resour. Crop. Evol. 2017, 64, 1383–1393. [Google Scholar] [CrossRef]
- Cheng, Y.; Yu, L.; Zhao, Y.; Xu, Y.; Hackman, K.; Cracknell, A.P.; Gong, P. Towards a Global Oil Palm Sample Database: Design and Implications. Int. J. Remote Sens. 2017, 38, 4022–4032. [Google Scholar] [CrossRef]
- Abu, I.-O.; Szantoi, Z.; Brink, A.; Robuchon, M.; Thiel, M. Detecting Cocoa Plantations in Côte d’Ivoire and Ghana and Their Implications on Protected Areas. Ecol. Indic. 2021, 129, 107863. [Google Scholar] [CrossRef] [PubMed]
- Torgbor, B.A.; Rahman, M.M.; Robson, A.; Brinkhoff, J.; Khan, A. Assessing the Potential of Sentinel-2 Derived Vegetation Indices to Retrieve Phenological Stages of Mango in Ghana. Horticulturae 2021, 8, 11. [Google Scholar] [CrossRef]
- Gomez Selvaraj, M.; Vergara, A.; Montenegro, F.; Alonso Ruiz, H.; Safari, N.; Raymaekers, D.; Ocimati, W.; Ntamwira, J.; Tits, L.; Omondi, A.B.; et al. Detection of Banana Plants and Their Major Diseases through Aerial Images and Machine Learning Methods: A Case Study in DR Congo and Republic of Benin. ISPRS J. Photogramm. Remote Sens. 2020, 169, 110–124. [Google Scholar] [CrossRef]
- Sarron, J.; Malézieux, É.; Sané, C.A.B.; Faye, É. Mango Yield Mapping at the Orchard Scale Based on Tree Structure and Land Cover Assessed by UAV. Remote Sens. 2018, 10, 1900. [Google Scholar] [CrossRef]
- Yin, L.; Ghosh, R.; Lin, C.; Hale, D.; Weigl, C.; Obarowski, J.; Zhou, J.; Till, J.; Jia, X.; You, N.; et al. Mapping Smallholder Cashew Plantations to Inform Sustainable Tree Crop Expansion in Benin. Remote Sens. Environ. 2023, 295, 113695. [Google Scholar] [CrossRef]
- Moore, C.; Morel, A.C.; Asare, R.A.; Adu Sasu, M.; Adu-Bredu, S.; Malhi, Y. Human Appropriated Net Primary Productivity of Complex Mosaic Landscapes. Front. For. Glob. Change 2019, 2, 38. [Google Scholar] [CrossRef]
- Karlson, M.; Bolin, D.; Bazié, H.R.; Ouedraogo, A.S.; Soro, B.; Sanou, J.; Bayala, J.; Ostwald, M. Exploring the Landscape Scale Influences of Tree Cover on Crop Yield in an Agroforestry Parkland Using Satellite Data and Spatial Statistics. J. Arid. Environ. 2023, 218, 105051. [Google Scholar] [CrossRef]
- Chabi, A.; Lautenbach, S.; Tondoh, J.E.; Orekan, V.O.A.; Adu-Bredu, S.; Kyei-Baffour, N.; Mama, V.J.; Fonweban, J. The Relevance of Using in Situ Carbon and Nitrogen Data and Satellite Images to Assess Aboveground Carbon and Nitrogen Stocks for Supporting National REDD + Programmes in Africa. Carbon Balance Manag. 2019, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Lelong, C.C.D.; Tshingomba, U.K.; Soti, V. Assessing Worldview-3 Multispectral Imaging Abilities to Map the Tree Diversity in Semi-Arid Parklands. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102211. [Google Scholar] [CrossRef]
- Soja, M.J.; Karlson, M.; Bayala, J.; Bazié, H.R.; Sanou, J.; Tankoano, B.; Eriksson, L.E.B.; Reese, H.; Ostwald, M.; Ulander, L.M.H. Mapping Tree Height in Burkina Faso Parklands with TanDEM-X. Remote Sens. 2021, 13, 2747. [Google Scholar] [CrossRef]
- Lu, T.; Brandt, M.; Tong, X.; Hiernaux, P.; Leroux, L.; Ndao, B.; Fensholt, R. Mapping the Abundance of Multipurpose Agroforestry Faidherbia Albida Trees in Senegal. Remote Sens. 2022, 14, 662. [Google Scholar] [CrossRef]
- Usman, M.; Ejaz, M.; Nichol, J.E.; Farid, M.S.; Abbas, S.; Khan, M.H. A Comparison of Machine Learning Models for Mapping Tree Species Using WorldView-2 Imagery in the Agroforestry Landscape of West Africa. IJGI 2023, 12, 142. [Google Scholar] [CrossRef]
- Ndao, B.; Leroux, L.; Gaetano, R.; Diouf, A.A.; Soti, V.; Bégué, A.; Mbow, C.; Sambou, B. Landscape Heterogeneity Analysis Using Geospatial Techniques and a Priori Knowledge in Sahelian Agroforestry Systems of Senegal. Ecol. Indic. 2021, 125, 107481. [Google Scholar] [CrossRef]
- Schulz, D.; Yin, H.; Tischbein, B.; Verleysdonk, S.; Adamou, R.; Kumar, N. Land Use Mapping Using Sentinel-1 and Sentinel-2 Time Series in a Heterogeneous Landscape in Niger, Sahel. ISPRS J. Photogramm. Remote Sens. 2021, 178, 97–111. [Google Scholar] [CrossRef]
- Adhikari, P.; De Beurs, K.M. An Evaluation of Multiple Land-Cover Data Sets to Estimate Cropland Area in West Africa. Int. J. Remote Sens. 2016, 37, 5344–5364. [Google Scholar] [CrossRef]
- Sedano, F.; Molini, V.; Azad, M.A.K. A Mapping Framework to Characterize Land Use in the Sudan-Sahel Region from Dense Stacks of Landsat Data. Remote Sens. 2019, 11, 648. [Google Scholar] [CrossRef]
- Wellens, J.; Midekor, A.; Traore, F.; Tychon, B. An Easy and Low-Cost Method for Preprocessing and Matching Small-Scale Amateur Aerial Photography for Assessing Agricultural Land Use in Burkina Faso. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 273–278. [Google Scholar] [CrossRef]
- Duke, O.P.; Alabi, T.; Neeti, N.; Adewopo, J. Comparison of UAV and SAR Performance for Crop Type Classification Using Machine Learning Algorithms: A Case Study of Humid Forest Ecology Experimental Research Site of West Africa. Int. J. Remote Sens. 2022, 43, 4259–4286. [Google Scholar] [CrossRef]
- Budde, M.E.; Tappan, G.; Rowland, J.; Lewis, J.; Tieszen, L.L. Assessing Land Cover Performance in Senegal, West Africa Using 1-Km Integrated NDVI and Local Variance Analysis. J. Arid. Environ. 2004, 59, 481–498. [Google Scholar] [CrossRef]
- Röhrig, J.; Laudien, R. Evaluation of Agricultural Land Resources by Implementing a Computer-Based Spatial Decision Support System for National Deciders in Benin, West Africa. J. Appl. Remote Sens. 2009, 3, 033502. [Google Scholar] [CrossRef]
- Tschakert, P.; Tappan, G. The Social Context of Carbon Sequestration: Considerations from a Multi-Scale Environmental History of the Old Peanut Basin of Senegal. J. Arid. Environ. 2004, 59, 535–564. [Google Scholar] [CrossRef]
- Saarnak, C.; Nielsen, T.; Mbow, C. A Local-Scale Study of the Trace Gas Emissions from Vegetation Burning around the Village of Dalun, Ghana, with Respect to Seasonal Vegetation Changes and Burning Practices. Fuel Energy Abstr. 2004, 45, 55. [Google Scholar] [CrossRef]
- Dambach, P.; Sié, A.; Lacaux, J.-P.; Vignolles, C.; Machault, V.; Sauerborn, R. Using High Spatial Resolution Remote Sensing for Risk Mapping of Malaria Occurrence in the Nouna District, Burkina Faso. Glob. Health Action 2009, 2, 2094. [Google Scholar] [CrossRef] [PubMed]
- Okoro, S.U.; Schickhoff, U.; Böhner, J. A Novel Approach in Monitoring Land-Cover Change in the Tropics: Oil Palm Cultivation in the Niger Delta, Nigeria. DIE ERDE J. Geogr. Soc. Berl. 2016, 147, 40–52. [Google Scholar] [CrossRef]
- Saux-Picart, S.; Ottlé, C.; Decharme, B.; André, C.; Zribi, M.; Perrier, A.; Coudert, B.; Boulain, N.; Cappelaere, B.; Descroix, L.; et al. Water and Energy Budgets Simulation over the AMMA-Niger Super-Site Spatially Constrained with Remote Sensing Data. J. Hydrol. 2009, 375, 287–295. [Google Scholar] [CrossRef]
- Compaoré, H.; Hendrickx, J.M.H.; Hong, S.; Friesen, J.; Van De Giesen, N.C.; Rodgers, C.; Szarzynski, J.; Vlek, P.L.G. Evaporation Mapping at Two Scales Using Optical Imagery in the White Volta Basin, Upper East Ghana. Phys. Chem. Earth Parts A/B/C 2008, 33, 127–140. [Google Scholar] [CrossRef]
- Abdourahamane, Z.S.; Garba, I.; Gambo Boukary, A.; Mirzabaev, A. Spatiotemporal Characterization of Agricultural Drought in the Sahel Region Using a Composite Drought Index. J. Arid. Environ. 2022, 204, 104789. [Google Scholar] [CrossRef]
- Fall, C.M.N.; Lavaysse, C.; Kerdiles, H.; Dramé, M.S.; Roudier, P.; Gaye, A.T. Performance of Dry and Wet Spells Combined with Remote Sensing Indicators for Crop Yield Prediction in Senegal. Clim. Risk Manag. 2021, 33, 100331. [Google Scholar] [CrossRef]
- Noureldeen, N.; Mao, K.; Mohmmed, A.; Yuan, Z.; Yang, Y. Spatiotemporal Drought Assessment over Sahelian Countries from 1985 to 2015. J. Meteorol. Res. 2020, 34, 760–774. [Google Scholar] [CrossRef]
- Durowoju, O.S.; Ologunorisa, T.E.; Akinbobola, A. Assessing Agricultural and Hydrological Drought Vulnerability in a Savanna Ecological Zone of Sub-Saharan Africa. Nat. Hazards 2022, 111, 2431–2458. [Google Scholar] [CrossRef]
- Boken, V.K.; Hoogenboom†, G.; Williams, J.H.; Diarra, B.; Dione, S.; Easson, G.L. Monitoring Peanut Contamination in Mali (Africa) Using AVHRR Satellite Data and a Crop Simulation Model. Int. J. Remote Sens. 2008, 29, 117–129. [Google Scholar] [CrossRef]
- Zeng, Y.; Jia, L.; Menenti, M.; Jiang, M.; Barnieh, B.A.; Bennour, A.; Lv, Y. Changes in Vegetation Greenness Related to Climatic and Non-Climatic Factors in the Sudano-Sahelian Region. Reg. Environ. Change 2023, 23, 92. [Google Scholar] [CrossRef]
- Brown, M.E.; De Beurs, K.M. Evaluation of Multi-Sensor Semi-Arid Crop Season Parameters Based on NDVI and Rainfall. Remote Sens. Environ. 2008, 112, 2261–2271. [Google Scholar] [CrossRef]
- Bobée, C.; Ottlé, C.; Maignan, F.; De Noblet-Ducoudré, N.; Maugis, P.; Lézine, A.-M.; Ndiaye, M. Analysis of Vegetation Seasonality in Sahelian Environments Using MODIS LAI, in Association with Land Cover and Rainfall. J. Arid. Environ. 2012, 84, 38–50. [Google Scholar] [CrossRef]
- Ngadi Scarpetta, Y.; Lebourgeois, V.; Laques, A.-E.; Dieye, M.; Bourgoin, J.; Bégué, A. BFASTm-L2, an Unsupervised LULCC Detection Based on Seasonal Change Detection—An Application to Large-Scale Land Acquisitions in Senegal. Int. J. Appl. Earth Obs. Geoinf. 2023, 121, 103379. [Google Scholar] [CrossRef]
- Begue, A.; Vintrou, E.; Saad, A.; Hiernaux, P. Differences between Cropland and Rangeland MODIS Phenology (Start-of-Season) in Mali. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 167–170. [Google Scholar] [CrossRef]
- Folega, F.; Atakpama, W.; Pereki, H.; Diwediga, B.; Novotny, I.P.; Dray, A.; Garcia, C.; Wala, K.; Batawila, K.; Akpagana, K. Geo-Based Assessment of Vegetation Health Related to Agroecological Practices in the Southeast of Togo. Appl. Sci. 2023, 13, 9106. [Google Scholar] [CrossRef]
- Mishra, V.; Limaye, A.S.; Doehnert, F.; Policastro, R.; Hassan, D.; Ndiaye, M.T.Y.; Abel, N.V.; Johnson, K.; Grange, J.; Coffey, K.; et al. Assessing Impact of Agroecological Interventions in Niger through Remotely Sensed Changes in Vegetation. Sci. Rep. 2023, 13, 360. [Google Scholar] [CrossRef] [PubMed]
- McNally, A.; Husak, G.J.; Brown, M.; Carroll, M.; Funk, C.; Yatheendradas, S.; Arsenault, K.; Peters-Lidard, C.; Verdin, J.P. Calculating Crop Water Requirement Satisfaction in the West Africa Sahel with Remotely Sensed Soil Moisture. J. Hydrometeorol. 2015, 16, 295–305. [Google Scholar] [CrossRef]
- Nyamekye, C.; Schönbrodt-Stitt, S.; Amekudzi, L.K.; Zoungrana, B.J.-B.; Thiel, M. Usage of MODIS NDVI to Evaluate the Effect of Soil and Water Conservation Measures on Vegetation in Burkina Faso. Land Degrad. Dev. 2021, 32, 7–19. [Google Scholar] [CrossRef]
- Faye, G.; Frison, P.-L.; Diouf, A.-A.; Wade, S.; Kane, C.A.; Fussi, F.; Jarlan, L.; Niang, M.F.K.; Ndione, J.A.; Rudant, J.P.; et al. Soil Moisture Estimation in Ferlo Region (Senegal) Using Radar (ENVISAT/ASAR) and Optical (SPOT/VEGETATION) Data. Egypt. J. Remote Sens. Space Sci. 2018, 21, S13–S22. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Hiernaux, P.; Herrmann, S.M.; Tian, F.; Prishchepov, A.V.; Fensholt, R. Revisiting the Coupling between NDVI Trends and Cropland Changes in the Sahel Drylands: A Case Study in Western Niger. Remote Sens. Environ. 2017, 191, 286–296. [Google Scholar] [CrossRef]
- Barteit, S.; Sié, A.; Zabré, P.; Traoré, I.; Ouédraogo, W.A.; Boudo, V.; Munga, S.; Khagayi, S.; Obor, D.; Muok, E.; et al. Widening the Lens of Population-Based Health Research to Climate Change Impacts and Adaptation: The Climate Change and Health Evaluation and Response System (CHEERS). Front. Public Health 2023, 11, 1153559. [Google Scholar] [CrossRef] [PubMed]
- Castro Alvarado, E.; Bégué, A.; Leroux, L.; Gaetano, R. A Multi-Year Land Use Trajectory Strategy for Non-Active Agricultural Land Mapping in Sub-Humid West Africa. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103398. [Google Scholar] [CrossRef]
- Sall, M.; Poussin, J.-C.; Bossa, A.Y.; Ndiaye, R.; Cissé, M.; Martin, D.; Bader, J.-C.; Sultan, B.; Ogilvie, A. Water Constraints and Flood-Recession Agriculture in the Senegal River Valley. Atmosphere 2020, 11, 1192. [Google Scholar] [CrossRef]
- Thomas, N.; Neigh, C.S.R.; Carroll, M.L.; McCarty, J.L.; Bunting, P. Fusion Approach for Remotely-Sensed Mapping of Agriculture (FARMA): A Scalable Open Source Method for Land Cover Monitoring Using Data Fusion. Remote Sens. 2020, 12, 3459. [Google Scholar] [CrossRef]
- Kpienbaareh, D.; Luginaah, I. After the Flames Then What? Exploring the Linkages between Wildfires and Household Food Security in the Northern Savannah of Ghana. Int. J. Sustain. Dev. World Ecol. 2019, 26, 612–624. [Google Scholar] [CrossRef]
- Müller, C.; Ouédraogo, W.A.; Schwarz, M.; Barteit, S.; Sauerborn, R. The Effects of Climate Change-Induced Flooding on Harvest Failure in Burkina Faso: Case Study. Front. Public Health 2023, 11, 1166913. [Google Scholar] [CrossRef]
- Chemura, A.; Van Duren, I.; Van Leeuwen, L.M. Determination of the Age of Oil Palm from Crown Projection Area Detected from WorldView-2 Multispectral Remote Sensing Data: The Case of Ejisu-Juaben District, Ghana. ISPRS J. Photogramm. Remote Sens. 2015, 100, 118–127. [Google Scholar] [CrossRef]
- Devineau, J.-L.; Aurouet, A.; Douanio, M.; Hladik, A. Changes in the Availability and Uses of Wild Yams According to Climatic Dryness and Land-Cover in Western Burkina Faso (West Africa): A Joint Ecological and Ethno-Botanical Approach Using GIS and Remote-Sensing. Biodivers. Conserv. 2008, 17, 1937–1963. [Google Scholar] [CrossRef]
- Renier, C.; Waldner, F.; Jacques, D.; Babah Ebbe, M.; Cressman, K.; Defourny, P. A Dynamic Vegetation Senescence Indicator for Near-Real-Time Desert Locust Habitat Monitoring with MODIS. Remote Sens. 2015, 7, 7545–7570. [Google Scholar] [CrossRef]
- Piou, C.; Lebourgeois, V.; Benahi, A.S.; Bonnal, V.; Jaavar, M.e.H.; Lecoq, M.; Vassal, J.-M. Coupling Historical Prospection Data and a Remotely-Sensed Vegetation Index for the Preventative Control of Desert Locusts. Basic Appl. Ecol. 2013, 14, 593–604. [Google Scholar] [CrossRef]
- Scarpa, G.; Gargiulo, M.; Mazza, A.; Gaetano, R. A CNN-Based Fusion Method for Feature Extraction from Sentinel Data. Remote Sens. 2018, 10, 236. [Google Scholar] [CrossRef]
- Chi, M.; Plaza, A.; Benediktsson, J.A.; Sun, Z.; Shen, J.; Zhu, Y. Big Data for Remote Sensing: Challenges and Opportunities. Proc. IEEE 2016, 104, 2207–2219. [Google Scholar] [CrossRef]
- Leach, N.; Coops, N.C.; Obrknezev, N. Normalization Method for Multi-Sensor High Spatial and Temporal Resolution Satellite Imagery with Radiometric Inconsistencies. Comput. Electron. Agric. 2019, 164, 104893. [Google Scholar] [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Ishimwe, R.; Abutaleb, K.; Ahmed, F. Applications of Thermal Imaging in Agriculture—A Review. ARS 2014, 3, 128–140. [Google Scholar] [CrossRef]
- Rivera, G.; Porras, R.; Florencia, R.; Sánchez-Solís, J.P. LiDAR Applications in Precision Agriculture for Cultivating Crops: A Review of Recent Advances. Comput. Electron. Agric. 2023, 207, 107737. [Google Scholar] [CrossRef]
- Estes, L.D.; Ye, S.; Song, L.; Luo, B.; Eastman, J.R.; Meng, Z.; Zhang, Q.; McRitchie, D.; Debats, S.R.; Muhando, J.; et al. High Resolution, Annual Maps of Field Boundaries for Smallholder-Dominated Croplands at National Scales. Front. Artif. Intell. 2022, 4, 744863. [Google Scholar] [CrossRef]
- Cucho-Padin, G.; Loayza, H.; Palacios, S.; Balcazar, M.; Carbajal, M.; Quiroz, R. Development of Low-Cost Remote Sensing Tools and Methods for Supporting Smallholder Agriculture. Appl. Geomat. 2020, 12, 247–263. [Google Scholar] [CrossRef]
- AfriCultuReS. Enhancing Food Security in African Agricultural Systms with the Support of Remote Sensing; AfriCultuReS: Paris, France, 2022. [Google Scholar]
- Brown, M.E.; Rowland, J.; Wood, E.; Tieszen, L.L.; Lance, K.; Khamala, E.; Siwela, B.; Adoum, A. Review of Remote Sensing Needs and Applications in Africa; U.S. Agency for International Development: Washington, DC, USA, 2015. [Google Scholar]
- Gusenbauer, M.; Haddaway, N.R. Which Academic Search Systems Are Suitable for Systematic Reviews or Meta-analyses? Evaluating Retrieval Qualities of Google Scholar, PubMed, and 26 Other Resources. Res. Synth. Methods 2020, 11, 181–217. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A. The Role of Local Institutions in Adaptation to Climate Change; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- European Space Agency (ESA) Sentinel-1C Launch. Available online: https://www.esa.int/Newsroom/Press_Releases/Call_for_interest_Copernicus_Sentinel-1C_launch_media_event_at_Europe_s_Spaceport (accessed on 28 October 2024).
- Agricultural Growth in West Africa: Market and Policy Drivers; FAO: Rome, Italy, 2015.
- Jennewein, J.S.; Hively, W.; Lamb, B.T.; Daughtry, C.S.T.; Thapa, R.; Thieme, A.; Reberg-Horton, C.; Mirsky, S. Spaceborne Imaging Spectroscopy Enables Carbon Trait Estimation in Cover Crop and Cash Crop Residues. Precis. Agric. 2024, 25, 2165–2197. [Google Scholar] [CrossRef]
- European Space Agency (ESA) WorldCereal Phase II. Available online: https://esa-worldcereal.org/en/about/worldcereal-phase-ii (accessed on 28 October 2024).
Criteria | Conditions |
---|---|
Remote Sensing and Earth Observation | “remotely sensed” OR “remote sensing” OR “earth observation*” OR “satellite” OR “IKONOS” OR “Quickbird” OR “WorldView” OR “Pleiades” OR “Rapideye” OR “GeoEye” OR “Planet” OR “skycat” OR “SPOT 4” OR “SPOT 5” OR “SPOT 6” OR “SPOT 7” OR “SPOT-Vegetation” OR “Landsat” OR “Sentinel” OR “AVHRR” OR “MODIS” OR “Envisat” OR “Aster” OR “ALOS” OR “TanDEM-X” OR “TerraSAR-X” OR “DESIS” OR “PRISMA” OR “EnMAP” OR “Hyperion” OR “GEDI” OR ”optical imagery“ OR ”optical satellite“ OR “Synthetic Aperture Radar” OR “Radar“ OR “RadarSat” OR “COSMO” OR “SRTM” OR “microwave satellite” OR “multispectral satellite” OR “hyperspectral satellite” OR “imaging spectroscopy” OR “thermal satellite” OR “airborne laser scanning” OR “unmanned aerial vehicle*” OR “NDVI” |
West Africa | “ECOWAS” OR “West* Africa*” OR “Togo” OR “Benin”, OR “Ghana” OR “Ivory Coast” OR “Côte d’Ivoire” OR “Burkina Faso” OR “Cape Verde” OR “Gambia” OR “Guinea” OR “Guinea-Bissau” OR “Liberia” OR “Mali” OR “Mauritania” OR “Niger” OR “Nigeria” OR “Senegal” OR “Sierra Leone” OR “Saint Helena” OR “Ascension” OR “Tristan da Cunha” |
Small-Scale Agriculture and Cropping Systems | “agri*” OR “agriculture” OR “crop*” OR “farm*” OR “cowpea” OR “groundnut” OR “maize” OR “sorghum” OR “soy*” OR “yams” OR “shea*” OR “cassava” OR “cocoa” OR “rice” OR “corn” OR “cotton” OR “millet” OR “palm*” OR “peanut” OR “cashew” OR “above*ground biomass” OR “vegetation productivity” OR “intercropping” |
Language | English |
Document Type | Article |
Date | 1 January 2000–30 April 2024 |
Study Focus | Category | Main Findings and Remote Sensing Potential | Challenges | Sources |
---|---|---|---|---|
Crop Monitoring | Agricultural Productivity | Estimating crop yields in a heterogenous small-scale agricultural landscape | Limited reference data for assessing accuracy of satellite-based estimates; high spatial variability | [7,33,67,80,81,95,96,97,98,99,100,101,102,103,104,105,106] |
Crop-Type Mapping | Combining optical and SAR data and a variety of methods for multi-sensor data analysis | Heterogeneity, accuracy of final products; reference data scarcity | [11,25,34,45,47,61,62,63,64,70,71,86,100,107,108,109,110,111,112,113,114,115,116,117,118] | |
Plant Parameters | LAI, soil amendments, vegetation monitoring, evapotranspiration | Large within and between field variations in yield, LAI, chlorophyll, etc. | [12,82,119,120,121,122,123,124,125,126,127,128] | |
Field Characteristics | Derivation of field boundaries, soil moisture and type | Small feature extraction; limitations of Proxy Use | [4,29,65,69,129,130,131] | |
Management Detection | Water management performance; timing, impact and responses of crop management | Sustainability monitoring, reference data, data variability within fields | [1,10,37,38,77,87,132,133,134,135,136,137,138,139,140,141,142] | |
Agroforestry | Cocoa and Palm Oil | Accurate mapping of cocoa and palm oil plantation including encroached areas | Limited reference data and reference data refinement | [22,46,78,88,90,143,144,145] |
Fruit Trees | Fruit tree disease surveillance system | Lack of validation data | [40,146,147,148,149] | |
Above Ground Biomass in Agroforestry systems | Spatially explicit AGB estimates for reporting reduction emission efforts | Site complexity, poor-quality reference data, spectral variability within the same class and mixed pixels from fragmented landscapes | [79,89,150,151,152] | |
Semi-arid Parklands | Mapping agroforestry parklands and their influence on crop yields | Upscaling individual tree level to landscape level (diversity of tree species and mix of crop types) | [68,85,153,154,155,156,157] | |
LULUC (with crop focus) | Data Consistency | Improved accuracy (data fusion and very high-res.) | Lack of consistent LULUC maps | [30,158,159] |
Classification Accuracy | Supporting decision-making for multiple objectives | Low agreement among RS datasets | [18,32,43,66,84,160,161,162,163,164,165] | |
Mapping Approaches | Diverse and new methodologies and various data integration for improved mapping of LULUC | Similar phenological signatures complicate mapping | [73,166,167,168] | |
Climate Impacts | Evapotranspiration | Data fusion for daily field-scale LST and ET estimates | Lack of bias-free validation and high-resolution thermal data | [23,169,170] |
Drought and Dry Spills | Vulnerability to climate change | Limitations of RS indices | [91,171,172,173,174] | |
Phenology and Greenness | Impact analysis on drivers of trends in cropland productivity, phenology and greenness | Downscaling coarse NDVI data of large area | [35,107,175,176,177,178,179,180,181,182,183,184,185] | |
Others | -- -- | Flood risk management, health risks, locust habitat, fallow land assessment | Reference data scarcity, spatial resolution of RS data | [65,73,74,76,83,186,187,188,189,190,191,192] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heiss, N.; Meier, J.; Gessner, U.; Kuenzer, C. A Review: Potential of Earth Observation (EO) for Mapping Small-Scale Agriculture and Cropping Systems in West Africa. Land 2025, 14, 171. https://doi.org/10.3390/land14010171
Heiss N, Meier J, Gessner U, Kuenzer C. A Review: Potential of Earth Observation (EO) for Mapping Small-Scale Agriculture and Cropping Systems in West Africa. Land. 2025; 14(1):171. https://doi.org/10.3390/land14010171
Chicago/Turabian StyleHeiss, Niklas, Jonas Meier, Ursula Gessner, and Claudia Kuenzer. 2025. "A Review: Potential of Earth Observation (EO) for Mapping Small-Scale Agriculture and Cropping Systems in West Africa" Land 14, no. 1: 171. https://doi.org/10.3390/land14010171
APA StyleHeiss, N., Meier, J., Gessner, U., & Kuenzer, C. (2025). A Review: Potential of Earth Observation (EO) for Mapping Small-Scale Agriculture and Cropping Systems in West Africa. Land, 14(1), 171. https://doi.org/10.3390/land14010171