Multi-Scale Spatial Relationship Between Runoff and Landscape Pattern in the Poyang Lake Basin of China
<p>Location of the Poyang Lake Basin.</p> "> Figure 2
<p>Elevation and sub-basin division in the Poyang Lake Basin. Note: The numbers in the right part of this figure represent the sub-basin numbers.</p> "> Figure 3
<p>A comparative analysis of the flow dynamics observed and simulated in the Poyang Lake Basin. Note: 201101 represents January 2011.</p> "> Figure 4
<p>Spatial–temporal pattern of runoff in the Poyang Lake Basin from 2011 to 2020.</p> "> Figure 5
<p>Spatial distribution of landscape types and proportions in the Poyang Lake Basin.</p> "> Figure 6
<p>Spatial distribution of geographically weighted regression coefficients between runoff and landscape type in the Poyang Lake Basin.</p> "> Figure 7
<p>Spatial distribution of key landscape metrics at the landscape and class scales in the Poyang Lake Basin.</p> "> Figure 8
<p>Spatial distribution of geographically weighted regression coefficients between runoff and landscape metrics at landscape and class scales in the Poyang Lake Basin. Note: R<sup>2</sup> = N/A indicates that the GWR model was not successfully constructed.</p> "> Figure 9
<p>Ecological restoration pathways in sub-basins of the Poyang Lake Basin.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Needs and Sources
2.3. Methodology
2.3.1. Construction of the SWAT Model
2.3.2. Analysis of Landscape Pattern
2.3.3. Analysis of Correlation
3. Results
3.1. Spatial–Temporal Patterns of Runoff
3.1.1. Calibration and Validation of the SWAT Model
3.1.2. Spatial–Temporal Characteristics of Runoff
3.2. Landscape Composition Analysis and Its Impact on Runoff
3.3. Multi-Scale Spatial Relationship Between Runoff and Landscape Pattern
3.3.1. Landscape Pattern Analysis
3.3.2. Examination of Spatial Relationship
3.3.3. Spatial Relationship at Landscape Scale
3.3.4. Spatial Relationship at Class Scale
3.4. Ecological Restoration Pathways in Sub-Basins
4. Discussion
4.1. Sensitivity Analysis and Parameter Optimization of the SWAT Model
4.2. Impact of Landscape Composition on Runoff
4.3. Impact of Landscape Pattern on Runoff
4.4. Limitations
5. Conclusions
- (1)
- The runoff is distinguished by notable spatial–temporal heterogeneity, with the runoff exhibiting fluctuating changes from 2011 to 2020.
- (2)
- The PLB is predominantly characterized by forest landscapes, with a forest cover of 61.74% in 2020. The impact of landscape composition on runoff exhibits a non-linear characteristic, with the order of impact being forest > cropland > barren land > grassland. Forest has the most significant impact on runoff.
- (3)
- There is a spatial relationship between runoff and landscape patterns. At the landscape scale, patch diversity has the most significant impact on runoff. Consequently, runoff can be optimized primarily by reducing patch richness. At the class scale, the patch area of forests and croplands has the greatest impact on runoff, which can be enhanced primarily by increasing the density of patch edges and facilitating the circulation and flow of materials within the landscape.
- (4)
- Nine sub-basins requiring ecological restoration were identified, and restoration pathways were developed based on the spatial relationships between runoff and landscape patterns.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vörösmarty, C.J.; Hoekstra, A.Y.; Bunn, S.E.; Conway, D.; Gupta, J. Fresh water goes global. Science 2015, 349, 478–479. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Mueller, N.D.; Siebert, S.; Jackson, R.B.; AghaKouchak, A.; Zimmerman, J.B.; Tong, D.; Hong, C.P.; Davis, S.J. Flexibility and intensity of global water use. Nat. Sustain. 2019, 2, 515–523. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, K.; Chao, L.J.; Li, D.H.; Tian, X.; Bao, H.J.; Chen, G.D.; Xia, Y. Exploring the utility of radar and satellite-sensed precipitation and their dynamic bias correction for integrated prediction of flood and landslide hazards. J. Hydrol. 2021, 603, 126964. [Google Scholar] [CrossRef]
- Yu, C.; Hu, D.Y.; Shao, H.Y.; Dai, X.A.; Liu, G.; Wu, S. Runoff simulation driven by multi-source satellite data based on hydrological mechanism algorithm and deep learning network. J. Hydrol. Reg. Stud. 2024, 52, 101720. [Google Scholar] [CrossRef]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A review on hydrological models. Aquat. Proc. 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Seiller, G.; Anctil, F.; Perrin, C. Multimodel evaluation of twenty lumped hydrological models under contrasted climate conditions. Hydrol. Earth Syst. Sci. 2012, 16, 1171–1189. [Google Scholar] [CrossRef]
- Rodriguez, F.; Andrieu, H.; Morena, F. A distributed hydrological model for urbanized areas–Model development and application to case studies. J. Hydrol. 2008, 351, 268–287. [Google Scholar] [CrossRef]
- Xie, K.; Liu, P.; Zhang, J.Y.; Wang, G.Q.; Zhang, X.J.; Zhou, L.T. Identification of spatially distributed parameters of hydrological models using the dimension-adaptive key grid calibration strategy. J. Hydrol. 2021, 598, 125772. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Yang, X.Y.; Haywood, J. A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Adv. Water Resour. 2020, 143, 103662. [Google Scholar] [CrossRef]
- Dong, J.Q.; Jiang, H.; Gu, T.W.; Liu, Y.X.; Peng, J. Sustainable landscape pattern: A landscape approach to serving spatial planning. Landsc. Ecol. 2022, 37, 31–42. [Google Scholar] [CrossRef]
- Xiong, Y.; Mo, S.H.; Wu, H.P.; Qu, X.Y.; Liu, Y.Y.; Zhou, L. Influence of human activities and climate change on wetland landscape pattern—A review. Sci. Total Environ. 2023, 879, 163112. [Google Scholar] [CrossRef] [PubMed]
- Lyu, L.T.; Bi, S.Q.; Yang, Y.; Zheng, D.F.; Li, Q. Effects of vegetation distribution and landscape pattern on water conservation in the Dongjiang River basin. Ecol. Indic. 2023, 155, 111017. [Google Scholar] [CrossRef]
- Liu, C.X.; Chen, Y.N.; Huang, W.J.; Fang, G.H.; Li, Z.; Zhu, C.G.; Liu, Y.C. Climate warming positively affects hydrological connectivity of typical inland river in arid Central Asia. NPJ Clim. Atmos. Sci. 2024, 7, 250. [Google Scholar] [CrossRef]
- Lyu, Y.S.; Chen, H.; Cheng, Z.; He, Y.T.; Zheng, X. Identifying the impacts of land use landscape pattern and climate changes on streamflow from past to future. J. Environ. Manag. 2023, 345, 118910. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.T.; Wang, H.L.; Yang, Z.H.; Huai, W.X.; Huang, D.; Chen, X.H. Landscape Pattern Changes of Aquatic Vegetation Communities and Their Response to Hydrological Processes in Poyang Lake, China. Water 2024, 16, 1482. [Google Scholar] [CrossRef]
- Hou, Y.P.; Wei, X.H.; Zhang, M.F.; Creed, I.F.; McNulty, S.G.; Ferraz, S.F.B. A global synthesis of hydrological sensitivities to deforestation and forestation. Forest Ecol. Manag. 2023, 529, 120718. [Google Scholar] [CrossRef]
- Guo, W.X.; Hu, J.W.; Wang, H.X. Analysis of runoff variation characteristics and influencing factors in the Wujiang River Basin in the past 30 years. Int. J. Environ. Res. Public Health 2021, 19, 372. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Liu, Y.X.; Chang, Y.P.; Liu, S.W.; Pu, H.Z.; Zhou, J.X. Regional runoff variation and its response to climate change and human activities in Northwest China. Environ. Earth Sci. 2016, 75, 1366. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Molinos, J.G.; Shi, L.L.; Zhang, M.; Wu, Z.S.; Zhang, H.; Xu, J. Drivers and changes of the Poyang Lake wetland ecosystem. Wetlands 2019, 39, 35–44. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, L.; Jiang, L.; Liao, M.W. Forty-year water body changes in Poyang Lake and the ecological impacts based on Landsat and HJ-1 A/B observations. J. Hydrol. 2020, 589, 125161. [Google Scholar] [CrossRef]
- Tian, M.M.; Mao, J.Q.; Wang, K.; Xu, D.D. Spatio-temporal heterogeneity of ecological water level in Poyang Lake, China. Ecol. Inform. 2024, 82, 102694. [Google Scholar] [CrossRef]
- Liu, M.Y.; Zhang, P.P.; Cai, Y.P.; Chu, J.W.; Li, Y.L.; Wang, X.; Li, C.H.; Liu, Q. Spatial-temporal heterogeneity analysis of blue and green water resources for Poyang Lake basin, China. J. Hydrol. 2023, 617, 128983. [Google Scholar] [CrossRef]
- Zou, R.; Wang, X.J.; Yin, Y.X.; Ma, X.Y.; Yang, X.Q.; Huang, P.N.; Ullah, I. Comparing spatio-temporal propagation patterns of hydrological and meteorological droughts: Insights from SWAT modelling in the poyang lake basin. Catena 2024, 243, 108183. [Google Scholar] [CrossRef]
- Verma, S.K.; Prasad, A.D.; Verma, M.K. An assessment of ongoing developments in water resources management incorporating SWAT model: Overview and perspectives. Nat. Environ. Pollut. Technol. 2022, 21, 1963–1970. [Google Scholar] [CrossRef]
- Feng, Q.Y.; Chen, L.D.; Yang, L.; Yen, H.; Wang, R.Y.; Wu, F.; Feng, Y.; Raj, C.; Engel, B.A.; Omani, N.; et al. A distributed model parameter optimization toolbox performing multisite calibration in the lump and distributed mode for the SWAT model. Environ. Modell. Softw. 2023, 168, 105785. [Google Scholar] [CrossRef]
- Xiang, X.; Ao, T.Q.; Xiao, Q.T.; Li, X.D.; Zhou, L.; Chen, Y.; Bi, Y.; Guo, J.Y. Parameter sensitivity analysis of SWAT modeling in the Upper Heihe River Basin using four typical approaches. Appl. Sci. 2022, 12, 9862. [Google Scholar] [CrossRef]
- Bennour, A.; Jia, L.; Menenti, M.; Zheng, C.L.; Zeng, Y.L.; Asenso Barnieh, B.; Jiang, M. Calibration and validation of SWAT model by using hydrological remote sensing observables in the Lake Chad Basin. Remote Sens. 2022, 14, 1511. [Google Scholar] [CrossRef]
- Zhao, L.X.; Li, H.Y.; Li, C.H.; Zhao, Y.L.; Du, X.Q.; Ye, X.Y.; Li, F.P. Enhanced SWAT calibration through intelligent range-based parameter optimization. J. Environ. Manag. 2024, 367, 121933. [Google Scholar] [CrossRef]
- Zhou, Z.X.; Li, J. The correlation analysis on the landscape pattern index and hydrological processes in the Yanhe watershed, China. J. Hydrol. 2015, 524, 417–426. [Google Scholar] [CrossRef]
- Jia, Y.Q.; Tang, L.N.; Xu, M.; Yang, X.Y. Landscape pattern indices for evaluating urban spatial morphology–A case study of Chinese cities. Ecol. Indic. 2019, 99, 27–37. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, J.; Yao, K.S.; Xu, M.; Cao, Y. A variable selection method based on mutual information and variance inflation factor. Spectrochim. Acta A 2022, 268, 120652. [Google Scholar] [CrossRef] [PubMed]
- Sisman, S.; Aydinoglu, A.C. A modelling approach with geographically weighted regression methods for determining geographic variation and influencing factors in housing price: A case in Istanbul. Land Use Policy 2022, 119, 106183. [Google Scholar] [CrossRef]
- Shi, P.; Chen, C.; Srinivasan, R.; Zhang, X.S.; Cai, T.; Fang, X.Q.; Qu, S.M.; Chen, X.; Li, Q.F. Evaluating the SWAT model for hydrological modeling in the Xixian watershed and a comparison with the XAJ model. Water Resour. Manag. 2011, 25, 2595–2612. [Google Scholar] [CrossRef]
- Sao, D.; Kato, T.; Tu, L.H.; Thouk, P.; Fitriyah, A.; Oeurng, C. Evaluation of different objective functions used in the sufi-2 calibration process of swat-cup on water balance analysis: A case study of the Pursat river basin, Cambodia. Water 2020, 12, 2901. [Google Scholar] [CrossRef]
- Wu, H.J.; Chen, B. Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2, and ParaSol methods. Ecol. Eng. 2015, 76, 110–121. [Google Scholar] [CrossRef]
- Narsimlu, B.; Gosain, A.K.; Chahar, B.R.; Singh, S.K.; Srivastava, P.K. SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River Basin, India, using sequential uncertainty fitting. Environ. Process. 2015, 2, 79–95. [Google Scholar] [CrossRef]
- Athira, P.; Sudheer, K.P. Calibration of distributed hydrological models considering the heterogeneity of the parameters across the basin: A case study of SWAT model. Environ. Earth Sci. 2021, 80, 131. [Google Scholar] [CrossRef]
- Cai, Y.F.; Zhang, F.; Shi, J.C.; Johnson, V.C.; Ahmed, Z.; Wang, J.G.; Wang, W.W. Enhancing SWAT model with modified method to improve Eco-hydrological simulation in arid region. J. Clean. Prod. 2023, 403, 136891. [Google Scholar] [CrossRef]
- Panikkar, U.R.; Srivastav, R.; Srivastava, A. Multiscale variability of hydrological responses in urbanizing watershed. Remote Sens. 2023, 15, 796. [Google Scholar] [CrossRef]
- Basset, C.; Abou Najm, M.; Ghezzehei, T.; Hao, X.X.; Daccache, A. How does soil structure affect water infiltration? A meta-data systematic review. Soil Tillage Res. 2023, 226, 105577. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Hendricks Franssen, H.J.; Brüggemann, N.; Bogena, H.R.; Kollet, S.; Javaux, M.; Kruk, J.; Vanderborght, J. Soil hydrology: Recent methodological advances, challenges, and perspectives. Water Resour. Res. 2015, 51, 2616–2633. [Google Scholar] [CrossRef]
- Jiang, L.P.; Zhu, J.H.; Chen, W.; Hu, Y.M.; Yao, J.; Yu, S.; Jia, G.L.; He, X.Y.; Wang, A.Z. Identification of suitable hydrologic response unit thresholds for soil and water assessment tool streamflow modelling. Chin. Geogr. Sci. 2021, 31, 696–710. [Google Scholar] [CrossRef]
- Li, Y.; DeLiberty, T. Evaluating hourly SWAT streamflow simulations for urbanized and forest watersheds across northwestern Delaware, US. Stoch. Environ. Res. Risk A 2021, 35, 1145–1159. [Google Scholar] [CrossRef]
- Pang, S.J.; Wang, X.Y.; Melching, C.S.; Feger, K.H. Development and testing of a modified SWAT model based on slope condition and precipitation intensity. J. Hydrol. 2020, 588, 125098. [Google Scholar] [CrossRef]
- Shrestha, M.K.; Recknagel, F.; Frizenschaf, J.; Meyer, W. Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia. Agr. Water Manag. 2016, 175, 61–71. [Google Scholar] [CrossRef]
- Chiang, L.C.; Shih, P.C.; Lu, C.M.; Jhong, B.C. Strategies analysis for improving SWAT model accuracy and representativeness of calibrated parameters in sediment simulation for various land use and climate conditions. J. Hydrol. 2023, 626, 130124. [Google Scholar] [CrossRef]
- Zhang, X.; Srinivasan, R.; Bosch, D. Calibration and uncertainty analysis of the SWAT model using Genetic Algorithms and Bayesian Model Averaging. J. Hydrol. 2009, 374, 307–317. [Google Scholar] [CrossRef]
- Liu, D.J.; Esquivel-Muelbert, A.; Acil, N.; Astigarraga, J.; Cienciala, E.; Fridman, J.; Kunstler, G.; Matthews, T.J.; Ruiz-Benito, P.; Sadler, J.P.; et al. Mapping multi-dimensional variability in water stress strategies across temperate forests. Nat. Commun. 2024, 15, 8909. [Google Scholar] [CrossRef]
- Farooqi, T.J.A.; Portela, R.; Xu, Z.; Pan, S.L.; Irfan, M.; Ali, A. Advancing forest hydrological research: Exploring global research trends and future directions through scientometric analysis. J. For. Res. 2024, 35, 128. [Google Scholar] [CrossRef]
- Li, K.; Wang, G.X.; Gao, J.H.; Guo, L.M.; Li, J.L.; Guan, M.H. The rainfall threshold of forest cover for regulating extreme floods in mountainous catchments. Catena 2024, 236, 107707. [Google Scholar] [CrossRef]
- Sun, W.Y.; Mu, X.M.; Gao, P.; Zhao, G.J.; Li, J.Y.; Zhang, Y.Q.; Chiew, F. Landscape patches influencing hillslope erosion processes and flow hydrodynamics. Geoderma 2019, 353, 391–400. [Google Scholar] [CrossRef]
- Wu, J.S.; Sha, W.; Zhang, P.H.; Wang, Z.Y. The spatial non-stationary effect of urban landscape pattern on urban waterlogging: A case study of Shenzhen City. Sci. Rep. 2020, 10, 7369. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.X.; Yan, H.Z.; Long, K.L.; Wang, Y.T.; Li, S.X.; Lei, P. Impact of greenspaces and water bodies on hydrological processes in an urbanizing area: A case study of the Liuxi River Basin in the Pearl River Delta, China. Ecol. Indic. 2023, 156, 111083. [Google Scholar] [CrossRef]
- Shi, P.; Li, P.; Li, Z.B.; Sun, J.M.; Wang, D.J.; Min, Z.Q. Effects of grass vegetation coverage and position on runoff and sediment yields on the slope of Loess Plateau, China. Agric. Water Manag. 2022, 259, 107231. [Google Scholar] [CrossRef]
- Vanneste, T.; Depauw, L.; De Lombaerde, E.; Meeussen, C.; Govaert, S.; De Pauw, K.; Sanczuk, P.; Bollmann, K.; Brunet, J.; Calders, K.; et al. Trade-offs in biodiversity and ecosystem services between edges and interiors in European forests. Nat. Ecol. Evol. 2024, 8, 880–887. [Google Scholar] [CrossRef]
- Willmer, J.N.G.; Puettker, T.; Prevedello, J.A. Global impacts of edge effects on species richness. Biol. Conserv. 2022, 272, 109654. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Z.X. Coupled analysis on landscape pattern and hydrological processes in Yanhe watershed of China. Sci. Total Environ. 2015, 505, 927–938. [Google Scholar] [CrossRef]
Name | Data Description | Data Sources |
---|---|---|
Land use/land cover (LULC) | The dataset comprises a raster with a spatial resolution of 30 m, which classifies LULC types including cropland, forest, grassland, barren, water, and impervious. | 1985–2022 China’s land cover products (http://irsip.whu.edu.cn/resources/CLCD.php, accessed on 16 May 2023) |
Digital elevation model (DEM) | The data are provided at a spatial resolution of 30 m, with units in meters. | Geospatial data cloud (https://www.gscloud.cn, accessed on 16 May 2023) |
Meteorology | The dataset comprises daily precipitation, temperature, relative humidity, hours of sunshine, average wind speed, and other meteorological variables from six stations: Yongxin, Duchang, Zhangshu, Dexing, Nanfeng, and Xingguo. The data span the period from 2009 to 2020 and are presented in text format. | National Meteorological Science Data Center (http://data.cma.cn, accessed on 6 May 2023) |
Soil types | 1:1 million items of data on soil types in China. | Institute of Soil Science, Chinese Academy of Sciences (http://www.issas.cas.cn, accessed on 10 May 2023) |
Soil properties | The dataset includes information on the number of soil horizons, the maximum root depth in the soil profile, the depth from the soil surface to the soil subsoil, the organic matter content, and the soil particle composition. | Soil Science Database (http://vdb3.soil.csdb.cn, accessed on 10 May 2023) |
Hydrography | The dataset comprises monthly runoff data from three hydrologic stations (Hukou, Lijiadu, and Waizhou) for the period 2009–2020, in text format. | China Hydrographic Yearbook: Hydrographic Data of the Yangtze River Basin |
Name | Physical Significance | Range | Optimal Value | Sensitivity Ranking |
---|---|---|---|---|
SOL_AWC | Soil water available capacity | [−1, 1] | −0.115 | 1 |
SOL_CBN | Soil carbon content | [0.05, 10] | 7.185 | 2 |
HRU_SLP | Hydrologic response unit slope | [0, 1] | 0.473 | 3 |
ESCO | Evaporation soil cover coefficient | [0, 1] | 1.294 | 4 |
CN2 | SCS curve number | [35, 98] | 20.412 | 5 |
SOL_K | Saturated hydraulic conductivity | [0, 2000] | −372.531 | 6 |
CANMX | Maximum canopy storage | [0, 100] | −27.009 | 7 |
SLSUBBSN | Subbasin length for overland flow | [10, 150] | 58.916 | 8 |
CH_N2 | Manning’s roughness coefficient for the main channel | [0, 1] | −0.019 | 9 |
SOL_BD | Soil bulk density | [0.9, 2.5] | 1.847 | 10 |
Dimension | Landscape Metrics | Abbreviation | Applicable Scales |
---|---|---|---|
Area | Largest Patch Index | LPI | Landscape/Class |
Edge Density | ED | Landscape/Class | |
Area | AREA_AM | Landscape/Class | |
Radius of Gyration | GYRATE_AM | Landscape/Class | |
Shape | Perimeter-Area Ratio | PARA_AM | Landscape/Class |
Shape Index | SHAPE_AM | Landscape/Class | |
Fractal Dimension Index | FRAC_AM | Landscape/Class | |
Related Circumscribing Circle | CIRCLE_AM | Landscape/Class | |
Contiguity Index | CONTIG_AM | Landscape/Class | |
Aggregation | Euclidean Nearest-Neighbor Distance | ENN_AM | Landscape/Class |
Patch Density | PD | Landscape/Class | |
Landscape Division Index | DIVISION | Landscape/Class | |
Splitting Index | SPLIT | Landscape/Class | |
Effective Mesh Size | MESH | Landscape/Class | |
Interspersion and Juxtaposition Index | IJI | Landscape/Class | |
Aggregation Index | AI | Landscape/Class | |
Landscape Shape Index | LSI | Landscape/Class | |
Patch Cohesion Index | COHESION | Landscape/Class | |
Diversity | Patch Richness Density | PRD | Landscape |
Shannon’s Diversity Index | SHDI | Landscape | |
Simpson’s Diversity Index | SIDI | Landscape | |
Modified Simpson’s Diversity Index | MSIDI | Landscape | |
Shannon’s Evenness Index | SHEI | Landscape | |
Simpson’s Evenness Index | SIEI | Landscape | |
Modified Simpson’s Evenness Index | MSIEI | Landscape |
Year | Mean | Standard Deviation | Coefficient of Variation |
---|---|---|---|
2011 | 570.21 | 139.14 | 0.24 |
2012 | 912.84 | 152.88 | 0.17 |
2013 | 796.9 | 122.24 | 0.15 |
2014 | 1002.3 | 121.87 | 0.12 |
2015 | 954.41 | 155.45 | 0.16 |
2016 | 1086.28 | 237.47 | 0.22 |
2017 | 759.47 | 121.56 | 0.16 |
2018 | 633.88 | 186.58 | 0.29 |
2019 | 971.69 | 246.95 | 0.25 |
2020 | 923.77 | 169.13 | 0.18 |
Scale | Pearson Correlation | ED | CIRCLE_AM | IJI | PRD |
---|---|---|---|---|---|
Landscape scale | Coefficient | 0.12 | 0.14 | −0.19 | −0.35 |
Sig. (2-tailed) | 0.53 | 0.44 | 0.32 | 0.06 | |
Class scale_Forest | Coefficient | 0.15 | 0.05 | −0.32 | N/A |
Sig. (2-tailed) | 0.43 | 0.79 | 0.08 | N/A | |
Class scale_Cropland | Coefficient | 0.28 | 0.31 | −0.05 | N/A |
Sig. (2-tailed) | 0.13 | 0.09 | 0.79 | N/A | |
Class scale_Grassland | Coefficient | −0.26 | −0.06 | −0.04 | N/A |
Sig. (2-tailed) | 0.16 | 0.75 | 0.83 | N/A | |
Class scale_Barren | Coefficient | 0.15 | N/A | 0.14 | N/A |
Sig. (2-tailed) | 0.41 | N/A | 0.46 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, P.; Tian, Y.; Zhang, J.; Fan, Y. Multi-Scale Spatial Relationship Between Runoff and Landscape Pattern in the Poyang Lake Basin of China. Water 2024, 16, 3501. https://doi.org/10.3390/w16233501
Dou P, Tian Y, Zhang J, Fan Y. Multi-Scale Spatial Relationship Between Runoff and Landscape Pattern in the Poyang Lake Basin of China. Water. 2024; 16(23):3501. https://doi.org/10.3390/w16233501
Chicago/Turabian StyleDou, Panfeng, Yunfeng Tian, Jinfeng Zhang, and Yi Fan. 2024. "Multi-Scale Spatial Relationship Between Runoff and Landscape Pattern in the Poyang Lake Basin of China" Water 16, no. 23: 3501. https://doi.org/10.3390/w16233501
APA StyleDou, P., Tian, Y., Zhang, J., & Fan, Y. (2024). Multi-Scale Spatial Relationship Between Runoff and Landscape Pattern in the Poyang Lake Basin of China. Water, 16(23), 3501. https://doi.org/10.3390/w16233501