Energy Efficient Rapid Removal of Arsenic in an Electrocoagulation Reactor with Hybrid Fe/Al Electrodes: Process Optimization Using CCD and Kinetic Modeling
<p>Schematic representation of experimental set up.</p> "> Figure 2
<p>Actual versus predicted plots for (<b>a</b>) arsenic removal efficiency, (<b>b</b>) energy consumption per gram removal of arsenic.</p> "> Figure 3
<p>Surface plots (a–d) in 3D presenting the effect of all 4 interactive factors i.e., applied current, pH, time and initial conc. on the removal efficiency of total As.</p> "> Figure 4
<p>Surface plots in 3D presenting (<b>a</b>–<b>d</b>) the effect of all 4 interactive factors i.e., applied current, pH, time and initial conc. on energy consumption per gm of arsenic removed in EC process.</p> "> Figure 4 Cont.
<p>Surface plots in 3D presenting (<b>a</b>–<b>d</b>) the effect of all 4 interactive factors i.e., applied current, pH, time and initial conc. on energy consumption per gm of arsenic removed in EC process.</p> ">
Abstract
:1. Introduction
Removal Mechanism and Chemistry inside the EC Reactor
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Statistical Analysis
3. Results and Discussion
2.11BD − 2.14CD − 2.71A2 − 2.99B2 − 0.98C2 − 0.83D2
0.13BC + 0.87BD − 0.06CD + 0.004A2 + 0.31B2 + 0.07C2 + (−0.06D2)
3.1. Optimization of the Process
3.2. Effect of Process Parameters
3.2.1. Current Applied
3.2.2. Initial pH
3.2.3. Application Time
3.2.4. Initial Concentration
4. Energy Consumption
4.1. Effect of Process Parameters on Electrical Energy Consumed
4.2. Computing Energy and Operational Cost
5. Adsorption Kinetics
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Katsoyiannis, I.; Rodrigues, J.H.; Ernst, M. Arsenate removal from drinking water using by-products from conventional iron oxyhydroxides production as adsorbents coupled with submerged microfiltration unit. Environ. Sci. Pollut. Res. 2020, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usman, M.; Katsoyiannis, I.; Mitrakas, M.; Zouboulis, A.; Ernst, M. Performance evaluation of small sized powdered ferric hydroxide as arsenic adsorbent. Water 2018, 10, 957. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.-P.; Kerrich, R.; Hendry, M.J. Distribution of arsenic(III), arsenic(V) and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochim. Cosmochim. Acta 2000, 64, 2637–2648. [Google Scholar] [CrossRef]
- Usman, M.; Zarebanadkouki, M.; Waseem, M.; Katsoyiannis, I.A.; Ernst, M. Mathematical modeling of arsenic (V) adsorption onto iron oxyhydroxides in an adsorption-submerged membrane hybrid system. J. Hazard. Mater. 2020, 400, 123221. [Google Scholar] [CrossRef] [PubMed]
- Kabir, F.; Chowdhury, S. Arsenic removal methods for drinking water in the developing countries: Technological developments and research needs. Environ. Sci. Pollut. Res. 2017, 24, 24102–24120. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.U.; Farooqi, I.H.; Ayub, S. Studies on application of Fe based binary oxide nanoparticles for treatment of lead (Pb2+) contaminated water-A batch study. Mater. Today Proc. 2017, 4, 9650–9655. [Google Scholar] [CrossRef]
- Khan, S.U.; Islam, D.T.; Farooqi, I.H.; Ayub, S.; Basheer, F. Hexavalent chromium removal in an electrocoagulation column reactor: Process optimization using CCD, adsorption kinetics and pH modulated sludge formation. Process Saf. Environ. Prot. 2019, 122, 118–130. [Google Scholar] [CrossRef]
- Hashim, K.S.; Shaw, A.; Al Khaddar, R.; Pedrola, M.O.; Phipps, D. Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor. J. Environ. Manag. 2017, 189, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Mateen, Q.S.; Khan, S.U.; Islam, D.T.; Khan, N.A.; Farooqi, I.H. Copper (II) removal in a column reactor using electrocoagulation: Parametric optimization by response surface methodology using central composite design. Water Environ. Res. 2020, 92, 1350–1362. [Google Scholar] [CrossRef] [PubMed]
- Hashim, K.S.; Al Khaddar, R.; Jasim, N.; Shaw, A.; Phipps, D.; Kot, P.; Pedrola, M.O.; Alattabi, A.W.; Abdulredha, M.; Alawsh, R. Electrocoagulation as a green technology for phosphate removal from river water. Sep. Purif. Technol. 2019, 210, 135–144. [Google Scholar] [CrossRef]
- Khan, S.U.; Mahtab, M.S.; Farooqi, I.H. Enhanced lead (II) removal with low energy consumption in an Electrocoagulation column employing concentric electrodes: Process Optimization by RSM using CCD. Int. J. Environ. Anal. Chem. 2020, in press. [Google Scholar]
- Oden, M.K.; Sari-Erkan, H. Treatment of metal plating wastewater using iron electrode by electrocoagulation process: Optimization and process performance. Process Saf. Environ. Prot. 2018, 119, 207–217. [Google Scholar] [CrossRef]
- Deghles, A.; Kurt, U. Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process. Chem. Eng. Process. Process Intensif. 2016, 104, 43–50. [Google Scholar] [CrossRef]
- Aziz, A.R.A.; Asaithambi, P.; Daud, W.M.A.B.W. Combination of electrocoagulation with advanced oxidation processes for the treatment of distillery industrial effluent. Process Saf. Environ. Prot. 2016, 99, 227–235. [Google Scholar] [CrossRef]
- Kobya, M.; Akyol, A.; Demirbas, E.; Oncel, M.S. Removal of arsenic from drinking water by batch and continuous electrocoagulation processes using hybrid Al-Fe plate electrodes. Environ. Prog. Sustain. Energy 2014, 33, 131–140. [Google Scholar] [CrossRef]
- Wan, W.; Pepping, T.J.; Banerji, T.; Chaudhari, S.; Giammar, D.E. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation. Water Res. 2011, 45, 384–392. [Google Scholar] [CrossRef]
- Lakshmanan, D.; Clifford, D.A.; Samanta, G. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation. Water Res. 2010, 44, 5641–5652. [Google Scholar] [CrossRef]
- Vasudevan, S.; Oturan, M.A. Electrochemistry: As cause and cure in water pollution—An overview. Environ. Chem. Lett. 2014, 12, 97–108. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Singh, T.S.A. Arsenic removal by electrocoagulation process: Recent trends and removal mechanism. Chemosphere 2017, 181, 418–432. [Google Scholar] [CrossRef] [PubMed]
- Lacasa, E.; Cañizares, P.; Sáez, C.; Fernández, F.J.; Rodrigo, M.A. Removal of arsenic by iron and aluminium electrochemically assisted coagulation. Sep. Purif. Technol. 2011, 79, 15–19. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments; John wiley & sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Whitcomb, P.J.; Anderson, M.J. RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Abdulhadi, B.A.; Kot, P.; Hashim, K.S.; Shaw, A.; Al Khaddar, R. Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/electroflotation (EC/EF) process. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Najaf, Iraq, 2019; p. 12035. [Google Scholar]
- Khan, S.U.; Asif, M.; Alam, F.; Khan, N.A.; Farooqi, I.H. Optimizing Fluoride Removal and Energy Consumption in a Batch Reactor Using Electrocoagulation: A Smart Treatment Technology. In Smart Cities—Opportunities and Challenges; Springer: Singapore, 2020; p. 767. [Google Scholar]
- Omwene, P.I.; Çelen, M.; Öncel, M.S.; Kobya, M. Arsenic removal from naturally arsenic contaminated ground water by packed-bed electrocoagulator using Al and Fe scrap anodes. Process Saf. Environ. Prot. 2019, 121, 20–31. [Google Scholar] [CrossRef]
- Mohammed, W.T.; AlJaberi, F.Y. Effecting of pH parameter on simulated wastewater treatment using electrocoagulation method. J. Eng. 2018, 24, 73–88. [Google Scholar] [CrossRef]
- Song, P.; Yang, Z.; Xu, H.; Huang, J.; Yang, X.; Wang, L. Investigation of Influencing Factors and Mechanism of Antimony and Arsenic Removal by Electrocoagulation Using Fe–Al Electrodes. Ind. Eng. Chem. Res. 2014, 53, 12911–12919. [Google Scholar] [CrossRef]
- Asaithambi, P.; Aziz, A.R.A.; Daud, W.M.A.B.W. Integrated ozone—Electrocoagulation process for the removal of pollutant from industrial effluent: Optimization through response surface methodology. Chem. Eng. Process. Process Intensif. 2016, 105, 92–102. [Google Scholar] [CrossRef]
- Heidmann, I.; Calmano, W. Removal of Cr(VI) from model wastewaters by electrocoagulation with Fe electrodes. Sep. Purif. Technol. 2008, 61, 15–21. [Google Scholar] [CrossRef]
- Lagrergen, S. Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe Kungliga Svenska Vetenskapsakademiens. Handlingar 1898, 24, 1–39. [Google Scholar]
- Khan, S.U.; Zaidi, R.; Hassan, S.Z.; Farooqi, I.H.; Azam, A. Application of Fe-Cu binary oxide nanoparticles for the removal of hexavalent chromium from aqueous solution. Water Sci. Technol. 2019, 74, 165–175. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Code | Real Values | ||||
---|---|---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | |||
pH | - | A | 4 | 5.5 | 7 | 8.5 | 10 |
Current | amp | B | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
Initial concentration | mg/L | C | 4 | 6 | 8 | 10 | 12 |
Time | min | D | 2 | 4 | 6 | 8 | 10 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 2837.88 | 12 | 236.49 | 20.05 | <0.0001 | significant |
A-pH | 344.81 | 1 | 344.81 | 29.23 | <0.0001 | |
B-Applied current | 1150.93 | 1 | 1150.93 | 97.55 | <0.0001 | |
C-Initial Conc. | 141.09 | 1 | 141.09 | 11.96 | 0.003 | |
D-Time | 455.92 | 1 | 455.92 | 38.64 | <0.0001 | |
AB | 54.21 | 1 | 54.21 | 4.59 | 0.0468 | |
BC | 150.98 | 1 | 150.98 | 12.8 | 0.0023 | |
BD | 71.28 | 1 | 71.28 | 6.04 | 0.025 | |
CD | 73.49 | 1 | 73.49 | 6.23 | 0.0231 | |
A2 | 201.79 | 1 | 201.79 | 17.1 | 0.0007 | |
B2 | 246.73 | 1 | 246.73 | 20.91 | 0.0003 | |
C2 | 26.87 | 1 | 26.87 | 2.28 | 0.1496 | |
D2 | 19.13 | 1 | 19.13 | 1.62 | 0.22 | |
Residual | 200.56 | 17 | 11.8 | |||
Lack of Fit | 199.23 | 12 | 16.6 | 62.2 | 0.0001 | significant |
Pure Error | 1.33 | 5 | 0.2669 | |||
Cor Total | 3038.45 | 29 | ||||
Standard Deviation | 3.434 | R2 | 0.933 | |||
Mean | 89.761 | Adjusted R2 | 0.887 | |||
C.V.% | 3.826 | Predicted R2 | 0.694 | |||
Adequate Precision | 17.946 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 231.4 | 11 | 21.04 | 85.2 | <0.0001 | Significant |
A-pH | 0.8622 | 1 | 0.8622 | 3.49 | 0.078 | |
B-Applied current | 142.39 | 1 | 142.39 | 576.73 | <0.0001 | |
C-Initial Conc. | 15.89 | 1 | 15.89 | 64.34 | <0.0001 | |
D-Time | 56.85 | 1 | 56.85 | 230.27 | <0.0001 | |
AB | 0.0507 | 1 | 0.0507 | 0.2053 | 0.6559 | |
BC | 0.2538 | 1 | 0.2538 | 1.03 | 0.324 | |
BD | 12.03 | 1 | 12.03 | 48.75 | <0.0001 | |
CD | 0.0603 | 1 | 0.0603 | 0.2442 | 0.6271 | |
B2 | 2.65 | 1 | 2.65 | 10.72 | 0.0042 | |
C2 | 0.1491 | 1 | 0.1491 | 0.6039 | 0.4472 | |
D2 | 0.1173 | 1 | 0.1173 | 0.4749 | 0.4995 | |
Residual | 4.44 | 18 | 0.2469 | |||
Lack of Fit | 4.36 | 13 | 0.3351 | 19.18 | 0.0021 | Significant |
Pure Error | 0.0874 | 5 | 0.0175 | |||
Cor Total | 235.85 | 29 | ||||
Standard Deviation | 0.477 | R2 | 0.98 | |||
Mean | 5.069 | Adjusted R2 | 0.971 | |||
C.V.% | 9.413 | Predicted R2 | 0.923 | |||
Adequate Precision | 36.3741 |
Parameter | Optimal Values | Average Experimental Values |
---|---|---|
% Removal | 94.5 | 95 |
Energy consumption | 3.1 | 3.26 |
pH | 7 | 7 |
Current | 0.46 | 0.46 |
Initial concentration | 10 | 10 |
Time | 2 | 2 |
Co (mg L−1) | qe (Experimental) (mg/g) | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
qe (Calculated) (mg/g) | K1(min−1) | R2 | qe (Calculated) (mg/g) | K2 (×10−5) g mg−1 min−1 | R2 | ||
100 | 893.568 | 805.874 | 0.0342 | 0.963 | 1352 | 1.878 | 0.928 |
80 | 729.294 | 636.262 | 0.0418 | 0.954 | 986.269 | 3.417 | 0.952 |
60 | 590.425 | 543.428 | 0.0325 | 0.972 | 816.354 | 2.916 | 0.941 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.U.; Farooqi, I.H.; Usman, M.; Basheer, F. Energy Efficient Rapid Removal of Arsenic in an Electrocoagulation Reactor with Hybrid Fe/Al Electrodes: Process Optimization Using CCD and Kinetic Modeling. Water 2020, 12, 2876. https://doi.org/10.3390/w12102876
Khan SU, Farooqi IH, Usman M, Basheer F. Energy Efficient Rapid Removal of Arsenic in an Electrocoagulation Reactor with Hybrid Fe/Al Electrodes: Process Optimization Using CCD and Kinetic Modeling. Water. 2020; 12(10):2876. https://doi.org/10.3390/w12102876
Chicago/Turabian StyleKhan, Saif Ullah, Izharul Haq Farooqi, Muhammad Usman, and Farrukh Basheer. 2020. "Energy Efficient Rapid Removal of Arsenic in an Electrocoagulation Reactor with Hybrid Fe/Al Electrodes: Process Optimization Using CCD and Kinetic Modeling" Water 12, no. 10: 2876. https://doi.org/10.3390/w12102876