Comparative Analysis of the Disinfection Efficiency of Steel and Polymer Surfaces with Aqueous Solutions of Ozone and Sodium Hypochlorite
<p>Effectiveness of <span class="html-italic">Candida albicans</span> inactivation (<span class="html-italic">Ef</span>) by aqueous ozone solution (<b>a</b>,<b>b</b>) and sodium hypochlorite (<b>c</b>,<b>d</b>), immobilized on metal plates (<b>a</b>,<b>c</b>) and polymer plates (<b>b</b>,<b>d</b>).</p> "> Figure 2
<p>Effectiveness of <span class="html-italic">Bacillus subtilis</span> inactivation by aqueous ozone solution (<b>a</b>,<b>b</b>) and sodium hypochlorite (<b>c</b>,<b>d</b>), immobilized on metal plates (<b>a</b>,<b>c</b>) and polymer plates (<b>b</b>,<b>d</b>).</p> "> Figure 3
<p>Effectiveness of <span class="html-italic">Escherichia coli</span> inactivation by aqueous ozone solution (<b>a</b>,<b>b</b>) and sodium hypochlorite (<b>c</b>,<b>d</b>), immobilized on metal plates (<b>a</b>,<b>c</b>) and polymer plates (<b>b</b>,<b>d</b>).</p> "> Figure 4
<p>Comparison of the C·T criterion for ozonated water and sodium hypochlorite solution.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Solutions, Nutrient Media
2.2. Method for Determining Ozone Concentration in Water
2.3. Methodology for Studying the Effectiveness of Inactivation
2.4. Mathematical Processing of the Results
3. Results
4. Discussion
4.1. Comparison of the Effectiveness of Microorganism Inactivation
4.2. The Mechanism of Aqueous Ozone Action
- –
- Upon contact with the cell wall of microorganisms, the ozone molecule causes its rupture, as phospholipids and lipoproteins undergo oxidation, leading to the formation of peroxides.
- –
- The resulting ruptures in the cell wall induce stress in the cell, gradually causing it to lose shape, while ozone molecules continue to break down the cell wall further.
- –
- If ozone exposure continues, within a few seconds, the cell wall of microorganisms loses the ability to maintain its shape, and the cell dies.
- –
- Ozone suppresses the activity of microorganisms by partially breaking down their membrane, halting the reproduction process and disrupting their ability to connect with the organism’s cells. It has been demonstrated that Gram-positive bacteria are more sensitive to ozone than Gram-negative bacteria, which is likely related to differences in the structure of their membranes, and bacteria are more sensitive than molds and yeast.
5. Conclusions
- –
- Ozonated water is 100–230 times more effective as a disinfectant than sodium hypochlorite solutions, depending on the type of microorganism.
- –
- The efficiency of inactivation depends on the microorganism species, not on the substrate materials, for yeast-like fungi Candida albicans or Gram-positive Bacillus subtilis, but these materials do influence the inactivation of Gram-negative bacteria Escherichia coli, which is more than two fold lower on the polymer surface compared with the metal surface.
- –
- Inactivation efficiency with sodium hypochlorite solutions strongly depends on the substrate material and microorganism species.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hurynovich, A.; Romanovski, V. Artificial replenishment of the deep aquifers. E3S Web Conf. 2018, 45, 00025. [Google Scholar] [CrossRef]
- Yushchenko, V.; Velyugo, E.; Romanovski, V. Development of a new design of deironing granulated filter for joint removal of iron and ammonium nitrogen from underground water. Environ. Technol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Yushchenko, V.; Velyugo, E.; Romanovski, V. Influence of ammonium nitrogen on the treatment efficiency of underground water at iron removal stations. Groundw. Sustain. Dev. 2023, 22, 100943. [Google Scholar] [CrossRef]
- Gurgenidze, D.; Romanovski, V. The Pharmaceutical Pollution of Water Resources Using the Example of the Kura River (Tbilisi, Georgia). Water 2023, 15, 2574. [Google Scholar] [CrossRef]
- Ramanouski, V.I.; Andreeva, N.A. Purification of washing waters of iron removal stations. Proc. BSTU Chem. Technol. Inorg. Subst. 2012, 3, 62–65. [Google Scholar]
- Wang, C.; Bai, L.; Pei, Y. Assessing the stability of phosphorus in lake sediments amended with water treatment residuals. J. Environ. Manag. 2013, 122, 31–36. [Google Scholar] [CrossRef]
- Wang, C.; Qi, Y.; Pei, Y. Laboratory investigation of phosphorus immobilization in lake sediments using water treatment residuals. Chem. Eng. J. 2012, 209, 379–385. [Google Scholar] [CrossRef]
- Wang, C.; Liang, J.; Pei, Y.; Wendling, L.A. A method for determining the treatment dosage of drinking water treatment residuals for effective phosphorus immobilization in sediments. Ecol. Eng. 2013, 60, 421–427. [Google Scholar] [CrossRef]
- Wang, C.; Gao, S.; Pei, Y.; Zhao, Y. Use of drinking water treatment residuals to control the internal phosphorus loading from lake sediments: Laboratory scale investigation. Chem. Eng. J. 2013, 225, 93–99. [Google Scholar] [CrossRef]
- Yuan, N.; Wang, C.; Pei, Y. Investigation on the eco-toxicity of lake sediments with the addition of drinking water treatment residuals. J. Environ. Sci. 2016, 46, 5–15. [Google Scholar] [CrossRef]
- Romanovski, V.; Zhang, L.; Su, X.; Smorokov, A.; Kamarou, M. Gypsum and high quality binders derived from water treatment sediments and spent sulfuric acid: Chemical engineering and environmental aspects. Chem. Eng. Res. Des. 2022, 184, 224–232. [Google Scholar] [CrossRef]
- Huang, C.; Pan, J.R.; Sun, K.D.; Liaw, C.T. Reuse of water treatment plant sludge and dam sediment in brick-making. Water Sci. Technol. 2001, 44, 273–277. [Google Scholar] [CrossRef]
- Kamarou, M.; Moskovskikh, D.; Chan, H.L.; Wang, H.; Li, T.; Akinwande, A.A.; Romanovski, V. Low energy synthesis of anhydrite cement from waste lime mud. J. Chem. Technol. Biotechnol. 2023, 98, 789–796. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Disinfection Profiling and Benchmarking Guidance Manual EPA 815-R-99-013; United States Environmental Protection Agency: Washington, DC, USA, 2020; 162p. Available online: https://www.epa.gov/system/files/documents/2022-02/disprof_bench_3rules_final_508.pdf (accessed on 13 November 2023).
- ECHA 2016 Biocidal Products Committee Opinions on Active Substance Approval: Active Chlorine Released from Sodium Hypochlorite. Available online: https://echa.europa.eu/regulations/biocidal-products-regulation/approval-of-active-substances/bpc-opinions-on-active-substance-approval (accessed on 13 November 2023).
- ECHA 2016 Biocidal Products Committee Opinions on Active Substance Approval: Active Chlorine Released from Calcium Hypochlorite. Available online: https://echa.europa.eu/regulations/biocidal-products-regulation/approval-of-active-substances/bpc-opinions-on-active-substance-approval (accessed on 13 November 2023).
- AWWA C653-13; Disinfection of Water Treatment Plants. American Water Works Association: Denver, CO, USA, 2013; ISBN 9781613002513. [CrossRef]
- Bayo, J.; Angosto, J.M.; Gómez-López, M.D. Ecotoxicological screening of reclaimed disinfected wastewater by Vibrio fischeri bioassay after a chlorination–dechlorination process. J. Hazard. Mater 2009, 172, 166–171. [Google Scholar] [CrossRef]
- Bull, R.J. Health effects of drinking water disinfectants and disinfectant by-products. Environ. Sci. Technol. 1982, 16, 554A–559A. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.H.; Wagner, E.D.; Siebert, V.R.; Anduri, S.; Richardson, S.D.; Daiber, E.J.; McKague, A.B.; Kogevinas, M.; Villanueva, C.M.; Goslan, E.H. Occurrence and toxicity of disinfection byproducts in European drinking waters in relation with the HIWATE epidemiology study. Environ. Sci. Technol. 2012, 46, 12120–12128. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, C.M.; Fernandez, F.; Malats, N.; Grimalt, J.O.; Kogevinas, M. Meta-analysis of studies on individual consumption of chlorinated drinking water and bladder cancer. J. Epidemiol. Community Health 2003, 57, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Rymovskaia, M.V.; Ramanouski, V.I. Effect of used solutions for drinking water supply facilities disinfection to soil. Proc. BSTU Chem. Technol. Inorg. Subst. 2016, 4, 151–155. [Google Scholar]
- Romanovski, V.I.; Gurinovich, A.D.; Chaika, Y.N.; Wawzhenyuk, P. Ozone disinfection of water intake wells and pipelines of drinking water supply systems. Proc. BSTU Chem. Technol. Inorg. Subst. 2013, 3, 51–56. [Google Scholar]
- Hurynovich, A.D.; Romanovski, V.I.; Wawrzeniuk, P. Analiza efektywności kaskadowego generator ozonu. Ekon. I Srodowisko 2013, 1, 156–164. [Google Scholar]
- Ramanouski, V.I.; Likhavitski, V.V.; Hurynovich, A.D. Investigation of ozone solubility in water in height of the liquid. Proc. BSTU Chem. Technol. Inorg. Subst. 2015, 3, 68–72. [Google Scholar]
- Bhuvaneshwari, M.; Eltzov, E.; Veltman, B.; Shapiro, O.; Sadhasivam, G.; Borisover, M. Toxicity of chlorinated and ozonated wastewater effluents probed by genetically modified bioluminescent bacteria and cyanobacteria Spirulina sp. Water Res. 2019, 164, 114910. [Google Scholar] [CrossRef]
- Dong, S.; Massalha, N.; Plewa, M.J.; Nguyen, T.H. The impact of disinfection Ct values on cytotoxicity of agricultural wastewaters: Ozonation vs. chlorination. Water Res. 2018, 144, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Liu, H.; Han, J.; Zhang, X.; Cheng, F.; Liu, Y. Chemical cleaning-associated generation of dissolved organic matter and halogenated byproducts in ceramic MBR: Ozone versus hypochlorite. Water Res. 2018, 140, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Romanovski, V.I.; Chaika, Y.N. Carbon steels corrosion resistance to disinfectants. Proc. BSTU Chem. Technol. Inorg. Subst. 2014, 3, 40–43. [Google Scholar]
- Ramanouski, V.I.; Zhilinski, V.V. Steel C15E corrosion resistance to disinfectants. Proc. BSTU Chem. Technol. Inorg. Subst. 2015, 3, 24–28. [Google Scholar]
- Schulz, C.; Lohman, S. Method and Apparatus for Ozone Disinfection of Water Supply Pipelines. U.S. Patent App. 11/065,768, 10 November 2005. [Google Scholar]
- Morrison, C.M.; Hogard, S.; Pearce, R.; Gerrity, D.; von Gunten, U.; Wert, E.C. Ozone disinfection of waterborne pathogens and their surrogates: A critical review. Water Res. 2022, 214, 118206. [Google Scholar] [CrossRef]
- Seridou, P.; Kalogerakis, N. Disinfection applications of ozone micro-and nanobubbles. Environ. Sci. Nano 2021, 8, 3493–3510. [Google Scholar] [CrossRef]
- Irie, M.S.; Dietrich, L.; Souza, G.L.D.; Soares, P.B.F.; Moura, C.C.G.; Silva, G.R.D.; Paranhos, L.R. Ozone disinfection for viruses with applications in healthcare environments: A scoping review. Braz. Oral Res. 2022, 36, e006. [Google Scholar] [CrossRef]
- Moccia, G.; De Caro, F.; Pironti, C.; Boccia, G.; Capunzo, M.; Borrelli, A.; Motta, O. Development and improvement of an effective method for air and surfaces disinfection with ozone gas as a decontaminating agent. Medicina 2020, 56, 578. [Google Scholar] [CrossRef]
- Romanovski, V.; Claesson, P.M.; Hedberg, Y.S. Comparison of different surface disinfection treatments of drinking water facilities from a corrosion and environmental perspective. Environ. Sci. Pollut. Res. 2020, 27, 12704–12716. [Google Scholar] [CrossRef]
- Epelle, E.I.; Macfarlane, A.; Cusack, M.; Burns, A.; Okolie, J.A.; Mackay, W.; Rateb, M.; Yaseen, M. Ozone application in different industries: A review of recent developments. Chem. Eng. J. 2023, 15, 140188. [Google Scholar] [CrossRef]
- Kong, J.; Lu, Y.; Ren, Y.; Chen, Z.; Chen, M. The virus removal in UV irradiation, ozonation and chlorination. Water Cycle 2021, 2, 23–31. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Ding, J.; Song, Z.; Yang, B.; Zhang, C.; Guan, B. Degradation of nano-sized polystyrene plastics by ozonation or chlorination in drinking water disinfection processes. Chem. Eng. J. 2022, 427, 131690. [Google Scholar] [CrossRef]
- Stange, C.; Sidhu, J.P.S.; Toze, S.; Tiehm, A. Comparative removal of antibiotic resistance genes during chlorination, ozonation, and UV treatment. Int. J. Hyg. Environ. Health 2019, 222, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.M.; Zheng, C.Y.; Xiao, G.F.; Zhou, Y.Q.; Gao, R. Examination of the efficacy of ozone solution disinfectant in inactivating SARS virus. Chin. J. Disinfect. 2004, 21, 27–28. [Google Scholar]
- Hudson, J.B.; Sharma, M.; Vimalanathan, S. Development of a Practical Method for Using Ozone Gas as a Virus Decontaminating Agent. Ozone Sci. Eng. 2009, 31, 216–223. [Google Scholar] [CrossRef]
- Petry, G.; Rossato, L.G.; Nespolo, J.; Kreutz, L.C.; Bertol, C.D. In Vitro Inactivation of Herpes Virus by Ozone. Ozone Sci. Eng. 2014, 36, 249–252. [Google Scholar] [CrossRef]
- Brié, A.; Boudaud, N.; Mssihid, A.; Loutreul, J.; Bertrand, I.; Gantzer, C. Inactivation of murine norovirus and hepatitis A virus on fresh raspberries by gaseous ozone treatment. Food Microbiol. 2018, 70, 1–6. [Google Scholar] [CrossRef]
- Jiang, H.J.; Chen, N.; Shen, Z.Q.; Yin, J.; Qiu, Z.G.; Miao, J.; Yang, Z.W.; Shi, D.Y.; Wang, H.R.; Wang, X.W.; et al. Inactivation of Poliovirus by Ozone and the Impact of Ozone on the Viral Genome. Biomed. Environ. Sci. 2019, 32, 324–333. [Google Scholar] [PubMed]
- Breidablik, H.J.; Lysebo, D.E.; Johannessen, L.; Skare, Å.; Andersen, J.R.; Kleiven, O.T. Ozonized water as an alternative to alcohol-based hand disinfection. J. Hosp. Infect. 2019, 102, 419–424. [Google Scholar] [CrossRef]
- Białoszewski, D.; Bocian, E.; Bukowska, B.; Czajkowska, M.; Sokół-Leszczyńska, B.; Tyski, S. Antimicrobial activity of ozonated water. Med. Sci. Monit. 2010, 16, MT71–MT75. [Google Scholar]
- Bezirtzoglou, E.; Cretoiu, S.-M.; Moldoveanu, M.; Alexopoulos, A.; Lazar, V.; Nakou, M. A quantitative approach to the effectiveness of ozone against microbiota organisms colonizing toothbrushes. J. Dent. 2008, 36, 600–605. [Google Scholar] [CrossRef]
- Ouf, S.A.; Moussa, T.A.; Abd-Elmegeed, A.M.; Eltahlawy, S.R. Anti-fungal potential of ozone against some dermatophytes. Braz. J. Microbiol. 2016, 47, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Hubbezoglu, I.; Zan, R.; Tunç, T.; Sumer, Z.; Hurmuzlu, F. Antifungal Efficacy of Aqueous and Gaseous Ozone in Root Canals Infected by Candida albicans. Jundishapur J. Microbiol. 2013, 6, 1–3. [Google Scholar] [CrossRef]
- Gottschalk, C.; Libra, J.A.; Saupe, A. Ozonation of Water and Waste Water. A Practical Guide to Understanding Ozone and Its Application; Straws Offsetdruck GmbH: Berlin, Germany, 2000; 202p. [Google Scholar]
- Xie, Y. Disinfection Byproducts in Drinking Water: Formation, Analysis, and Control; Lewis Publishers: Boca Raton, FL, USA, 2004; 176p. [Google Scholar]
- Chuwa, C.; Vaidya, D.; Kathuria, D.; Gautam, S.; Sharma, S.; Sharma, B. Ozone (O3): An Emerging Technology in the Food Industry. Food Nutr. J. 2020, 5, 224. [Google Scholar]
- Clark, R.M.; Sivaganesan, M.; Rice, E.W.; Chen, J. Development of a Ct equation for the inactivation of Cryptosporidium oocysts with chlorine dioxide. Water Res. 2003, 37, 2773–2783. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.M.; Sivagenesan, M.; Rice, E.W.; Chen, J. Development of a Ct equation for the inactivation of Cryptosporidium oocysts with ozone. Water Res. 2002, 36, 3141–3149. [Google Scholar] [CrossRef]
- Peleg, M. Modeling the dynamic kinetics of microbial disinfection with dissipating chemical agents—A theoretical investigation. Appl. Microbiol. Biotechnol. 2021, 105, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Sahulka, S.Q.; Bhattarai, B.; Bhattacharjee, A.S.; Tanner, W.; Mahar, R.B.; Goel, R. Differences in chlorine and peracetic acid disinfection kinetics of Enterococcus faecalis and Escherichia fergusonii and their susceptible strains based on gene expressions and genomics. Water Res. 2021, 203, 117480. [Google Scholar] [CrossRef]
- Li, H.; Feng, M.; Yu, X. Qualitative and quantitative analysis of the effects of drinking water disinfection processes on eukaryotic microorganisms: A meta-analysis. Chemosphere 2023, 332, 138839. [Google Scholar] [CrossRef]
- GOST 18301-72; Drinking Water. Methods of Determination of Ozone Residual Content. 1 January 1974; 4p. Available online: https://files.stroyinf.ru/Data2/1/4294850/4294850599.pdf (accessed on 13 November 2023).
- Srivastava, A.K.; Singh, D.; Yadav, P.; Singh, M.; Singh, S.K.; Kumar, A. Paradigm of Well-Orchestrated Pharmacokinetic Properties of Curcuminoids Relative to Conventional Drugs for the Inactivation of SARS-CoV-2 Receptors: An In Silico Approach. Stresses 2023, 3, 615–628. [Google Scholar] [CrossRef]
- Sakudo, A.; Sugiura, K.; Haritani, M.; Furusaki, K.; Kirisawa, R. Antiviral agents and disinfectants for foot-and-mouth disease. Biomed. Rep. 2023, 19, 57. [Google Scholar]
- Radzevičiūtė, E.; Malyško-Ptašinskė, V.; Kulbacka, J.; Rembiałkowska, N.; Novickij, J.; Girkontaitė, I.; Novickij, V. Nanosecond electrochemotherapy using bleomycin or doxorubicin: Influence of pulse amplitude, duration and burst frequency. Bioelectrochemistry 2022, 148, 108251. [Google Scholar] [CrossRef] [PubMed]
- Panebianco, F.; Rubiola, S.; Di Ciccio, P.A. The Use of Ozone as an Eco-Friendly Strategy against Microbial Biofilm in Dairy Manufacturing Plants: A Review. Microorganisms 2022, 10, 162. [Google Scholar] [CrossRef] [PubMed]
- Brodowska, A.J.; Nowak, A.; Śmigielski, K.B. Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. Crit. Rev. Food Sci. Nutr. 2018, 58, 2176–2201. [Google Scholar] [CrossRef]
- Margalit, M.; Attias, E.; Attias, D.; Elstein, D.; Zimran, A.; Matzner, Y. Effect of ozone on neutrophil function in vitro. Int. J. Lab. Hematol. 2001, 23, 243–247. [Google Scholar] [CrossRef]
Surface | aqO3 | NaClO |
---|---|---|
Candida albicans | ||
Metal | 0.24 ± 0.12 | 28.39 ± 4.67 |
Polymer | 0.23 ± 0.11 | 22.28 ± 10.59 |
Bacillus subtilis | ||
Metal | 0.22 ± 0.11 | 51.47 ± 15.43 |
Polymer | 0.23 ± 0.11 | 51.44 ± 20.91 |
Escherichia coli | ||
Metal | 0.22 ± 0.11 | 22.92 ± 9.73 |
Polymer | 0.23 ± 0.11 | 46.83 ± 18.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanovski, V.; Paspelau, A.; Kamarou, M.; Likhavitski, V.; Korob, N.; Romanovskaia, E. Comparative Analysis of the Disinfection Efficiency of Steel and Polymer Surfaces with Aqueous Solutions of Ozone and Sodium Hypochlorite. Water 2024, 16, 793. https://doi.org/10.3390/w16050793
Romanovski V, Paspelau A, Kamarou M, Likhavitski V, Korob N, Romanovskaia E. Comparative Analysis of the Disinfection Efficiency of Steel and Polymer Surfaces with Aqueous Solutions of Ozone and Sodium Hypochlorite. Water. 2024; 16(5):793. https://doi.org/10.3390/w16050793
Chicago/Turabian StyleRomanovski, Valentin, Andrei Paspelau, Maksim Kamarou, Vitaly Likhavitski, Natalia Korob, and Elena Romanovskaia. 2024. "Comparative Analysis of the Disinfection Efficiency of Steel and Polymer Surfaces with Aqueous Solutions of Ozone and Sodium Hypochlorite" Water 16, no. 5: 793. https://doi.org/10.3390/w16050793