Influence of Filler Types on the Treatment of Rural Domestic Wastewater in a Biological Trickling Filter: Simultaneous Nitrogen and Phosphorus Removal Performance, Microbial Community, and Metabolic Functions
<p>Schematic diagram of biological trickling filter system.</p> "> Figure 2
<p>(<b>a</b>) Physical and SEM images of the three fillers. (<b>b</b>) Biofilm microscopy.</p> "> Figure 3
<p>XRD patterns of fillers. (<b>a</b>) ceramic granule; (<b>b</b>) zeolite; and (<b>c</b>) sponge.</p> "> Figure 4
<p>Performance of simultaneous nitrogen and phosphorus removal; (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>) are the inlet and outlet concentrations of COD, NH<sub>4</sub><sup>+</sup>-N, TN, and TP, respectively, and (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>) COD, NH<sub>4</sub><sup>+</sup>-N, TN, and TP removal rate, respectively.</p> "> Figure 5
<p>Microbial community structure; (<b>a</b>) phylum level and (<b>b</b>) genus level.</p> "> Figure 6
<p>KEGG pathway analysis in different reactors. (<b>a</b>) Primary classification; (<b>b</b>) secondary classification; (<b>c</b>) third-level classification.</p> "> Figure 7
<p>KEGG prediction of potentially functional genes and enzymes in metabolic pathways of nitrogen metabolism (<b>a</b>), phosphorus metabolism (<b>b</b>), and TCA cycle (<b>c</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Devices
2.2. Experimental Water Quality
2.3. Characterization of Filler and Biofilm
2.4. Water Quality Analyses
2.5. Analysis of Microbial Community Structure and Metabolic Functions
3. Results and Discussion
3.1. Characterization of Filler and Biofilm
3.1.1. Morphological Characteristics of Filler and Biofilm
3.1.2. Porosity and Specific Surface Area of Fillers
3.1.3. Crystal Structure and Composition of Fillers
3.2. Performance of Simultaneous Nitrogen and Phosphorus Removal
3.2.1. COD
3.2.2. Nitrogen Removal
3.2.3. Phosphorus Removal
3.3. Microbial Communities
3.3.1. Microbial Abundance and Diversity
3.3.2. Microbial Community Structure
3.4. Analysis of Microbial Metabolic Functions
3.4.1. Classification of KEGG Functional Categories
3.4.2. Analysis of Functional Metabolic Pathways
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, H.; Gao, M.; Liu, J.; Wei, Y.; Guo, X. A Novel Integrated Step-Feed Biofilm Process for the Treatment of Decentralized Domestic Wastewater in Rural Areas of China. J. Environ. Sci. 2010, 22, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.; Ahammad, S.Z. Performance Evaluation and Microbial Community Structure of a Modified Trickling Filter and Conventional Activated Sludge Process in Treating Urban Sewage. Sci. Total Environ. 2022, 853, 158331. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Lu, H.; Khanal, S.K.; Zhao, Q.; Meng, L.; Chen, G.-H. Granulation of Sulfur-Oxidizing Bacteria for Autotrophic Denitrification. Water Res. 2016, 104, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Tsang, Y.F.; Wang, L.; Chua, H. Simultaneous Hydrogen Sulphide and Ammonia Removal in a Biotrickling Filter: Crossed Inhibitory Effects among Selected Pollutants and Microbial Community Change. Chem. Eng. J. 2015, 281, 389–396. [Google Scholar] [CrossRef]
- Liu, D.; Li, C.; Guo, H.; Kong, X.; Lan, L.; Xu, H.; Zhu, S.; Ye, Z. Start-up Evaluations and Biocarriers Transfer from a Trickling Filter to a Moving Bed Bioreactor for Synthetic Mariculture Wastewater Treatment. Chemosphere 2019, 218, 696–704. [Google Scholar] [CrossRef]
- Ali, I.; Khan, Z.; Sultan, M.; Mahmood, M.; Farid, H.; Ali, M.; Nasir, A. Experimental Study on Maize Cob TricklingFilter-Based Wastewater Treatment System:Design, Development, and Performance Evaluation. Pol. J. Environ. Stud. 2016, 25, 2265–2273. [Google Scholar] [CrossRef]
- Tang, B.; Chen, Q.; Bin, L.; Huang, S.; Zhang, W.; Fu, F.; Li, P. Insight into the Microbial Community and Its Succession of a Coupling Anaerobic-Aerobic Biofilm on Semi-Suspended Bio-Carriers. Bioresour. Technol. 2018, 247, 591–598. [Google Scholar] [CrossRef]
- Tatoulis, T.; Stefanakis, A.; Frontistis, Z.; Akratos, C.S.; Tekerlekopoulou, A.G.; Mantzavinos, D.; Vayenas, D.V. Treatment of Table Olive Washing Water Using Trickling Filters, Constructed Wetlands and Electrooxidation. Env. Sci. Pollut. Res. 2017, 24, 1085–1092. [Google Scholar] [CrossRef]
- Aslam, M.; Khan, Z.; Sultan, M.; Niaz, Y.; Mahmood, M.; Shoaib, M.; Shakoor, A.; Ahmad, M. Performance Evaluation of Trickling Filter-Based Wastewater Treatment System Utilizing Cotton Sticks as Filter Media. Pol. J. Environ. Stud. 2017, 26, 1955–1962. [Google Scholar] [CrossRef]
- Naz, I.; Saroj, D.P.; Mumtaz, S.; Ali, N.; Ahmed, S. Assessment of Biological Trickling Filter Systems with Various Packing Materials for Improved Wastewater Treatment. Environ. Technol. 2015, 36, 424–434. [Google Scholar] [CrossRef]
- Ji, B.; Wei, L.; Chen, D.; Wang, H.; Li, Z.; Yang, K. Domestic Wastewater Treatment in a Novel Sequencing Batch Biofilm Filter. Appl. Microbiol. Biotechnol. 2015, 99, 5731–5738. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Han, S.; Yue, M.; Gao, B.; Li, Q.; Yu, H.; Zhao, Y.; Qi, Y. The Performance of Biological Anaerobic Filters Packed with Sludge-Fly Ash Ceramic Particles (SFCP) and Commercial Ceramic Particles (CCP) during the Restart Period: Effect of the C/N Ratios and Filter Media. Bioresour. Technol. 2009, 100, 5016–5020. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W. (Ed.) Advanced Biofuels and Bioproducts; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-3347-7. [Google Scholar]
- Wu, D.; Zhang, B.; Li, C.; Zhang, Z.; Kong, H. Simultaneous Removal of Ammonium and Phosphate by Zeolite Synthesized from FLy Ash as Influenced by Salt Treatment. J. Colloid. Interface Sci. 2006, 304, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Watari, T.; Kirishima, Y.; Choeisai, P.; Harada, H.; Kotcharon, W.; Matsueda, T.; Tanaka, N.; Kawakami, S.; Hatamoto, M.; Yamaguchi, T. Performance Evaluation of Quick and Compact Package-Type down-Flow Hanging Sponge System for Domestic Sewage Treatment. J. Water Process Eng. 2022, 47, 102798. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Liang, D.; Wu, Y.; Zhu, Y.; Du, L.; Yin, M.; Geng, Y.; Wu, Y.; Li, J. Static Magnetic Fields Enhance Microbial Aggregation and Adhesion to Promote Aerobic Granulation. Chem. Eng. J. 2024, 489, 151392. [Google Scholar] [CrossRef]
- Rice, E.W.; Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater; American Water Works Association: Washington, DC, USA, 2005. [Google Scholar]
- Ye, N.; Liu, Z.; Wang, P.; Sun, Y.; He, X. Self-Healing of Concrete Crack Based on Modified Zeolite Immobilizing Microorganisms. Biochem. Eng. J. 2025, 213, 109541. [Google Scholar] [CrossRef]
- Hernández, L. Can Natural Zeolite Improve the Removal of Micropollutants in a Nitrifying Sequencing Batch Reactor? Insights on Bioreactor Performance, Kinetics, and Microbial Community Using Ibuprofen and Diclofenac as Model Micropollutants. Chemosphere 2024, 366, 143455. [Google Scholar] [CrossRef]
- Kirishima, Y.; Watari, T.; Terada, S.; Choeisai, P.; Choeisai, K.; Nguyen, T.H.; Okubo, T.; Nagano, A.; Matsueda, T.; Hatamoto, M.; et al. Restart Performance of Prolonged Stopped Down-Flow Hanging Sponge Reactor for Treating of Low-Strength Domestic Sewage. J. Environ. Chem. Eng. 2024, 12, 112802. [Google Scholar] [CrossRef]
- Lin, L.; Lei, Z.; Wang, L.; Liu, X.; Zhang, Y.; Wan, C.; Lee, D.-J.; Tay, J.H. Adsorption Mechanisms of High-Levels of Ammonium onto Natural and NaCl-Modified Zeolites. Sep. Purif. Technol. 2013, 103, 15–20. [Google Scholar] [CrossRef]
- Lin, L.; Wan, C.; Lee, D.-J.; Lei, Z.; Liu, X. Ammonium Assists Orthophosphate Removal from High-Strength Wastewaters by Natural Zeolite. Sep. Purif. Technol. 2014, 133, 351–356. [Google Scholar] [CrossRef]
- Ping, Q.; Zhang, Z.; Guo, W.; Wang, L.; Li, Y. A Comprehensive Investigation to the Fate of Phosphorus in Full-Scale Wastewater Treatment Plants Using Aluminum Salts for Enhanced Phosphorus Removal. Sci. Total Environ. 2024, 913, 169641. [Google Scholar] [CrossRef]
- Zheng, R.; Cheng, X.; Gao, X.; Zhang, C.; Cheng, X.; Waite, T.D. Iron-Retrofitted Anaerobic Baffled Reactor System for Rural Wastewater Treatment: Stable Performance of Nutrients Removal with Phosphorus Recovery and Minimal Sludge Production. Bioresour. Technol. 2024, 408, 131179. [Google Scholar] [CrossRef] [PubMed]
- Zagho, M.M.; Hassan, M.K.; Khraisheh, M.; Al-Maadeed, M.A.A.; Nazarenko, S. A Review on Recent Advances in CO2 Separation Using Zeolite and Zeolite-like Materials as Adsorbents and Fillers in Mixed Matrix Membranes (MMMs). Chem. Eng. J. Adv. 2021, 6, 100091. [Google Scholar] [CrossRef]
- Mirsalami, S.M.; Mirsalami, M. Investigation of Oil Biodegradation Using Expanded Zeolite Infused with Oil-Consuming Microorganisms. Environ. Adv. 2024, 16, 100551. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, L.; Li, S.; Zhang, H.; Zhang, S.; Wan, Y.; Yu, H. Fast Start-up of Partial Nitrification for High-Ammonia Wastewater Treatment Using Zeolite with in-Situ Bioregeneration. J. Water Process Eng. 2024, 59, 105077. [Google Scholar] [CrossRef]
- Tang, C.-C.; Zhang, B.-C.; Yao, X.-Y.; Sangeetha, T.; Zhou, A.-J.; Liu, W.; Ren, Y.-X.; Li, Z.; Wang, A.; He, Z.-W. Natural Zeolite Enhances Anaerobic Digestion of Waste Activated Sludge: Insights into the Performance and the Role of Biofilm. J. Environ. Manag. 2023, 345, 118704. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C.; Chen, Z.; Deng, Z.; Wang, Q.; Zou, Q.; Li, J.; Zhang, Y.; Wang, X. Achieving Nitrite Shunt Using In-Situ Free Ammonia Enriched by Natural Zeolite: Pilot-Scale Mainstream Anammox with Flexible Nitritation Strategy. Water Res. 2024, 265, 122314. [Google Scholar] [CrossRef]
- Andrzejuk, W.; Grzegorczyk-Frańczak, M.; Barnat-Hunek, D.; Franus, M.; Microstructure, G.Ł. Durability and Surface Free Energy of Lightweight Aggregate Modification of Sanitary Ceramic Wastes and Sewage Sludge. J. Build. Eng. 2024, 93, 109725. [Google Scholar] [CrossRef]
- Zhao, W.; Bi, X.; Peng, Y.; Bai, M. Research Advances of the Phosphorus-Accumulating Organisms of Candidatus Accumulibacter, Dechloromonas and Tetrasphaera: Metabolic Mechanisms, Applications and Influencing Factors. Chemosphere 2022, 307, 135675. [Google Scholar] [CrossRef]
- Dionisiou, N.S.; Matsi, T.; Misopolinos, Ν.D. Phosphorus Adsorption–Desorption on a Surfactant-Modified Natural Zeolite: A Laboratory Study. Water Air Soil. Pollut. 2013, 224, 1362. [Google Scholar] [CrossRef]
- Jiang, C.; Jia, L.; He, Y.; Zhang, B.; Kirumba, G.; Xie, J. Adsorptive Removal of Phosphorus from Aqueous Solution Using Sponge Iron and Zeolite. J. Colloid. Interface Sci. 2013, 402, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, L.; Liang, S.; Li, D.; Xia, L.; Yu, Y.; Wang, J.; Tao, Y.; Zhang, Y. Hydrochloric Acid-Modified Biochar Enhances Nitrogen Retention and Microbial Diversity in Mollisols. J. Environ. Chem. Eng. 2024, 12, 114129. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, S.; Jin, Y.; Wu, Z.; Liu, D.; Su, H. Insights into Nitrogen and Phosphorus Metabolic Mechanisms of Algal-Bacterial Aerobic Granular Sludge via Metagenomics: Performance, Microbial Community and Functional Genes. Bioresour. Technol. 2023, 369, 128442. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Wang, Q.; She, Z.; Gao, M.; Zhao, Y.; Guo, L.; Jin, C. Nitrogen Removal Pathway and Dynamics of Microbial Community with the Increase of Salinity in Simultaneous Nitrification and Denitrification Process. Sci. Total Environ. 2019, 697, 134047. [Google Scholar] [CrossRef]
- Xiang, J.; Wang, C.; Lv, W.; Liu, Y.; Sun, J.; Gong, T. Differences of Bacterial Communities in Two Full-Scale A2/O Municipal Wastewater Treatment Plants and Their Effects on Effluent Total Nitrogen Removal. Environ. Technol. 2021, 21, 101317. [Google Scholar] [CrossRef]
- Wang, J.; Gong, B.; Huang, W.; Wang, Y.; Zhou, J. Bacterial Community Structure in Simultaneous Nitrification, Denitrification and Organic Matter Removal Process Treating Saline Mustard Tuber Wastewater as Revealed by 16S rRNA Sequencing. Bioresour. Technol. 2017, 228, 31–38. [Google Scholar] [CrossRef]
- Miao, J.; Yin, Q.; Hori, T.; Aoyagi, T.; Habe, H.; Wu, G. Nitrifiers Activity and Community Characteristics under Stress Conditions in Partial Nitrification Systems Treating Ammonium-Rich Wastewater. J. Environ. Sci. 2018, 73, 1–8. [Google Scholar] [CrossRef]
- Shi, M.; Li, X.; Dang, P.; Xu, Q.; Huang, T.; Yuan, Y.; Huang, Y.; Zhou, C. Effects of O2 on Accumulation of Nitrous and Elemental Sulfur and Microbial Community Structure in Double Short-Cut Sulfur Autotrophic Denitrification System. Bioresour. Technol. 2024, 409, 131243. [Google Scholar] [CrossRef]
- Liang, D.; Guo, W.; Li, D.; Ding, F.; Li, P.; Zheng, Z.; Li, J. Enhanced Aerobic Granulation for Treating Low-Strength Wastewater in an Anaerobic-Aerobic-Anoxic Sequencing Batch Reactor by Selecting Slow-Growing Organisms and Adding Carriers. Environ. Res. 2022, 205, 112547. [Google Scholar] [CrossRef]
- Liu, Z.; Duan, Y.; Hou, Y.; Zhang, S.; Wang, J.; Gao, M.; Zhang, A.; Liu, Y. Evaluating the Role of Carbon Sources on the Development of Algal-Bacterial Granular Sludge: From Sludge Characteristics, Extracellular Polymer Properties, Quorum Sensing, and Microbial Communities. J. Clean. Prod. 2024, 451, 142163. [Google Scholar] [CrossRef]
- Song, L.; Li, D.; Cao, X.; Tang, Y.; Liu, R.; Niu, Q.; Li, Y.-Y. Optimizing Biomethane Production of Mesophilic Chicken Manure and Sheep Manure Digestion: Mono-Digestion and Co-Digestion Kinetic Investigation, Autofluorescence Analysis and Microbial Community Assessment. J. Environ. Manag. 2019, 237, 103–113. [Google Scholar] [CrossRef] [PubMed]
Filler Name | Grain Size/mm | Porosity/% | Specific Surface Area/(m2·g−1) |
---|---|---|---|
Ceramic | 3~6 | 41.75 | 21.30 |
Zeolite | 3~5 | 52.90 | 17.43 |
Sponge | 18~20 | 93.10 | 0.18 |
Samples | Community Richness | Community Diversity | Coverage | |
---|---|---|---|---|
ACE | Chao1 | Shannon | ||
R1 | 428.36 | 397.1 | 2.66 | 1 |
R2 | 494.34 | 474.1 | 3.26 | 1 |
R3 | 583.84 | 563.1 | 4 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, Y.; Pan, Z.; Hou, L.; Li, J.; Wang, M.; Shi, T.; Li, D.; Li, J. Influence of Filler Types on the Treatment of Rural Domestic Wastewater in a Biological Trickling Filter: Simultaneous Nitrogen and Phosphorus Removal Performance, Microbial Community, and Metabolic Functions. Water 2024, 16, 3343. https://doi.org/10.3390/w16233343
Geng Y, Pan Z, Hou L, Li J, Wang M, Shi T, Li D, Li J. Influence of Filler Types on the Treatment of Rural Domestic Wastewater in a Biological Trickling Filter: Simultaneous Nitrogen and Phosphorus Removal Performance, Microbial Community, and Metabolic Functions. Water. 2024; 16(23):3343. https://doi.org/10.3390/w16233343
Chicago/Turabian StyleGeng, Yuxin, Zhengwei Pan, Liangang Hou, Jiarui Li, Mingchao Wang, Tianhao Shi, Dongyue Li, and Jun Li. 2024. "Influence of Filler Types on the Treatment of Rural Domestic Wastewater in a Biological Trickling Filter: Simultaneous Nitrogen and Phosphorus Removal Performance, Microbial Community, and Metabolic Functions" Water 16, no. 23: 3343. https://doi.org/10.3390/w16233343
APA StyleGeng, Y., Pan, Z., Hou, L., Li, J., Wang, M., Shi, T., Li, D., & Li, J. (2024). Influence of Filler Types on the Treatment of Rural Domestic Wastewater in a Biological Trickling Filter: Simultaneous Nitrogen and Phosphorus Removal Performance, Microbial Community, and Metabolic Functions. Water, 16(23), 3343. https://doi.org/10.3390/w16233343