Trace Elements in Lakes Located in an Agricultural-Forest Catchment: A Case Study of Lake Raczyńskie, Poland
<p>Sampling points in the study area with structure of the land use (112—discontinuous urban fabric; 211—non-irrigated arable land; 242—complex cultivation patterns; 243—land principally occupied by agriculture, with significant areas of natural vegetation; 312—coniferous forest; 313—mixed forest; 512—water bodies) (source: Corine land cover (CLC) vector layers for 2018).</p> "> Figure 2
<p>The local relief of Lake Raczyńskie direct catchment area (digital elevation model (DEM) with bathymetric plan of the lake). A DEM was downloaded with a 1 m by 1 m resolution using LIDAR (light detection and ranging). Sampling points: 1–7, 10–16, 18—bank zone (1–4, 6–7, 10—settlement influence zones; 12–16—agriculture influence zones; 5, 18—tourism influence zones); 8, 9—island zone; 17, 19–22—the central profile of the lake. The bathymetric plan was obtained from the resources of the National Inland Fisheries Research Institute, which was vectorized in the ArcGIS program ver. 10.8.1.</p> "> Figure 3
<p>Spatial distribution of trace elements in the surface sediment of Lake Raczyńskie, Poland. (<b>a</b>) Cd content; (<b>b</b>) Cu content; (<b>c</b>) Mn content; (<b>d</b>) Ni content; (<b>e</b>) Pb content; (<b>f</b>) Zn content.</p> "> Figure 3 Cont.
<p>Spatial distribution of trace elements in the surface sediment of Lake Raczyńskie, Poland. (<b>a</b>) Cd content; (<b>b</b>) Cu content; (<b>c</b>) Mn content; (<b>d</b>) Ni content; (<b>e</b>) Pb content; (<b>f</b>) Zn content.</p> "> Figure 4
<p>The values of I<sub>geo</sub> in the bottom sediments of Lake Raczyńskie.</p> "> Figure 5
<p>The values of mean PEL-Q of the bottom sediments of Lake Raczyńskie.</p> "> Figure 6
<p>Loading plot of trace elements in the space defined by PC1 and PC2.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Sediment Treatment
2.3. Analysis of Sediments
2.4. Pollution Assessment
2.4.1. Geo-Accumulation Index (Igeo)
2.4.2. Enrichment Factor (EF)
2.4.3. Nemerow Multi-Factor Index (Pn)
2.4.4. Pollution Load Index (PLI)
2.4.5. Potential Ecological Risk Index (RI)
2.4.6. Mean PEL Quotient (PEL-Q)
2.5. Data Processing
3. Results
3.1. General Sediment Characteristics
3.2. Assessment of Sediment Pollution
3.3. Trace Elements Risk Assessment in Bottom Sediments
3.4. Distriibution Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Glazovskaya, M.A. On geochemical principles of the classification of natural landscapes. Int. Geol. Rev. 1963, 5, 1403–1431. [Google Scholar] [CrossRef]
- Gyozo, J.; Ahmed, A. Decision support methods for the environmental assessment of contamination at mining sites. Environ. Monit. Assess. 2013, 185, 7809–7832. [Google Scholar] [CrossRef]
- Fortescue, J.A. Geochemical Landscape classification. In Environmental Geochemistry; Fortescue, J.A., Ed.; Springer: New York, NY, USA, 1980; pp. 61–171. [Google Scholar]
- Starkel, I. Role of climatic and anthropogenic factors accelerating soil erosion and fluvial activity in central Europe. Sci.Rep. 2005, 22, 27–33. [Google Scholar]
- Tylmann, W.; Łysek, K.; Kinder, M.; Pempkowiak, J. Regional Pattern of Heavy Metal Content in Lake Sediments in Northeastern Poland. Water Air Soil Pollut. 2011, 216, 217–228. [Google Scholar] [CrossRef] [PubMed]
- PAC. General aspects of trace analytical methods—IV. Recommendations for nomenclature, standard procedures and reporting of experimental data for surface analysis techniques. Pure Appl. 1979, 51, 2243. [Google Scholar] [CrossRef]
- Sojka, M.; Jaskuła, J.; Barabach, J.; Ptak, M.; Zhu, S. Heavy metals in lake surface sediments in protected areas in Poland: Concentration, pollution, ecological risk, sources and spatial distribution. Sci. Rep. 2022, 12, 15006. [Google Scholar] [CrossRef]
- Shah, R.A.; Achyuthan, H.; Krishnan, H.; Lone, A.M.; Saju, S.; Ali, A.; Lone, S.A.; Malik, M.S.; Dash, C. Heavy metal concentration and ecological risk assessment in surface sediments of Dal Lake, Kashmir Valley, Western Himalaya. Arab. J. Geosci. 2021, 14, 1–13. [Google Scholar] [CrossRef]
- Li, R.R.; Zhang, G.X.; Wei, X.H.; Liu, Y.; Zhang, L.; Sun, S. The evolutional characteristics of water environment of Chagan Lake Wetland. Sci. Geogr. Sin. 2014, 34, 762–768. [Google Scholar] [CrossRef]
- Rabajczyk, A.; Jóżwiak, M.; Jóżwiak, M.; Kozłowski, R. Heavy metals (Cd, Pb, Cu, Zn, Cr) in bottom sediments and the Recultivation of Kielce Lake. Pol. J. Environ. Stud. 2011, 20, 1013–1019. [Google Scholar]
- Bazarzhapov, T.Z.; Shiretorova, V.G.; Radnaeva, L.D.; Nikitina, E.P.; Bazarsadueva, S.V.; Shirapova, G.S.; Dong, S.; Li, Z.; Liu, S.; Wang, P. Distribution of heavy metals in water and bottom sediments in the basin of lake Gusinoe (Russia): Ecological Risk Assessment. Water 2023, 15, 3385. [Google Scholar] [CrossRef]
- Grochowska, J.; Tandyrak, R. The influence of the use of land on the content of calcium, magnesium, iron and manganese in water, exemplified in three lakes in the Olsztyn vicinity. Limnol. Rev. 2009, 9, 16. [Google Scholar]
- Potasznik, A.; Szymczyk, S. Magnesium and calcium concentrations in the surface water and bottom deposits of a river-lake system. J. Elem. 2015, 20, 677–692. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Y.; Han, J.; Li, P. The current status of heavy metals in lake sediments from China: Pollution and ecological risk assessment. Ecol. Evol. 2017, 7, 5454–5466. [Google Scholar] [CrossRef] [PubMed]
- Redwan, M.; Elhaddad, E. Heavy metal pollution in Manzala Lake sediments, Egypt: Sources, variability, and assessment. Environ. Monit. Assess. 2022, 194, 436. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.B. Nutrients and heavy metals contamination in an urban estuary of Northern New Jersey. Geosciences 2017, 7, 108. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms of trace metal transport in rivers. Science 1973, 180, 71–73. [Google Scholar] [CrossRef]
- Hart, B.T. Uptake of trace metals by sediments and suspended particulates: A review. Hydrobiologia 1982, 91–92, 299–313. [Google Scholar] [CrossRef]
- Diatta, J.B.; Ławniczak, A.; Spychalski, W.; Kryszak, J.; Choiński, A.; Koralewska, I.; Grzelak, M.; Janyszek, M. Geochemical evaluation of bottom sediments from two polymictic lakes of central-west Poland. Fresenius Environ. Bull. 2014, 23, 2100–2107. [Google Scholar]
- Marchand, C.; Lallier-Verges, E.; Baltzer, F.; Albe’ric, A.P.; Cossa, D.; Baillif, P. Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Mar. Chem. 2006, 98, 1–17. [Google Scholar] [CrossRef]
- Nobi, E.P.; Dilipan, E.; Thangaradjou, T.; Sivakumar, K.; Kannan, L. Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuar. Coast. Shelf Sci. 2010, 87, 253–264. [Google Scholar] [CrossRef]
- Sojka, M.; Jaskuła, J.; Siepak, M. Heavy metals in bottom sediments of reservoirs in the lowland area of western Poland: Concentrations, distribution, sources and ecological risk. Water 2018, 11, 56. [Google Scholar] [CrossRef]
- Ramamoorthy, S.; Rust, B.R. Heavy metal exchange processes in sediment-water systems. Environ. Earth Sci. 1978, 2, 165–172. [Google Scholar] [CrossRef]
- Håkanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water. Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Juying, L.; Mamat, Z.; Qing, F.Y. Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, North-west China. Ecotoxicol. Environ. Saf. 2016, 126, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.I.; Pu, X.M.; Pan, J.F.; Wang, B. Heavy metal pollution status in Surface sediments of Swan Lake lagoon and Rongcheng Bay in the northern Yellow Sea. Chemosphere 2013, 93, 1957–1964. [Google Scholar] [CrossRef] [PubMed]
- Kulbat, E.; Sokołowska, A. Speciation of heavy metals in bottom sediments of a drinking water reservoir for Gdańsk, Poland—Changes over the 14 years. Desalination Water Treat. 2020, 179, 252–262. [Google Scholar] [CrossRef]
- Smal, H.; Ligęza, S.; Wójcikowska-Kapusta, A.; Baran, S.; Urban, D. Spatial distribution and risk assessment of heavy metals in bottom sediments of two small dam reservoirs (south-east Poland). Arch. Environ. Prot. 2015, 41, 67–80. [Google Scholar] [CrossRef]
- Report of the Polish Chief Inspectorate for Environmental Protection. Available online: http://ekoinfonet.gios.gov.pl/osady/mapa/ (accessed on 21 April 2021).
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 3rd ed.; Kabata Pendias, A., Ed.; CRC Press: Boca Raton, FL, USA, 2001; pp. 121–234. [Google Scholar]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; pp. 193–206. [Google Scholar]
- Jańczak, J. Atlas jezior Polski. T. 1: Jeziora Pojezierza Wielkopolskiego i Pomorskiego w Granicach Dorzecza Odry; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 1996; pp. 154–155. (In Polish) [Google Scholar]
- Grzybowski, M.; Furgała-Selezniow, G.; Koszałka, J.; Kalinowska, J.; Jankun-Woźnicka, M. Correlation between catchment land use/cover and macrophyte assessment of lake ecological status. Ecol. Indic. 2023, 146, 109857. [Google Scholar] [CrossRef]
- Kondracki, J. Regional Geography of Poland; PWN: Warszawa, Poland, 2002. [Google Scholar]
- Janicka, E.; Kanclerz, J.; Wiatrowska, K.; Makowska, M. Biogenic compounds and an eutrophication process of Raczyńskie lake. Ecol. Eng. 2016, 49, 124–130. [Google Scholar] [CrossRef]
- IAEA-TECDOC-1360; Collection and Preparation of Bottom Sediment Samples for Analysis of Radionuclides and Trace Elements. IAEA: Vienna Austria, 2003.
- Bojakowska, I.; Sokołowska, G. Geochemical cleanliness classes of aquatic sediments. Przegląd Geol. 1998, 46, 49–54. (In Polish) [Google Scholar]
- ISO 10390:2021; Soil Quality—Determination of pH. ISO: Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/75243.html (accessed on 5 January 2023).
- ISO 11265:1994; Soil Quality—Determination of the Specific Electrical Conductivity. ISO: Geneva, Switzerland, 1994. Available online: https://www.iso.org/standard/19243.html (accessed on 5 January 2023).
- Lim, C.H.; Jackson, M.L. Dissolution for total elemental analysis. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2.2, 2nd ed.; Agronomy Monographs; Page, A.L., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 1982; pp. 1–12. [Google Scholar]
- Tiessen, H.; Moir, J.O. Characterization of available P by sequential extraction. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Lewis Publisher: Boca Raton, FL, USA, 1993; pp. 75–86. [Google Scholar]
- ISO 11277:2020; Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Methods by Sieving and Sedimentation. ISO: Geneva, Switzerland, 1994. Available online: https://www.iso.org/standard/69496.html (accessed on 5 January 2023).
- Müller, G. Index of geoaccumulation in the sediments of the Rhine River. Geo. J. 1969, 2, 108–118. [Google Scholar]
- Baran, A.; Wieczorek, J. Application of geochemical and ecotoxicity indieces for assessment of heavy metals content in soils. Arch. Environ. Prot. 2015, 41, 54–63. [Google Scholar] [CrossRef]
- Hanif, N.; Egani, S.A.M.A.S.; Ali, S.M.; Cincinelli, A.; Ali, N.; Katsoyjannis, I.A.; Tanveer, Z.I.; Bokhari, H. Geo-accumulation and enrichment of trace metals in sediments and their associated risks in the Chenab River. Pak. J. Geochem. Explor. 2016, 165, 62–70. [Google Scholar] [CrossRef]
- Czaplicka, A.; Ślusarczyk, Z.; Szarek-Gwiazda, E.; Bazan, S. Spatial Distribution of Iron and Manganese Compound in Bottom Sediments of the Goczałkowice Dam Reservoir. Ochr. Sr. 2017, 39, 47–54. (In Polish) [Google Scholar]
- Akoto, R.; Anning, A.K. Heavy metal enrichment and potential ecological risks from different solid mine wastes at a mine site in Ghana. Environ. Adv. 2021, 3, 100028. [Google Scholar] [CrossRef]
- Schiff, K.C.; Weisberg, S.B. Iron as a reference element for determining trace metal enrichment in Southern California coast shelf sediments. Mar. Environ. Res. 1999, 48, 161–176. [Google Scholar] [CrossRef]
- Jaskuła, J.; Sojka, M.; Wróżyński, R. Analysis of spatial variability of river bottom sediment pollution with heavy metals and assessment of potential ecological hazard for the Warta River, Poland. Minerals 2021, 11, 327. [Google Scholar] [CrossRef]
- Simex, S.A.; Helz, G.R. Regional geochemistry of trace elements in Checapeake Bay. Environ. Geol. 1981, 3, 315–323. [Google Scholar] [CrossRef]
- Al Rashdi, S.; Arabi, A.A.; Howari, F.M.; Siad, A. Distribution of heavy metals in the coastal area of Abu Dhabi in the United Arab Emirates. Mar. Pollut. Bull. 2015, 97, 494–498. [Google Scholar] [CrossRef]
- Ogunkunle, C.O.; Fatoba, P.O. Pollution loads and the ecological risk assessment of soil heavy metals around a Mega Cement Factory in southwest Nigeria. Pol. J. Environ. Stud. 2013, 22, 487–493. [Google Scholar]
- Gariel, F.A.; Ferreira, A.D.; Queiroz, H.M.; Vasconcelos, A.L.S.; Ferreira, T.O.; Bernardino, A.F. Long-term contamination of the Rio Doce estuary as a result of Brazil’s largest environmental disaster. Perspectives in Ecology and Conservation. Biol. Conserv. 2021, 19, 417–428. [Google Scholar]
- Tomlison, D.C.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgol. Mar. Res. 1980, 33, 566–575. [Google Scholar]
- Sha’Ato, R.; Benibo, A.G.; Itodo, A.U.; Wuana, R.A. Evaluation of Bottom Sediment Qualities in Ihetutu Minefield, Ishiagu, Nigeria. J. Geosci. Environ. Prot. 2020, 8, 125–142. [Google Scholar] [CrossRef]
- Soliman, N.F.; Nasr, S.M.; Okbah, M.A. Potential ecological risk of heavy metals in sediments from the Mediterranean coast, Egypt. J. Environ. Health Sci. Eng. 2015, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Håkanson, L. The quantitative impact of pH, bioproduction and Hg-contamination on the Hg-content of dish (Pike). Environ. Pollut. (Ser. B) 1980, 1, 285–304. [Google Scholar] [CrossRef]
- Walker, T.R.; Willis, R.; Gray, T.B.; Mcmillan, S.; Leroy, M.; Appleton, R.; Wambolt, N.; Smith, M. Ecological Risk Assessment of Sediments in Sydney Harbour, Nova Scotia, Canada. Soil Sediment Contam. Int. J. 2015, 24, 471–493. [Google Scholar] [CrossRef]
- Long, E.R.; Field, L.J.; MacDonald, D.D. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ. Toxicol. Chem. 1998, 17, 714–727. [Google Scholar] [CrossRef]
- Cichociński, P. A comparison of spatial interpolation methods in relation to property values. Stud. Mater. Real Estate Sci. Soc. 2011, 19, 120–125. (In Polish) [Google Scholar]
- Tomczak, M. Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW)-cross-validation/jackknife approach. J. Geogr. Inf. Decis. Anal. 1998, 2, 18–30. [Google Scholar]
- Valentine, P.C. Sediment Classification and the Characterization, Identification, and Mapping of Geologic Substrates for the Glaciated Gulf of Maine Seabed and Other Terrains, Providing a Physical Framework for Ecological Research and Seabed Management: U.S. Geological Survey Scientific Investigations Report 2019–5073, 37p. Available online: https://pubs.usgs.gov/publication/sir20195073 (accessed on 12 December 2022).
- Janicka, E. The Role of Lakes in Shaping Water Quality in the River-Lake System of the Kórnicko-Zaniemyska Gully. Ph.D. Thesis, Poznań University of Life Sciences, Poznań, Poland, 2020. [Google Scholar]
- Bojakowska, I. Criteria of assessing the contamination of aqueous sediments. Przegląd Geol. 2001, 49, 213–218. (In Polish) [Google Scholar]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal source in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Sinex, S.A.; Wright, D.A. Distribution of trace metals in the sediments and biota of Chesapeake Bay. Mar. Pollut. Bull. 1988, 19, 425–431. [Google Scholar] [CrossRef]
- Muzerengi, G. Enrichment and Geoaccumulation of Pb, Zn, As, Cd and Cr in soils near New Union Gold Mine, Limpopo Province of South Africa. In Mine Water and Circular Economy; Wolkersdorfer, C., Sartz, L., Sillanpää, M., Häkkien, A., Eds.; Lappenranta, Finland, 2017; pp. 720–727. Available online: http://www.imwa.de/docs/imwa_2017/IMWA2017_Muzerengi_720.pdf (accessed on 9 October 2023).
- Krishna, A.K.; Mohan, K.R.; Murthy, N.N. A Multivariate Statistical Approach for Monitoring of Heavy Metals in Sediments: A Case Study from Wailpalli Watershed, Nalgonda District, Andhra Pradesh, India. Res. J. Environ. Earth Sci. 2011, 3, 103–113. [Google Scholar]
- Day, J.M.D. Siderophile Elements: Systematics and Significance. In Encyclopedia of Geology, 2nd ed.; Alderton, D., Elias, S.A., Eds.; Elsevier: London, UK, 2021; pp. 52–66. [Google Scholar] [CrossRef]
- Tarnawski, M. Heavy Metal pollution of bottom sediments in the reservoir at Zeławice. Inżynieria Ekol. 2012, 31, 119–128. [Google Scholar]
- Palma, P.; Ledo, L.; Soares, S.; Barbosa, I.R.; Alvarenga, P. Spatial and temporal variability of the water and sediments quality in the Alqueva reservoir (Guadiana Basin; southern Portugal). Sci. Total Environ. 2014, 470, 780–790. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Lake area | 84.4 ha |
Mean depth | 2.8 m |
Maximum depth | 5.8 m |
Direct catchment area | 9.15 km2 |
Maximum width of the lake | 610 m |
Maximum length of the lake | 2190 m |
Length of shoreline | 6225 m |
Average water exchange time | 1.16 [-] * |
Sample No. | Particle Size Distribution (g·kg−1) | pHH2O | EC1:5 | CaCO3 | Organic C | ||
---|---|---|---|---|---|---|---|
Sand | Silt | Clay | (μScm−1) | (%) | (g·kg−1) | ||
1 | 920 | 70 | 10 | 6.64 | 1476 | 9.29 | 57.22 |
2 | 950 | 40 | 10 | 6.89 | 1438 | 9.26 | 68.82 |
3 | 850 | 130 | 20 | 7.32 | 1526 | 12.65 | 109.1 |
4 | 920 | 70 | 10 | 7.03 | 1818 | 5.87 | 129.2 |
5 | 1000 | 0 | 0 | 6.58 | 276 | 0.84 | 5.80 |
6 | 1000 | 0 | 0 | 6.11 | 296 | 0.70 | 6.51 |
7 | 1000 | 0 | 0 | 7.17 | 556 | 1.74 | 28.11 |
8 | 970 | 20 | 10 | 6.89 | 794 | 4.22 | 45.73 |
9 | 1000 | 0 | 0 | 6.41 | 349 | 2.33 | 11.07 |
10 | 1000 | 0 | 0 | 6.42 | 335 | 2.45 | 5.97 |
11 | 1000 | 0 | 0 | 6.24 | 488 | 3.37 | 10.15 |
12 | 1000 | 0 | 0 | 6.26 | 478 | 3.23 | 12.75 |
13 | 1000 | 0 | 0 | 6.88 | 632 | 2.49 | 15.56 |
14 | 990 | 0 | 10 | 6.72 | 708 | 9.35 | 20.16 |
15 | 1000 | 0 | 0 | 6.30 | 558 | 3.28 | 11.47 |
16 | 950 | 50 | 0 | 6.93 | 1244 | 3.27 | 30.29 |
17 | 1000 | 0 | 0 | 6.70 | 670 | 3.50 | 23.02 |
18 | 1000 | 0 | 0 | 6.70 | 672 | 3.34 | 17.15 |
19 | 1000 | 0 | 0 | 6.82 | 1257 | 8.41 | 68.32 |
20 | 930 | 60 | 10 | 6.94 | 1374 | 9.01 | 75.51 |
21 | 1000 | 0 | 10 | 6.31 | 809 | 2.78 | 17.46 |
22 | 1000 | 0 | 0 | 6.83 | 784 | 3.04 | 31.51 |
min | - | - | - | 6.10 | 276 | 0.70 | 5.80 |
max | - | - | - | 7.32 | 1818 | 12.65 | 129.2 |
mean | - | - | - | 6.58 | 842 | 4.70 | 36.40 |
median | - | - | - | 6.71 | 690 | 3.31 | 21.59 |
SD | - | - | - | 0.31 | 437 | 3.33 | 34.52 |
CV (%) | - | - | - | 4.68 | 54.70 | 70.26 | 94.84 |
Minimum | Maximum | Mean | Median | SD | CV (%) | PIG Guideline Values | ||
---|---|---|---|---|---|---|---|---|
Class I | Class II | |||||||
Cd | 0.08 | 1.45 | 0.53 | 0.52 | 0.35 | 66.38 | 1.00 | 5.00 |
Cu | 3.23 | 14.99 | 7.84 | 7.37 | 3.05 | 38.97 | 20.00 | 100.00 |
Mn | 39.42 | 400.4 | 159.0 | 106.6 | 128.9 | 81.09 | - | - 1 |
Ni | 14.35 | 32.61 | 19.67 | 18.66 | 4.22 | 21.46 | 30.00 | 50.00 |
Pb | 59.04 | 112.1 | 83.51 | 82.82 | 10.50 | 12.57 | 50.00 | 200.00 |
Zn | 7.20 | 97.77 | 34.95 | 31.80 | 22.78 | 65.17 | 200.00 | 1000.00 |
Fe | 7124.4 | 12,090.3 | 8086.8 | 7665.5 | 1093.8 | 13.53 | - | - |
Cd | Cu | Mn | Ni | Pb | Zn | Fe | H+ | EC | Silt | Clay | OC | CaCO3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | 1.000 | ||||||||||||
Cu | 0.591 * | 1.000 | |||||||||||
Mn | 0.683 ** | 0.505 * | 1.000 | ||||||||||
Ni | 0.605 * | 0.148 | 0.822 ** | 1.000 | |||||||||
Pb | 0.243 | 0.168 | 0.021 | 0.441 * | 1.000 | ||||||||
Zn | 0.478 | 0.667 ** | 0.713 ** | 0.496 * | 0.062 | 1.000 | |||||||
Fe | 0.565 * | 0.366 | 0.948 ** | 0.758 ** | 0.339 | 0.650 ** | 1.000 | ||||||
H+ | −0.263 | −0.174 | −0.273 | −0.257 | −0.420 | −0.110 | −0.261 | 1.000 | |||||
EC | 0.463 | 0.369 | 0.796 ** | 0.642 ** | 0.314 | 0.576 * | 0.788 ** | −0.421 | 1.000 | ||||
Silt | 0.528 * | 0.353 | 0.667 ** | 0.624 ** | 0.240 | 0.454 | 0.667 ** | −0.369 | 0.869 ** | 1.000 | |||
Clay | 0.422 | 0.541 * | 0.619 * | 0.515 * | 0.186 | 0.478 | 0.515 | −0.247 | 0.747 ** | 0.809 ** | 1.000 | ||
OC | 0.375 | 0.481 * | 0.730 ** | 0.457 * | 0.128 | 0.610 * | 0.729 ** | −0.364 | 0.911 ** | 0.866 ** | 0.814 ** | 1.000 | |
CaCO3 | 0.444 | 0.303 | 0.567 * | 0.655 ** | 0.262 | 0.393 | 0.491 * | −0.301 | 1.000 | 0.756 ** | 0.913 ** | 0.814 ** | 1.000 |
Sample No. | Pn | PLI | Potential Ecological Risk Factor (Er) | RI | Risk Grade | |||||
---|---|---|---|---|---|---|---|---|---|---|
Cd | Cu | Mn | Ni | Pb | Zn | |||||
1 | 7.21 | 2.49 | 68.6 | 6.4 | 0.6 | 21.9 | 37.8 | 0.8 | 136.1 | low |
2 | 5.32 | 1.64 | 24.5 | 4.3 | 0.2 | 16.2 | 28.2 | 0.5 | 73.9 | low |
3 | 6.08 | 1.99 | 40.8 | 6.3 | 0.3 | 16.7 | 32.2 | 0.5 | 96.8 | low |
4 | 6.02 | 1.98 | 19.4 | 6.7 | 0.5 | 15.8 | 31.9 | 1.1 | 75.3 | low |
5 | 4.36 | 1.09 | 10.0 | 3.2 | 0.1 | 12.9 | 23.3 | 0.2 | 49.8 | low |
6 | 5.97 | 1.26 | 10.1 | 5.0 | 0.1 | 12.9 | 32.2 | 0.2 | 60.4 | low |
7 | 5.66 | 1.77 | 32.4 | 6.2 | 0.1 | 11.3 | 30.2 | 0.5 | 80.9 | low |
8 | 6.31 | 2.09 | 36.4 | 9.9 | 0.3 | 13.2 | 33.5 | 0.6 | 93.8 | low |
9 | 5.38 | 2.05 | 32.3 | 6.0 | 0.2 | 16.2 | 28.2 | 1.0 | 83.9 | low |
10 | 6.04 | 0.85 | 3.8 | 2.1 | 0.1 | 14.4 | 32.7 | 0.1 | 53.2 | low |
11 | 5.52 | 1.59 | 38.9 | 4.9 | 0.1 | 13.0 | 29.4 | 0.3 | 86.6 | low |
12 | 6.28 | 1.39 | 21.5 | 4.3 | 0.1 | 14.5 | 33.8 | 0.2 | 74.4 | low |
13 | 6.84 | 1.15 | 9.9 | 3.4 | 0.1 | 14.3 | 37.0 | 0.2 | 64.9 | low |
14 | 6.29 | 1.51 | 8.5 | 5.3 | 0.1 | 15.0 | 33.8 | 0.6 | 63.4 | low |
15 | 5.72 | 1.17 | 9.9 | 3.3 | 0.1 | 13.3 | 30.8 | 0.2 | 57.7 | low |
16 | 6.55 | 1.73 | 25.7 | 4.3 | 0.2 | 15.6 | 35.1 | 0.5 | 81.4 | low |
17 | 6.00 | 1.19 | 5.7 | 3.2 | 0.1 | 12.3 | 32.4 | 0.4 | 54.2 | low |
18 | 6.08 | 1.25 | 6.2 | 2.8 | 0.1 | 13.3 | 32.8 | 0.6 | 55.8 | low |
19 | 6.98 | 2.35 | 38.3 | 7.0 | 0.6 | 18.9 | 36.8 | 1.0 | 102.7 | low |
20 | 8.46 | 3.02 | 48.9 | 9.7 | 0.6 | 25.8 | 44.3 | 1.6 | 130.9 | low |
21 | 6.51 | 1.95 | 36.0 | 4.8 | 0.3 | 16.8 | 34.6 | 0.6 | 93.2 | low |
22 | 6.62 | 1.96 | 25.1 | 4.3 | 0.6 | 17.7 | 35.2 | 0.8 | 83.9 | low |
Variable | PC1 | PC2 |
---|---|---|
Cd | −0.707 | −0.124 |
Cu | −0.577 | −0.478 |
Fe | −0.889 | −0.013 |
Mn | −0.943 | −0.082 |
Ni | −0.799 | 0.251 |
Pb | −0.400 | 0.664 |
Zn | −0.740 | −0.484 |
H+ | 0.420 | −0.564 |
EC | −0.895 | 0.095 |
CaCO3 | −0.738 | 0.161 |
OC | −0.833 | −0.114 |
Eigenvalue | 6.07 | 1.35 |
% Variance explained | 55.21 | 12.27 |
Cumulative % variance | 55.21 | 67.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiatrowska, K.; Kanclerz, J.; Janicka, E. Trace Elements in Lakes Located in an Agricultural-Forest Catchment: A Case Study of Lake Raczyńskie, Poland. Water 2024, 16, 3342. https://doi.org/10.3390/w16233342
Wiatrowska K, Kanclerz J, Janicka E. Trace Elements in Lakes Located in an Agricultural-Forest Catchment: A Case Study of Lake Raczyńskie, Poland. Water. 2024; 16(23):3342. https://doi.org/10.3390/w16233342
Chicago/Turabian StyleWiatrowska, Katarzyna, Jolanta Kanclerz, and Ewelina Janicka. 2024. "Trace Elements in Lakes Located in an Agricultural-Forest Catchment: A Case Study of Lake Raczyńskie, Poland" Water 16, no. 23: 3342. https://doi.org/10.3390/w16233342
APA StyleWiatrowska, K., Kanclerz, J., & Janicka, E. (2024). Trace Elements in Lakes Located in an Agricultural-Forest Catchment: A Case Study of Lake Raczyńskie, Poland. Water, 16(23), 3342. https://doi.org/10.3390/w16233342