Characteristics of Carbon Fluxes and Their Environmental Control in Chenhu Wetland, China
<p>Sketch map of the study area.</p> "> Figure 2
<p>The monthly variation of environmental factors in the Chenhu wetland during the year 2022. (<b>a</b>) Air temperature (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">T</mi> </mrow> <mrow> <mi mathvariant="normal">a</mi> </mrow> </msub> </mrow> </semantics></math>), soil temperature (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">T</mi> </mrow> <mrow> <mi mathvariant="normal">s</mi> </mrow> </msub> </mrow> </semantics></math>), and average <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">T</mi> </mrow> <mrow> <mi mathvariant="normal">a</mi> </mrow> </msub> </mrow> </semantics></math> in Wuhan from 2011 to 2021. (<b>b</b>) Wind speed (WS), photosynthetically active radiation (PAR). (<b>c</b>) Relative humidity (RH), vapor pressure deficit (VPD). (<b>d</b>) Soil water content (SWC), total precipitation (PPT), and average PPT in Wuhan from 2011 to 2021.</p> "> Figure 3
<p>Diurnal variation of NEE in the Chenhu Wetland during 2022 ((<b>a</b>) growing season; (<b>b</b>) non-growing season).</p> "> Figure 4
<p>The daily variation of NEE on an annual basis (<b>a</b>) and the seasonal variation of monthly total NEE (<b>b</b>) for the Chenhu wetland during the year 2022.</p> "> Figure 5
<p>Comparison of annual NEE in subtropical wetlands.</p> "> Figure 6
<p>Path analysis between main environmental factors and NEE. χ<sup>2</sup> = 0.5, <span class="html-italic">p</span> = 0.46 > 0.05, Degrees of freedom = 1. NFI = 0.999, CFI = 1.000, root mean square error of approximation (RMSEA) = 0.</p> "> Figure 7
<p>Scatter plots of daytime NEE against PAR from April to September 2022. The fitting results and correlation coefficients between daytime NEE and PAR are also shown.</p> "> Figure 8
<p>Scatter plots of daytime NEE against PAR under different VPD during the growth season. The fitting results and correlation coefficients between daytime NEE and PAR are also shown.</p> "> Figure 9
<p>Scatter plots of NEE against T<sub>a</sub> of Chenhu wetland during the night in the growing season (<b>a</b>) and throughout the day in the non-growing season (<b>b</b>). The fitting results and correlation coefficients between NEE and T<sub>a</sub> are also shown.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Data Sources
2.3. Data Processing
3. Results and Discussion
3.1. Meteorological Conditions
3.2. Dynamics of CO2 Flux over Various Temporal Scales
3.2.1. Diurnal Variations in NEE
3.2.2. Seasonal Variations in NEE
3.3. Relationships Between NEE and Some Environmental Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gorham, E. The biogeochemistry of northern peatlands and its possible responses to global warming. In Biotic Feedbacks in the Global Climate System: Will the Warming Feed the Warming? Woodwell, G.M., Mackenzie, F.T., Eds.; Oxford University Press: New York, NY, USA, 1995; pp. 169–187. [Google Scholar]
- Cao, S.; Cao, G.; Feng, Q.; Han, G.; Lin, Y.; Yuan, J.; Wu, F.; Cheng, S. Alpine wetland ecosystem carbon sink and its controls at the Qinghai Lake. Environ. Earth Sci. 2017, 76, 210–211. [Google Scholar] [CrossRef]
- Li, W.; Li, J.P.; Zhang, G.L.; Li, P.P.; Han, J.G. Ecological restoration technologies for lake wetlands for carbon peaking and neutrality. J. Nanjing For. Univ. Nat. Sci. Ed. 2022, 46, 157–166. [Google Scholar]
- Miao, G.; Noormets, A.; Domec, J.C.; Fuentes, M.; Trettin, C.C.; Sun, G.; Mcnulty, S.G.; King, J.S. Hydrology and microtopography control carbon dynamics in wetlands: Implications in partitioning ecosystem respiration in a coastal plain forested wetland. Agric. For. Meteorol. 2017, 247, 343–355. [Google Scholar] [CrossRef]
- Xing, Q.H.; Shangguan, K.X.; Liao, G.X.; Liu, C.A.; Lei, W.; Zhang, Y. Net Ecosystem CO2 exchange and its environmental regulation in the Liao River Estuarine Reed Wetland. Mar. Environ. Sci. 2021, 40, 228–234. [Google Scholar]
- Dise, N.B. Peatland Response to Global Change. Science 2009, 326, 810–811. [Google Scholar] [CrossRef]
- Zuo, Z.D.; Chen, K.L.; Li, Y.N.; Zhang, F.W. Characteristics of CO2 Exchange on Different Time Scales of Peat Wetland Land-atmosphere System in Qinghai Lake Basin. Ecol. Sci. 2022, 41, 174–183. [Google Scholar]
- Zhu, S.X.; Lin, L.; Yang, Y.F.; Yuan, J.; Shi, Y.L. Construction status and distribution characteristics of national important wetlands in China. Environ. Prot. Sci. 2024, 50, 67–73. [Google Scholar]
- Zhu, L.H.; Zhu, Y.Q.; Yao, Y.Y.; Shi, C.; Xu, F.R. Risk and impact analysis of extreme precipitation over China under 1.5 and 2 °C global warming levels. Trans. Atmos. Sci. 2023, 46, 97–109. [Google Scholar]
- Yang, Y.; Lin, G.J.; Wang, L.L.; Chen, X.J.; Cai, J.Z.; Jiang, B.; Li, H.Q. Analysis on current status and protection countermeasures of wetlands in middle reaches of Changjiang River. Yangtze River 2019, 50, 59–63, 70. [Google Scholar]
- Wu, F.T.; Cao, S.K.; Cao, G.C.; Han, G.Z.; Lin, Y.Y.; Cheng, S.Y. Variation of CO2 flux of alpine wetland ecosystem of Kobresia Tibetica Wet Meadow in Lake Qinghai. J. Ecol. Rural. Environ. 2018, 34, 124–131. [Google Scholar]
- Jiang, G.Q.; Wang, Y.J.; Sun, R.; Zhang, L.; Liu, S.M. Dynamics of CO2 flux and analysis of light use efficiency over a wetland in Zhangye, China. Arid. Land Geogr. 2016, 39, 809–816. [Google Scholar]
- He, X.M.; Qin, L.; Lv, G.H.; Yang, J.J.; Gong, Y.M.; Yang, X.D. Surface energy balance of an arid desert wetland in Ebinur Lake basin, Xinjiang, China. Chin. J. Ecol. 2017, 36, 309–317. [Google Scholar]
- Chen, X.P. Variations and Influence Mechanism of Carbon and Water Flux in Horqin Dune and Meadow Wetland Landscape. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2018. [Google Scholar]
- Chen, Z.H. Ecosystem Carbon Flux and Its Influencing Mechanisms over a Salt Marsh in the Jiuduansha Shoals. Ph.D. Thesis, East China Normal University, Shanghai, China, 2020. [Google Scholar]
- Wang, Y.Z.; Liu, S.L. Dynamic characteristics and influencing factors of carbon and water flux in reed wetland ecosystem in the Yellow River Delta. Ecol. Environ. Sci. 2021, 30, 949–956. [Google Scholar]
- Jia, Q.Y.; Wen, R.H.; Zhou, L.; Zhou, G.S.; Xie, Y.B. An dataset of carbon and water fluxes over the reed wetlands in Panjin City (2018–2020). China Sci. Data 2023, 8, 58–69. [Google Scholar] [CrossRef]
- Song, T. Long Term Carbon Dioxide Flux Measurements in Sanjiang Plain, Northeastern China. Master’s Thesis, NanJing University of Information Science & Technology, Nanjing, China, 2007. [Google Scholar]
- Peng, F.J.; Ge, J.W.; Li, Y.Y.; Li, Y.Y.; Li, J.Q.; Zhou, Y.; Zhang, Z.Q. Characteristics of CO2 flux and their effect factors in Dajiuhu Peat Wetland of Shennongjia. Ecol. Environ. Sci. 2017, 26, 453–460. [Google Scholar]
- Liu, S.; Zeng, X.J.; Liu, G.; Feng, Z.Z. Changing characteristics of carbon-based greenhouse gas fluxes in paddy field in the Middle-Lower Yangtze Plain in China. Environ. Sci. 2022, 43, 2151–2162. [Google Scholar]
- Xu, Y.F.; Ji, H.; Han, J.G.; Xue, T.L.; Zhu, X.L.; Li, P.P. Variation of net ecosystem carbon flux in growing season and its driving factors in a poplar plantation from Hung-tse Lake wetland. Chin. J. Ecol. 2018, 37, 322–331. [Google Scholar]
- Xiao, W.; Liu, S.; Wang, W.; Yang, D.; Xu, J.; Cao, C.; Li, H.; Lee, X. Transfer coefficients of momentum, heat and water vapour in the atmospheric surface layer of a large freshwater lake. Bound. Layer Meteorol. 2013, 148, 479–494. [Google Scholar] [CrossRef]
- Wang, L.L.; Yang, T.; Gao, C.; Gao, D.; Lu, C.F. Diurnal variation of net ecosystem CO2 exchange of Nanji Wetland Ecosystem in Poyang Lake. J. Ecol. Rural. Environ. 2017, 33, 1007–1012. [Google Scholar]
- Wang, T.; Deng, Z.M.; Xie, Y.H.; Li, F. A dataset of carbon dioxide flux observation of the miscanthus sacchariflorus ecosystem of Dongting Lake Wetland from 2014 to 2016. China Sci. Data 2023, 8, 26–35. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, L.; Li, P.; Hu, Y.P.; Li, L.J.; Su, Y.W.; Xing, X.L.; Feng, J.; Ye, T. Changes of organic C and N stable isotope and their Environmental implication during the past 130 years of Chen Lake. China Environ. Sci. 2023, 43, 1307–1316. [Google Scholar]
- Ma, N.J.; Tong, L.; Li, Y.Q.; Yang, C.; Tan, Q.; He, J. Distribution of antibiotics in lake water-groundwater—Sediment system in Chenhu Lake area. Environ. Res. 2021, 204, 112343. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Q.; Zhang, F.W.; Zhu, J.B.; Guo, X.W.; Li, Y.K.; Lin, L.; Zhang, L.M.; Yang, Y.S.; Li, Y.N.; Cao, G.M.; et al. Precipitation rather than evapotranspiration determines the warm-season water supply in an alpine shrub and an alpine meadow. Agric. For. Meteorol. 2021, 300, 108318. [Google Scholar] [CrossRef]
- Taylor, J.; Lloyd, J. On the Temperature Dependence of Soil Respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar]
- Suonan, K.Z.; Ren, G.Y.; Jia, W.Q.; Sun, X.B. Climatological characteristics and long-term trend of relative humidity in Wuhan. Clim. Environ. Res. 2018, 23, 715–724. [Google Scholar]
- Li, X.; Jia, Q.; Liu, J. Seasonal variations in heat and carbon dioxide fluxes observed over a reed wetland in northeast China. Atmos. Environ. 2016, 127, 6–13. [Google Scholar] [CrossRef]
- Du, Q.; Liu, H.; Liu, Y.; Xu, L.; Sun, J. Water and carbon dioxide fluxes over a “floating blanket” wetland in southwest of China with eddy covariance method. Agric. For. Meteorol. 2021, 311, 108689. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, G.; Ge, J.; Sun, X.; Hirano, T.; Saigusa, N.; Wang, Q.; Zhu, X.; Zhang, Y.; Zhang, J. Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the Asian region. Agric. For. Meteorol. 2013, 182–183, 266–276. [Google Scholar] [CrossRef]
- Falge, E.; Baldocchi, D.D.; Tenhunen, J.; Aubinet, M.; Wofsy, S. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric. For. Meteorol. 2002, 113, 53–74. [Google Scholar] [CrossRef]
- Law, B.E.; Falge, E.; Gu, L.; Baldocchi, D.D.; Olson, R. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric. For. Meteorol. 2002, 113, 97–120. [Google Scholar] [CrossRef]
- Glenn, A.J.; Flanagan, L.B.; Syed, K.H.; Carlson, P.J. Comparison of net ecosystem CO2 exchange in two peatlands in western Canada with contrasting dominant vegetation, Sphagnum and Carex. Agric. For. Meteorol. 2006, 140, 115–135. [Google Scholar] [CrossRef]
- Ma, A.N.; Lu, J.J. Net Ecosystem Exchange of carbon and tidal effects in Chongxi wetland, Yangtze Estuary. Res. Environ. Sci. 2011, 24, 716–721. [Google Scholar]
- Gao, Y.Q. Analysis of CO2 Flux Variation and its Driving Factors in a Submerged Macrophytes Habitat of Lake Taihu. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2018. [Google Scholar]
- Zhao, X.; Fan, X.; Griffis, T.J.; Xiao, K.; Li, X.; Liu, Y.; Lai, X.; Wan, R.; Li, T. Three Gorges Dam Operations Affect the Carbon Dioxide Budget of a Large Downstream Connected Lake. Geophys Res Lett. 2023, 50, e2022GL102697. [Google Scholar] [CrossRef]
- Zhu, X.; Sun, C.; Qin, Z. Drought-induced salinity enhancement weakens mangrove greenhouse gas cycling. J. Geophys. Res. Biogeosci. 2021, 126, e2021JG006416. [Google Scholar] [CrossRef]
- Zhang, Y. Study on Dynamic Change and influencing factors of carbon water flux and water use efficiency over a poplar plantation in Lake Hongze Basin. Ph.D. Thesis, Nanjing Forestry University, Nanjing, China, 2019. [Google Scholar]
- Yan, Y.E. Carbon Flux in an Enstuarine Wetland Estimated by Remote Sensing Model and Ground-Based Observations. Ph.D. Thesis, Fudan University, Shanghai, China, 2009. [Google Scholar]
- Guo, H.Q. Carbon Fluxes over an Estuarine Wetland: In Situ Measurement and Modeling. Master’s Thesis, Fudan University, Shanghai, China, 2010. [Google Scholar]
- Zhong, Q.; Wang, K.; Lai, Q.; Zhang, C.; Zheng, L.; Wang, J. Carbon dioxide fluxes and their environmental control in a reclaimed coastal wetland in the Yangtze Estuary. Estuar Coast. 2016, 39, 344–362. [Google Scholar] [CrossRef]
- Xiao, J.; Sun, G.; Chen, J.; Chen, H.; Chen, S.; Dong, G.; Gao, S.; Guo, H.; Guo, J.; Han, S.; et al. Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China. Agric. For. Meteorol. 2013, 182–183, 76–90. [Google Scholar] [CrossRef]
- Verville, J.H.; Hobbie, S.E.; Chapin, F.S.; Hooper, D.U. Response of tundra CH4 and CO2 flux to manipulation of temperature and vegetation. Biogeochemistry 1998, 41, 215–235. [Google Scholar] [CrossRef]
- Lu, Y.; Song, C.C.; Wang, Y.Y.; Zhao, Z.C. Influence of plants on CO2 and CH4 emission in wetland ecosystem. Acta Bot. Boreali-Occident. Sin. 2007, 27, 2306–2313. [Google Scholar]
- Liu, Z.W.; Ge, J.W.; Yang, S.Y.; Li, X.; Xiong, J.; Zheng, A.X. Carbon dioxide and methane fluxes in the growing and non-growing season in the Dajiuhu subtropical peatland: A five-year measurement using the eddy covariance technique. Agric. For. Meteorol. 2024, 355, 110135. [Google Scholar] [CrossRef]
- Wu, L.L.; Gao, X.; Chu, J.M.; Wang, H.S. Soil microbial populations and enzyme activities under different sand-fixation forests in Oasis-desert Ecotone of Minqin Desert. Arid. Land Geogr. 2019, 30, 3336–3346. [Google Scholar]
- Han, G.; Yang, L.; Yu, J.; Wang, G.; Mao, P. Environmental controls on net ecosystem CO2 exchange over a reed (Phragmites australis) wetland in the Yellow River Delta, China. Estuaries Coasts 2013, 36, 401–413. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, G.; Jia, Q. Annual cycle of CO2 exchange over a reed (Phragmites australis) wetland in Northeast China. Aquat. Bot. 2009, 91, 91–98. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, G.; Hunt, J.E.; Zhang, F. Biophysical regulation of net ecosystem carbon dioxide exchange over a temperate desert steppe in Inner Mongolia, China. Agric. Ecosyst. Environ. 2011, 142, 318–328. [Google Scholar] [CrossRef]
- Su, P.X.; Zhao, A.F.; Zhang, L.X.; Du, M.W.; Chen, H.S. Characteristic in photosynthesis, transpiration and water use efficiency of Haloxylon ammodendron and Calligonum mongolicum of desert species. Acta Bot. Boreali-Occident. Sin. 2003, 23, 11–17. [Google Scholar]
- Xu, L.L.; Zhang, X.Z.; Shi, P.L.; Yu, G.R. Response of light quantum efficiency of alpine meadow community to temperature under low pressure in Qinghai-Tibet Plateau. Sci. Sin. 2006, 36 (Suppl. S1), 204–209. [Google Scholar]
- Anthoni, P.M.; Law, B.E.; Unsworth, M.H. Carbon and water vapor exchange of an open-canopied ponderosa pine ecosystem. Agric. For. Meteorol. 1999, 95, 151–168. [Google Scholar] [CrossRef]
- Chu, X.J.; Han, G.X. Effect of air temperature and rainfall on wetland ecosystem CO2 exchange in China. Chin. J. Appl. Ecol. 2015, 26, 2978–2990. [Google Scholar]
Study Site | Longitude/Latitude | Wetland Type | Dominant Plant Species | Measuring Year | Annual NEE | References |
---|---|---|---|---|---|---|
Yunxiao wetland | 23.9240° N, 117.4147° E | Estuarine mangrove wetland | Kandelia obovata, Avicennia marina, Aegiceras corniculatum | 2019~2020 | 45.66 | [39] |
Dongting Lake | 29.4875° N, 113.0525° E | Lake wetland | Miscanthus sacchariflorus | 2014~2016 | 33.36 | [24] |
Eastern Chongming tidal flat | 31.6333° N, 121.9667° E | Coastal wetland | Phragmites australis, Spartina alterniflora, Scirpus mariqueter | 2005~2007, 2012 | 53.58 | [41,42,43] |
Gaoqiao | 21.57° N, 109.76° E | Coastal wetland | Aegiceras corniculatum, Bruguiera gymnorrhiza | 2010 | 61.48 | [44] |
Chongxi wetland | 31.72° N, 121.23° E | Estuarine wetland | Phragmites australis | 2009 | 18.75 | [36] |
Poyang Lake | 28.2° N~30.0° N, 115.5° E~116.5° E | Lake wetland | Carexcinerascens, Phalarisarundinacea, Miscanthussacchariflorus, Phragmites communis | 2013.08~2016.06 | 28.29 | [38] |
Taihu wetland | 30.9278° N~5494° N, 119.8756° E~119.6028° E | Lake wetland | Potamogeton malaianus, Hydrilla verticillata | 2012~2017 | 25.25 | [37] |
Hongze Lake | 33.55° N, 118.53° E | Lake wetland | Populus× euramericana cv. Nanlin-95, Bidens tripartita L., Setaria viridis (L.) Beauv. | 2017.5~2018.12 | 49.53 | [40] |
Beihai wetland | 25.1218° N, 98.5561° E | Alpine marsh | Cyperus duclouxii E.-G. Camus, Oberonia iridifolia Roxb. ex Lindl | 2015.06~2016.12 | 19.48 | [31] |
Chenhu wetland | 30.3270° N, 113.8617° E | Lake-marsh wetland | Phragmites conmunis, Zizaniacaduaflora Ass | 2022 | 21.20 | This study |
Month | Ta | PAR | Ts | RH | VPD | SWC | P |
---|---|---|---|---|---|---|---|
1 | −0.008 | 0.469 * | −0.156 | 0.051 | −0.054 | 0.143 | −0.120 |
2 | −0.143 | −0.643 ** | 0.383 | 0.139 | −0.111 | 0.130 | −0.044 |
3 | −0.279 | −0.903 ** | 0.837 ** | 0.342 | −0.267 | 0.212 | 0.273 |
4 | −0.355 | −0.947 ** | 0.858 ** | 0.341 | −0.329 | 0.592 ** | 0.051 |
5 | −0.463 * | −0.972 ** | −0.175 | 0.513 ** | −0.432 * | 0.435 * | 0.168 |
6 | −0.500 ** | −0.939 ** | 0.070 | 0.575 ** | −0.521 ** | −0.112 | 0.404 * |
7 | −0.529 ** | −0.949 ** | −0.297 | 0.657 ** | −0.611 ** | 0.088 | 0.239 |
8 | −0.519 ** | −0.926 ** | −0.527 ** | 0.640 ** | −0.604 ** | 0.086 | 0.115 |
9 | −0.501 ** | −0.914 ** | 0.134 | 0.548 ** | −0.492 * | 0.179 | 0.474 * |
10 | −0.571 ** | −0.930 ** | 0.186 | 0.603 ** | −0.550 ** | 0.155 | 0.256 |
11 | −0.560 ** | −0.913 ** | 0.191 | 0.549 ** | −0.541 ** | 0.101 | −0.103 |
12 | −0.478 * | −0.453 * | −0.514 * | 0.573 ** | −0.529 * | −0.564 ** | −0.417 |
Month | Ta | Ts | RH | VPD | SWC | P |
---|---|---|---|---|---|---|
1 | −0.222 | 0.285 | 0.229 | −0.235 | −0.148 | 0.317 |
2 | 0.127 | −0.170 | −0.183 | 0.177 | 0.191 | 0.066 |
3 | −0.143 | 0.838 ** | 0.150 | −0.207 | 0.570 ** | 0.081 |
4 | −0.352 | −0.389 | 0.322 | −0.324 | −0.339 | −0.131 |
5 | −0.773 ** | −0.650 ** | 0.743 ** | −0.756 ** | −0.020 | −0.201 |
6 | −0.413 | −0.414 | 0.504 * | −0.511 * | 0.156 | 0.094 |
7 | −0.715 ** | −0.466 * | 0.702 ** | −0.711 ** | 0.526 * | 0.389 |
8 | −0.611 ** | −0.493 ** | 0.614 ** | −0.625 ** | 0.625 ** | −0.520 * |
9 | −0.001 | −0.054 | 0.026 | −0.036 | −0.049 | - |
10 | −0.594 ** | 0.175 | 0.601 ** | −0.590 ** | 0.241 | 0.336 |
11 | −0.548 ** | 0.110 | 0.501 ** | −0.543 ** | 0.256 | 0.059 |
12 | −0.172 | −0.362 | 0.168 | −0.178 | −0.004 | 0.016 |
Month | α (μmolCO2·μmol−1) | (μmolCO2·m−2·s−1) | (μmolCO2·m−2·s−1) | Number of Samples (n) | R2 | p |
---|---|---|---|---|---|---|
April | 0.0757 | 14.73 | 3.80 | 773 | 0.25 | <0.01 |
May | 0.0544 | 21.51 | 3.46 | 863 | 0.47 | <0.01 |
June | 0.0479 | 16.22 | 2.77 | 865 | 0.51 | <0.01 |
July | 0.0286 | 19.31 | 3.38 | 895 | 0.65 | <0.01 |
August | 0.0136 | 21.92 | 3.10 | 837 | 0.58 | <0.01 |
September | 0.0186 | 10.10 | 2.05 | 761 | 0.36 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, L.; Luo, H.; Wang, W.; Li, P. Characteristics of Carbon Fluxes and Their Environmental Control in Chenhu Wetland, China. Water 2024, 16, 3169. https://doi.org/10.3390/w16223169
Zhang Y, Liu L, Luo H, Wang W, Li P. Characteristics of Carbon Fluxes and Their Environmental Control in Chenhu Wetland, China. Water. 2024; 16(22):3169. https://doi.org/10.3390/w16223169
Chicago/Turabian StyleZhang, Ya, Li Liu, Hua Luo, Wei Wang, and Peng Li. 2024. "Characteristics of Carbon Fluxes and Their Environmental Control in Chenhu Wetland, China" Water 16, no. 22: 3169. https://doi.org/10.3390/w16223169
APA StyleZhang, Y., Liu, L., Luo, H., Wang, W., & Li, P. (2024). Characteristics of Carbon Fluxes and Their Environmental Control in Chenhu Wetland, China. Water, 16(22), 3169. https://doi.org/10.3390/w16223169