Decision-Making Challenges of Sustainable Groundwater Strategy under Multi-Event Pressure in Arid Environments: The Diyala River Basin in Iraq
<p>Location and topography of Diyala River Basin in Iraq (UTM coordinate system).</p> "> Figure 2
<p>Geological and average aquifers discharge maps of the study area. (<b>a</b>) geological map (GEOSURV, 1993); (<b>b</b>) average aquifers discharges map extracted from the historical wells logs dataset and ArcGIS spatial analysis (UTM coordinate system).</p> "> Figure 3
<p>MODFLOW conceptual model development from 3D fence, 3D sold, 3D cell, and 3D boundary conditions models using groundwater modelling system (GMS) software.</p> "> Figure 4
<p>Generated parameters from MODFLOW model implementation in comparison with the database parameters for the aquifer permeability in meters/day and groundwater level in meters (above sea level), respectively.</p> "> Figure 5
<p>Optimum solution Pareto-front for both irrigation alternative scenarios using both algorithms. <span class="html-italic">f<sub>Del-GW</sub></span>, <span class="html-italic">f<sub>WL</sub></span>, and <span class="html-italic">f<sub>mining</sub></span> refer to groundwater delivery, water losses, and mining objectives functions, respectively.</p> "> Figure 6
<p>Number of wells and deficit in water demands achieved for both scenarios for discrete periods using optimization model. <span class="html-italic">f<sub>Del-GW</sub></span>, <span class="html-italic">f<sub>WL</sub></span>, and <span class="html-italic">f<sub>mining</sub></span> refer to groundwater delivery, water losses, and mining objectives functions, respectively.</p> "> Figure 7
<p>Final groundwater storage achieved by optimization model for open furrows and drip irrigation system over the adopted discrete periods.</p> "> Figure 8
<p>Illustrates the sustainable groundwater management periods achieved for 50 years for both irrigation systems using ε-DSEA.</p> "> Figure 9
<p>Operators’ selection probability comparison between both algorithms for four adopted operating periods under selected irrigation alternatives scenarios. Each x-axis represents number of function evaluation, and all y-axis are operator’s selection probability.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Identification
2.2. Identification of Groundwater Flow Model
2.3. Regional Management Model Identification
2.4. MOEA Method Identification
3. Result
3.1. Performance Analysis
3.2. Groundwater Optimum Management
4. Discussion
4.1. Model Performance
4.2. Groundwater Management Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, Y.S.; Kalin, R.M.; Zhang, Y.; Lin, X.; Zou, L. Multi-objective optimization for sustainable groundwater resource management in a semiarid catchment. Hydrol. Sci. J. 2001, 46, 55–72. [Google Scholar] [CrossRef]
- Maier, H.R.; Kapelan, Z.; Kasprzyk, J.; Kollat, J.; Matott, L.; Cunha, M.; Dandy, G.; Gibbs, M.; Keedwell, E.; Marchi, A.; et al. Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions. Environ. Model. Softw. 2014, 62, 271–299. [Google Scholar] [CrossRef] [Green Version]
- Horne, A.; Szemis, J.M.; Kaur, S.; Webb, J.A.; Stewardson, M.J.; Costa, A.; Boland, N. Optimization tools for environmental water decisions: A review of strengths, weaknesses, and opportunities to improve adoption. Environ. Model. Softw. 2016, 84, 326–338. [Google Scholar] [CrossRef]
- Horne, A.; Kaur, S.; Szemis, J.; Costa, A.M.; Webb, J.A.; Nathan, R.; Stewardson, M.; Lowe, L.; Boland, N. Using optimization to develop a ‘designer’ environmental flow regime. Environ. Model. Softw. 2017, 88, 188–199. [Google Scholar] [CrossRef]
- Barbour, E.J.; Holz, L.; Kuczera, G.; Pollino, C.A.; Jakeman, A.J.; Loucks, D.P. Optimisation as a process for understanding and managing river ecosystems. Environ. Model. Softw. 2016, 83, 167–178. [Google Scholar] [CrossRef]
- Tayfur, G. Modern Optimization Methods in Water Resources Planning, Engineering and Management. Water Resour. Manag. 2017, 31, 3205–3233. [Google Scholar] [CrossRef]
- Haimes, Y.Y.; Hall, W.A. Sensitivity, responsivity, stability and irreversibility as multiple objectives in civil systems. Adv. Water Resour. 1977, 1, 71–81. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Lamont, G.B.; van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd ed.; Springer: New York, NY, USA, 2007. [Google Scholar]
- Chiong, R.; Weise, T.; Michalewicz, Z. Variants of Evolutionary Algorithms for Real-World Applications; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Nicklow, J.; Reed, P.; Savić, D.; Dessalegne, T.; Harrell, L.; Chan-Hilton, A.; Karamouz, M.; Minsker, B.; Ostfeld, A.; Singh, A.; et al. State of the art for genetic algorithms and beyond in water resources planning and management. J. Water Resour. Plann. Manag. 2010, 136, 412–432. [Google Scholar] [CrossRef]
- Back, T.; Fogel, D.B.; Michalewicz, Z. Handbook of Evolutionary Computation; IOP Publishing Ltd.: Bristol, UK, 2000. [Google Scholar]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An. Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Schwefel, H.-P. Numerical Optimization of Computer Models; John Wiley & Sons, Inc.: New York, NY, USA, 1981. [Google Scholar]
- Fogel, L.J.; Owens, A.J.; Walsh, M.J. Artificial Intelligence Through Simulated Evolution; Wiley: New York, NY, USA, 1966. [Google Scholar]
- Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms, 1st ed.; John Wiley & Sons: Chichester, UK, 2001. [Google Scholar]
- Li, Y.; Hilton, A.B.C. Optimal groundwater monitoring design using an ant colony optimization paradigm. Environ. Model. Softw. 2007, 22, 110–116. [Google Scholar] [CrossRef]
- Mirghani, B.Y.; Mahinthakumar, K.G.; Tryby, M.E.; Ranjithan, R.S.; Zechman, E.M. A parallel evolutionary strategy based simulation-optimization approach for solving groundwater source identification problems. Adv. Water Resour. 2009, 32, 1373–1385. [Google Scholar] [CrossRef]
- Ayvaz, M.T. Application of Harmony Search algorithm to the solution of groundwater management models. Adv. Water Resour. 2009, 32, 916–924. [Google Scholar] [CrossRef]
- Safavi, H.R.; Darzi, F.; Mariño, M.A. Simulation-optimization modeling of conjunctive use of surface water and groundwater. Water Resour. Manag. 2010, 24, 1965–1988. [Google Scholar] [CrossRef]
- Piscopo, A.N.; Kasprzyk, J.R.; Neupauer, R.M. An iterative approach to multi-objective engineering design: Optimization of engineered injection and extraction for enhanced groundwater remediation. Environ. Model. Softw. 2015, 69, 253–261. [Google Scholar] [CrossRef]
- Sreekanth, J.; Moore, C.; Wolf, L. Pareto-based efficient stochastic simulation–optimization for robust and reliable groundwater management. J. Hydrol. 2016, 533, 180–190. [Google Scholar] [CrossRef]
- Sadeghi-Tabas, S.; Samadi, S.Z.; Akbarpour, A.; Pourreza-Bilondi, M. Sustainable groundwater modeling using single- and multi-objective optimization algorithms. J. Hydroinformatics 2017, 19, 97–114. [Google Scholar] [CrossRef]
- Lal, A.; Datta, B. Multi-objective groundwater management strategy under uncertainties for sustainable control of saltwater intrusion: Solution for an island country in the South Pacific. J. Environ. Manag. 2019, 234, 115–130. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C., Eds.; Cambridge University Press: Cambridge, UK, 2007; p. 976. [Google Scholar]
- Abbas, N.; Wasimi, S.A.; Al-Ansari, N. Impacts of Climate Change on Water Resources in Diyala River Basin, Iraq. J. Civ. Eng. Archit. 2016, 10, 1059–1074. [Google Scholar]
- Hadka, D.; Reed, P. Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework. Evol. Comput. 2013, 21, 1–30. [Google Scholar] [CrossRef]
- Al-Jawad, J.Y.; Alsaffar, H.M.; Bertram, D.; Kalin, R.M. Optimum socio-environmental flows approach for reservoir operation strategy using many-objectives evolutionary optimization algorithm. Sci. Total Environ. 2018, 651, 1877–1891. [Google Scholar] [CrossRef] [Green Version]
- (Studio Galli Ingegneria S.p.A.) SGI; (Ingegneria S.r.l.) MED; (Construction LLC) El Concorde. The Strategic Study for Water and Land Resources in Iraq. In Technical Study (Unpublished), Accomplished for the General Directorate for Water Resources Management; Ministry of Water Resources: Baghdad, Iraq, 2014. [Google Scholar]
- Jassim, S.Z.; Goff, J.C. Geology of Iraq, 1st ed.; Dolin, Prague and Moravian Museum: Brno, Czech Republic, 2006. [Google Scholar]
- Al-Tamimi, O.S. Water Resources Evaluation in Diyala River Basi–Middle Part. Ph.D. Thesis, College of Science, University of Baghdad, Baghdad, Iraq, 2007. (In Arabic). [Google Scholar]
- Soyuz giprovodkhoz. General Scheme of Water Resources and Land Development in Iraq; Technical Study (Unpublished); Ministry of Water Resources: Baghdad, Iraq, 1982.
- SOGREAH. Upper Adhaim Dams Project; Appendix(I); Republic of Iraq, Ministry of Irrigation, State Organization for Dams: Baghdad, Iraq, 1983.
- Ahmad, A.M.; Razak, M.I.A.; Dawood, K.S. Hydrogeological Study of Upper Diyala River Basin; Technical Report; The General Directorate for Water Resources Management, Ministry of Water Resources, Government of Iraq: Baghdad, Iraq, 2005. (In Arabic)
- Harbaugh, A.; McDonald, M. User’s Documentation for MODFLOW-96, an Update to the US Geological Survey Modular Finite-Difference Groundwater Flow Model; Open File Report 96–485; Geological Survey: Reston, VA, USA, 1996.
- Harbaugh, A.W. MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model—the Ground-Water Flow Process; U.S. Geological Survey Techniques and Methods 6-A16; U.S. Geological Survey: Denver, CO, USA, 2005.
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO-Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Jalut, Q.H.; Abbas, N.L.; Mohammad, A.T. Management of groundwater resources in the Al-Mansourieh zone in the Diyala River Basin in Eastern Iraq. Groundw. Sustain. Dev. 2018, 2017, 79–86. [Google Scholar] [CrossRef]
- Al-khaldy, M.A.T.; Al-askari, A.J.H. Analysis of Physical characteristics of Fluvial Deposits in the Diyala Middle Basin. J. Res. Diyala Humanit. 2015, 1–24. (In Arabic) [Google Scholar]
- Chang, L.C.; Chang, F.J.; Wang, K.W.; Dai, S.Y. Constrained genetic algorithms for optimizing multi-use reservoir operation. J. Hydrol. 2010, 390, 66–74. [Google Scholar] [CrossRef]
- Al-Jawad, J.Y.; Tanyimboh, T.T. Reservoir operation using a robust evolutionary optimization algorithm. J. Environ. Manag. 2017, 197, 275–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deb, K.; Datta, R. A bi-objective constrained optimization algorithm using a hybrid evolutionary and penalty function approach. Eng. Optim. 2013, 45, 503–527. [Google Scholar] [CrossRef]
- Stadler, W. A survey of multicriteria optimization or the vector maximum problem, part I: 1776–1960. J. Optim. Theory Appl. 1979, 29, 1–52. [Google Scholar] [CrossRef]
- Miettinen, K. Nonlinear Multiobjective Optimization; Kluwer Academic Publishers: Boston, MA, USA, 1999. [Google Scholar]
- Thompson, M. Application of Multi Objective Evolutionary Algorithms to Analogue Filter Tuning. In Proceedings Evolutionary Multi-Criterion Optimization: First International Conference, EMO 2001, Zurich, Switzerland, 7–9 March 2001; Zitzler, E., Thiele, L., Deb, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 546–559. [Google Scholar]
- Hadka, D.; Reed, P.M.; Simpson, T.W. Diagnostic assessment of the borg MOEA for many-objective product family design problems. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation, CEC, Brisbane, QLD, Australia, 10–15 June 2012; pp. 10–15. [Google Scholar]
- Hadka, D.; Reed, P. Diagnostic Assessment of Search Controls and Failure Modes in Many-Objective Evolutionary Optimization. Evol. Comput. 2012, 20, 423–452. [Google Scholar] [CrossRef]
- Woodruff, M.J.; Simpson, T.W.; Reed, P.M. Multi-Objective Evolutionary Algorithms’ Performance in A Support Role. In Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE, Boston, MA, USA, 2–5 August 2015; pp. 1–12. [Google Scholar]
- Salazar, J.Z.; Reed, P.M.; Herman, J.D.; Giuliani, M.; Castelletti, A. A diagnostic assessment of evolutionary algorithms for multi-objective surface water reservoir control. Adv. Water Resour. 2016, 92, 172–185. [Google Scholar] [CrossRef] [Green Version]
- Al-Jawad, J.Y.; Kalin, R.M. Assessment of Water Resources Management Strategy Under Different Evolutionary Optimization Techniques. Water 2019, 11, 2021. [Google Scholar] [CrossRef]
- Al-Jawad, J.Y.; Alsaffar, H.M.; Bertram, D.; Kalin, R.M. A comprehensive optimum integrated water resources management approach for multidisciplinary water resources management problems. J. Environ. Manag. 2019, 239, 211–224. [Google Scholar] [CrossRef]
- Zheng, F.; Simpson, A.R.; Zecchin, A.C.; Maier, H.R.; Feifei, Z. Comparison of the Searching Behavior of NSGA-II, SAMODE, and Borg MOEAs Applied to Water Distribution System Design Problems. J. Water Resour. Plan. Manag. 2016, 142, 1–16. [Google Scholar] [CrossRef]
Month | Rainfall P | Surface Runoff RO | Reference Evapo-Transpiration ETo | Total Water Balance P-RO-ETo |
---|---|---|---|---|
October | 14 | 0.98 | 131 | −117.98 |
November | 37 | 2.59 | 67 | −32.59 |
December | 46 | 3.22 | 38 | 4.78 |
January | 61 | 4.27 | 36 | 20.73 |
February | 44 | 3.08 | 48 | −7.08 |
March | 41.5 | 2.905 | 84 | −45.41 |
April | 33 | 2.31 | 122 | −91.31 |
May | 8 | 0.56 | 183 | −175.56 |
June | 0.5 | 0.035 | 229 | −228.54 |
July | 0 | 0 | 253 | −253 |
August | 0 | 0 | 234 | −234 |
September | 0 | 0 | 176 | −176 |
Annual | 285 | 19.95 | 1600 | −1334.95 |
Methods of Irrigation | Operation Periods (Months) | ||||
---|---|---|---|---|---|
Open furrows irrigation (scenario-1) | 12 | 60 | 120 | 300 | 600 |
Drip irrigation (scenario-2) | 12 | 60 | 120 | 300 | 600 |
Parameter | Limitations |
---|---|
Pumping discharge (m3/month × 106) | (open furrow) (Drip) |
Number of wells (per month) | |
Soil moisture content (mm/month) |
Parameters | Borg | ε-DSEA 1 | Parameters | Borg | ε-DSEA |
---|---|---|---|---|---|
Initial population size | 100 | 100 | SPX parents | 10 | 3 |
Tournament selection size | 2 | 2 | SPX offspring | 2 | 2 |
SBX crossover rate | 1.0 | 1.0 | SPX expansion rate λ | 3 | [2.5, 3.5] |
SBX distribution index η | 15.0 | [0, 100] | UNDX parents | 10 | 10 |
DE crossover rate CR | 0.1 | [0.1, 1.0] | UNDX offspring | 2 | 2 |
DE step size F | 0.5 | [0.5, 1.0] | UNDX σζ | 0.5 | [0.4, 0.6] |
PCX parents | 10 | 10 | UNDX ση | 0.35/ | [0.1, 0.35]/ |
PCX offspring | 2 | 2 | UM mutation rate | 1/L | 1/L |
PCX ση | 0.1 | [0.1, 0.3] | PM mutation rate | 1/L | 1/L |
PCX σζ | 0.1 | [0.1, 0.3] | PM distribution index ηm | 20 | 20 |
Objective | Borg MOEA | ε-DSEA | ||||||
---|---|---|---|---|---|---|---|---|
12 1 | 60 | 120 | 300 | 12 | 60 | 120 | 300 | |
Scenario-1 | ||||||||
Min. fDel-GW | 0.005 | 0.916 | 2.952 | 10.183 | 0.006 | 1.057 | 2.490 | 7.988 |
Max. fDel-GW | 1.192 | 5.362 | 7.599 | 15.988 | 1.244 | 6.248 | 9.371 | 18.922 |
Min. fWL | 0.274 | 2.05 | 6.387 | 19.934 | 0.161 | 1.476 | 4.329 | 12.839 |
Max. fWL | 7.547 | 11.606 | 18.121 | 34.877 | 7.426 | 10.758 | 18.420 | 37.521 |
Min. fmining | 12.145 | 65.077 | 143.648 | 544.399 | 12.142 | 65.05 | 143.169 | 528.478 |
Max. fmining | 12.257 | 67.656 | 153.438 | 649.679 | 12.256 | 67.973 | 158.254 | 765.451 |
Scenario-2 | ||||||||
Min. fDel-GW | 0.002 | 0.348 | 0.889 | 3.241 | 0.003 | 0.436 | 0.729 | 2.453 |
Max. fDel-GW | 0.528 | 3.668 | 3.997 | 6.837 | 0.531 | 3.159 | 4.040 | 8.063 |
Min. fWL | 0.149 | 1.067 | 3.758 | 12.311 | 0.146 | 1.074 | 3.430 | 9.864 |
Max. fWL | 2.066 | 4.481 | 8.079 | 16.522 | 2.149 | 4.006 | 8.053 | 17.027 |
Min. fmining | 12.121 | 64.599 | 141.408 | 516.02 | 12.120 | 64.607 | 141.288 | 506.564 |
Max. fmining | 12.200 | 66.233 | 148.191 | 571.196 | 12.200 | 66.730 | 149.655 | 601.931 |
Operating Periods (Years) | ||||||
---|---|---|---|---|---|---|
Mean | Median | |||||
Pumping discharge—Scenario-1 | ||||||
One | 45.95 | 27.48 | 27.56 | 51.67 | 37.78 | 37.96 |
Five | 39.81 | 26.93 | 30.24 | 44.00 | 35.44 | 42.00 |
Ten | 38.97 | 29.75 | 31.94 | 43.51 | 36.87 | 41.15 |
Twenty-five | 37.43 | 31.44 | 33.06 | 42.22 | 35.99 | 41.32 |
groundwater recharge—Scenario-1 | ||||||
One | 18.31 | 3.34 | 3.99 | 16.46 | 0.00 | 0.00 |
Five | 18.20 | 5.42 | 11.62 | 8.08 | 0.00 | 2.11 |
Ten | 17.91 | 7.60 | 13.26 | 7.78 | 0.00 | 2.46 |
Twenty-five | 16.15 | 8.79 | 14.06 | 7.79 | 1.17 | 3.88 |
Pumping discharge—Scenario-2 | ||||||
One | 35.12 | 24.24 | 24.20 | 38.45 | 33.73 | 33.95 |
Five | 30.94 | 24.46 | 24.28 | 34.02 | 32.89 | 33.40 |
Ten | 31.49 | 25.56 | 27.39 | 33.88 | 30.79 | 33.46 |
Twenty-five | 30.61 | 27.11 | 27.26 | 33.63 | 32.23 | 33.24 |
groundwater recharge—Scenario-2 | ||||||
One | 11.63 | 3.14 | 3.32 | 6.80 | 0.00 | 0.00 |
Five | 11.36 | 4.21 | 6.79 | 5.02 | 0.00 | 0.00 |
Ten | 11.91 | 5.85 | 9.80 | 5.11 | 0.00 | 1.23 |
Twenty-five | 10.88 | 7.81 | 9.24 | 5.04 | 0.99 | 1.43 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Jawad, J.Y.; Al-Jawad, S.B.; Kalin, R.M. Decision-Making Challenges of Sustainable Groundwater Strategy under Multi-Event Pressure in Arid Environments: The Diyala River Basin in Iraq. Water 2019, 11, 2160. https://doi.org/10.3390/w11102160
Al-Jawad JY, Al-Jawad SB, Kalin RM. Decision-Making Challenges of Sustainable Groundwater Strategy under Multi-Event Pressure in Arid Environments: The Diyala River Basin in Iraq. Water. 2019; 11(10):2160. https://doi.org/10.3390/w11102160
Chicago/Turabian StyleAl-Jawad, Jafar Y., Sadik B. Al-Jawad, and Robert M. Kalin. 2019. "Decision-Making Challenges of Sustainable Groundwater Strategy under Multi-Event Pressure in Arid Environments: The Diyala River Basin in Iraq" Water 11, no. 10: 2160. https://doi.org/10.3390/w11102160
APA StyleAl-Jawad, J. Y., Al-Jawad, S. B., & Kalin, R. M. (2019). Decision-Making Challenges of Sustainable Groundwater Strategy under Multi-Event Pressure in Arid Environments: The Diyala River Basin in Iraq. Water, 11(10), 2160. https://doi.org/10.3390/w11102160