Applying a Comprehensive Model for Single-Ring Infiltration: Assessment of Temporal Changes in Saturated Hydraulic Conductivity and Physical Soil Properties
<p>Timeline of the field measurements (i.e., Beerkan infiltration tests and soil sampling) carried out under minimum tillage (MT) and no tillage (NT) plots in the 5 sampling dates (i.e., from 1 to 5). Numbers marked with lowercase or uppercase green letters represent the number of days elapsed between the beginning and the end of a single sampling date (d) and the time between two successive sampling dates (D). The daily rainfall was reported as a black continuous line.</p> "> Figure 2
<p>Box plots of soil water content at the time of sampling (θ<span class="html-italic"><sub>i</sub></span>) and soil bulk density (ρ<sub>b</sub>) carried out for each sampling date (1 to 5) under minimum tillage (MT) and no tillage (NT). The thick red–green line within each box represents the mean value (the fine black line, the median); for improved interpretation, mean values are also reported by numbers. Circles represent outliers. For a given soil management, inferences of the THSD-test between dates (i.e., x vs. y) are summarized on the right (* <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; n.s. not significant). For a given sampling date, inferences of the two tailed <span class="html-italic">t</span>-test between MT and NT were reported under the NT boxes (* <span class="html-italic">p</span> < 0.05; n.s. not significant).</p> "> Figure 3
<p>Mean values of the measured soil water retention data (Obs) for each sampling time (1 to 5) for minimum tillage (MT) and no tillage (NT) systems. The Brooks and Corey (BC) fitting curve (lines) are also reported (sample size, <span class="html-italic">N,</span> was between 5 and 12).</p> "> Figure 4
<p>Cumulative infiltration carried out under minimum tillage and no tillage plots (MT and NT) during the five sampling dates. Note that mean curves were represented with black-red dashed lines.</p> "> Figure 5
<p>Success percentage of saturated hydraulic conductivity estimation obtained with the five calculation approaches (A1 to A5). The acronyms CI, CL, and DL refer to fitting methods used to analyze the transient-state data (i.e., cumulative infiltration, cumulative linearization, and differential linearization, respectively), while SS refers to steady-state data. A1 to A4 refer to the Stewart and Abou Najm [<a href="#B35-water-16-02950" class="html-bibr">35</a>] model, while A5 refers to the SSBI method (Bagarello et al. [<a href="#B51-water-16-02950" class="html-bibr">51</a>]). Note that, for each soil management, the sample size N = 34 refers to the sum of the five sampling dates.</p> "> Figure 6
<p>Empirical cumulative frequency distribution of the saturated hydraulic conductivity (<span class="html-italic">K<sub>s</sub></span>) obtained from different calculation criteria and considering the minimum dataset (N = 44).</p> "> Figure 7
<p>Comparison between estimated <span class="html-italic">K<sub>s</sub></span> values obtained with A5 criterion (<span class="html-italic">K<sub>s</sub></span>–A5) against the calculation criteria A1, A3, and A4 and different fitting methods CI, CL, and DL (<span class="html-italic">K<sub>s</sub></span>–A<sub>n</sub>) using the minimum dataset (N = 44).</p> "> Figure 8
<p>Box plots of saturated hydraulic conductivity (<span class="html-italic">K<sub>s</sub></span>) at different sampling dates for minimum tillage (MT) and no tillage (NT) management systems conducted using the A1, A3<sub>SS</sub>, and A5 (SSBI) approaches. For a given soil management, inferences of the THSD test between dates (i.e., x vs. y) are summarized on the right (* <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; n.s. not significant). For a given sampling date, inferences of the two tailed <span class="html-italic">t</span>-test between MT and NT were reported near NT boxes (* <span class="html-italic">p</span> < 0.05; n.s. not significant). For the general interpretation on box plots, please refer to the captions in <a href="#water-16-02950-f002" class="html-fig">Figure 2</a>. Note that the discrepancies regarding the statistical significances among the three calculation criteria are shown with red character.</p> "> Figure 9
<p>Ratio of saturated hydraulic conductivity obtained with approaches A1 and A5 (SSBI) against the relative error of the fitting of the functional relationships to the experimental data (<b>a</b>), and examples of fitting accuracy for the minimum (Er<sub>FIT</sub> = 1.8%; experiment MT1-SD3) (<b>b</b>), intermediate (Er<sub>FIT</sub> = 15.8%; NT1-SD3) (<b>c</b>), and maximum (Er<sub>FIT</sub> = 31.7%; NT5-SD5) (<b>d</b>) values, as labeled in subpanel (<b>a</b>) (black-edged points). The black continuous regression line corresponds to the whole set of data.</p> "> Figure 10
<p>Normalized pore volume distributions and corresponding modal diameters (continuous and dotted lines, respectively) for the first (1) and last (5) sampling dates under no tillage, NT, and minimum tillage, MT (<b>a</b>), and a correlation between the saturated hydraulic conductivity (<span class="html-italic">K<sub>s</sub></span>) and modal pores diameter (<span class="html-italic">d<sub>mode</sub></span>) for all sampling dates (<b>b</b>). Note that the <span class="html-italic">K<sub>s</sub></span> values refer to the medians obtained with Approach 5 (SSBI).</p> ">
Abstract
:1. Introduction
2. The Comprehensive Infiltration Model by Stewart and Abou Najm
3. Materials and Methods
3.1. Long-Term Experiment Field and Lab Measurements
3.2. Data Analysis
4. Results
4.1. Sampling Dates and Temporal Changes of θi and ρb
4.2. Soil Water Retention Curve: Model Parametrization and Temporal Changes
4.3. Cumulative Infiltration
4.4. Saturated Hydraulic Conductivity: Models Evaluation and Comparison
4.5. Temporal Changes of Ks
5. Discussion
5.1. Usability of the Stewart and Abou Najm Model and Ks Differences Among Approaches
5.2. Temporal Variability of Soil Physical and Hydraulic Properties
5.3. Impact of Minimum Tillage and No Tillage on the Physical and Hydraulic Properties of the Soil
6. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jarvis, N.; Larsbo, M.; Lewan, E.; Garré, S. Improved descriptions of soil hydrology in crop models: The elephant in the room? Agric. Syst. 2022, 202, 103477. [Google Scholar] [CrossRef]
- Amoozegar, A.; Warrick, A.W. Hydraulic Conductivity of Saturated Soils: Field Methods. In Methods of Soil Analysis; Klute, A., Ed.; American Society of Agronomy, Inc. & Soil Science Society of America, Inc.: Madison, WI, USA, 1986. [Google Scholar] [CrossRef]
- Hillel, D. Environmental Soil Physics; Academic Press: San Diego, CA, USA, 1998; p. 771. [Google Scholar]
- Parvin, N.; Sandin, M.; Larsbo, M. Seedbed consolidation and surface sealing for soils of different texture and soil organic carbon contents. Soil Tillage Res. 2021, 206, 104849. [Google Scholar] [CrossRef]
- Passioura, J.B. Soil structure and plant growth. Aust. J. Soil Res. 1991, 29, 717–728. [Google Scholar] [CrossRef]
- Horton, R.; Ankeny, M.D.; Allmaras, R.R. Effects of compaction on soil hydraulic properties. In Soil Compaction in Crop Production; Soane, B.D., van Ouwerkerk, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 141–165. [Google Scholar]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Keller, T.; Sutter, J.A.; Nisse, K.; Rydberg, T. Using field measurement of saturated soil hydraulic conductivity to detect low-yielding zones in three Swedish fields. Soil Till. Res. 2012, 124, 68–77. [Google Scholar] [CrossRef]
- Drewry, J.J.; McNeill, S.J.; Carrick, S.; Lynn, I.H.; Eger, A.; Payne, J.; Rogers, G.; Thomas, S.M. Temporal trends in soil physical properties under cropping with intensive till and no-till management. N. Z. J. Agric. Res. 2019, 64, 223–244. [Google Scholar] [CrossRef]
- Geris, J.; Verrot, L.; Gao, L.; Peng, X.; Oyesiku-Blakemore, J.; Smith, J.U.; Hodson, M.E.; McKenzie, B.M.; Zhang, G.; Hallett, P.D. Importance of short-term temporal variability in soil physical properties for soil water modelling under different tillage practices. Soil Tillage Res. 2021, 213, 105132. [Google Scholar] [CrossRef]
- Strudley, M.W.; Green, T.R.; Ascough, J.C., II. Tillage effects on soil hydraulic properties in space and time: State of the science. Soil Tillage Res. 2008, 99, 4–48. [Google Scholar] [CrossRef]
- Schwen, A.; Bodner, G.; Scholl, P.; Buchan, G.D.; Loiskandl, W. Temporal dynamics of soil hydraulic properties and the water-conducting porosity under different tillage. Soil Tillage Res. 2011, 113, 89–98. [Google Scholar] [CrossRef]
- Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.P. Environmental and management influences on temporal variability of near saturated soil hydraulic properties. Geoderma 2013, 204–205, 120–129. [Google Scholar] [CrossRef]
- Lacolla, G.; Caranfa, D.; De Corato, U.; Cucci, G.; Mastro, M.A.; Stellacci, A.M. Maize Yield Response, Root Distribution and Soil Desiccation Crack Features as Affected by Row Spacing. Plants 2023, 12, 1380. [Google Scholar] [CrossRef] [PubMed]
- Alletto, L.; Coquet, Y. Temporal and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management systems. Geoderma 2009, 152, 85–94. [Google Scholar] [CrossRef]
- Kreiselmeier, J.; Chandrasekhar, P.; Weninger, T.; Schwen, A.; Julich, S.; Feger, K.-H.; Schwärzel, K. Temporal variations of the hydraulic conductivity characteristic under conventional and conservation tillage. Geoderma 2020, 362, 114127. [Google Scholar] [CrossRef]
- Popolizio, S.; Stellacci, A.M.; Giglio, L.; Barca, E.; Spagnuolo, M.; Castellini, M. Seasonal and Soil Use Dependent Variability of Physical and Hydraulic Properties: An Assessment under Minimum Tillage and No-Tillage in a Long-Term Experiment in Southern Italy. Agronomy 2022, 12, 3142. [Google Scholar] [CrossRef]
- Hu, W.; Tabley, F.; Beare, M.; Tregurtha, C.; Gillespie, R.; Qiu, W.; Gosden, P. Short-term dynamics of soil physical properties as affected by compaction and tillage in a silt loam soil. Vadose Zone J. 2018, 17, 180115. [Google Scholar] [CrossRef]
- Rousseva, S.; Torri, D.; Pagliai, M. Effect of rain on the macroporosity at the soil surface. Eur. J. Soil Sci. 2002, 53, 83–94. [Google Scholar] [CrossRef]
- Castellini, M.; Iovino, M.; Bagarello, V. Testing the hydrodynamic behavior of a loam soil by beerkan infiltration runs with six heights of water pouring. J. Hydrol. 2024, 630, 130697. [Google Scholar] [CrossRef]
- Angulo-Jaramillo, R.; Moreno, F.; Clothier, B.E.; Thony, J.L.; Vachaud, G.; Fernandez-Boy, E.; Cayuela, J.A. Seasonal variation of hydraulic properties of soils measured using a tension disk infiltrometer. Soil Sci. Soc. Am. J. 1997, 61, 27–32. [Google Scholar] [CrossRef]
- Peng, X.; Horn, R.; Smucker, A. Pore shrinkage dependency of inorganic and organic soils on wetting and drying cycles. Soil Sci. Soc. Am. J. 2007, 71, 1095–1103. [Google Scholar] [CrossRef]
- Blanchy, G.; Albrecht, L.; Bragato, G.; Garré, S.; Jarvis, N.; and Koestel, J. Impacts of soil management and climate on saturated and near-saturated hydraulic conductivity: Analyses of the Open Tension-disk Infiltrometer Meta-database (OTIM). EGUsphere 2022, preprint. [Google Scholar] [CrossRef]
- Kool, D.; Tong, B.; Tian, Z.; Heitman, J.L.; Saur, T.J.; Horton, R. Soil water retention and hydraulic conductivity dynamics following tillage. Soil Tillage Res. 2019, 193, 95–100. [Google Scholar] [CrossRef]
- Bormann, H.; Klaassen, K. Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils. Geoderma 2008, 145, 295–302. [Google Scholar] [CrossRef]
- Jirků, V.; Kodešová, R.; Nikodem, A.; Mühlhanselová, M.; Žigová, A. Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma 2013, 204–205, 43–58. [Google Scholar] [CrossRef]
- Castellini, M.; Stellacci, A.M.; Barca, E.; Iovino, M. Application of multivariate analysis techniques for selecting soil physical quality indicators: A case study in long-term field experiments in Apulia (southern Italy). Soil Sci. Soc. Am. J. 2019, 83, 707–720. [Google Scholar] [CrossRef]
- Iovino, M.; Abou Najm, M.R.; Angulo-Jaramillo, R.; Bagarello, V.; Castellini, M.; Concialdi, P.; Di Prima, S.; Lassabatere, L.; Stewart, R.D. Parameterization of a comprehensive explicit model for single-ring infiltration. J. Hydrol. 2021, 601, 126801. [Google Scholar] [CrossRef]
- Castellini, M.; Di Prima, S.; Moret-Fernández, D.; Lassabatere, L. Rapid and accurate measurement methods for determining soil hydraulic properties: A review. J. Hydrol. Hydromech. 2021, 69, 1–19. [Google Scholar] [CrossRef]
- Braud, I.; De Condappa, D.; Soria, J.M.; Haverkamp, R.; Angulo-Jaramillo, R.; Galle, S.; Vauclin, M. Use of scaled forms of the infiltration equation for the estimation of unsaturated soil hydraulic properties (the Beerkan method). Eur. J. Soil Sci. 2005, 56, 361–374. [Google Scholar] [CrossRef]
- Haverkamp, R.; Ross, P.J.; Smettem, K.R.J.; Parlange, J.Y. 3-dimensional analysis of infiltration from the disc infiltrometer. 2. Physically-based infiltration equation. Water Resour. Res. 1994, 30, 2931–2935. [Google Scholar] [CrossRef]
- Angulo-Jaramillo, R.; Bagarello, V.; Di Prima, S.; Gosset, A.; Iovino, M.; Lassabatere, L. Beerkan Estimation of Soil Transfer parameters (BEST) across soils and scales. J. Hydrol. 2019, 576, 239–261. [Google Scholar] [CrossRef]
- Bagarello, V.; Dohnal, M.; Iovino, M.; Lai, J. Correspondence between theory and practice of a Beerkan infiltration experiment. Vadose Zone J. 2022, 21, e20220. [Google Scholar] [CrossRef]
- Stewart, R.D.; Abou Najm, M.R. A Comprehensive model for single ring infiltration I: Initial water content and soil hydraulic properties. Soil Sci. Soc. Am. J. 2018, 82, 548–557. [Google Scholar] [CrossRef]
- Stewart, R.D.; Abou Najm, M.R. A Comprehensive model for single ring infiltration II: Estimating field-saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 2018, 82, 558–567. [Google Scholar] [CrossRef]
- Di Prima, S.; Castellini, M.; Abou Najm, M.R.; Stewart, R.D.; Angulo-Jaramillo, R.; Winiarski, T.; Lassabatere, L. Experimental Assessment of a New Comprehensive Model for Single Ring Infiltration Data. J. Hydrol. 2019, 573, 937–951. [Google Scholar] [CrossRef]
- Körschens, M. The importance of long-term field experiments for soil science and environmental research—A review. Plant Soil Environ. 2006, 52, 1–8. [Google Scholar]
- Peterson, G.A.; Lyon, D.J.; Fenster, C.R. Valuing long-term field experiments: Quantifying the scientific contribution of a long-term tillage experiment. Soil Sci. Soc. Am. J. 2012, 76, 757–765. [Google Scholar] [CrossRef]
- Stellacci, A.M.; Castellini, M.; Diacono, M.; Rossi, R.; Gattullo, C.E. Assessment of Soil Quality under Different Soil Management Strategies: Combined Use of Statistical Approaches to Select the Most Informative Soil Physico-Chemical Indicators. Appl. Sci. 2021, 11, 5099. [Google Scholar] [CrossRef]
- Reichert, J.M.; Rosa, V.T.; Vogelmann, E.S.; Rosa, D.P.; Horn, R.; Reinert, D.J.; Sattler, A.; Denardin, J.E. Conceptual framework for capacity and intensity physical soil properties affected by short and long-term (14 years) continuous no-tillage and controlled traffic. Soil Tillage Res. 2016, 158, 123–136. [Google Scholar] [CrossRef]
- Mathers, C.; Heitman, J.; Huseth, A.; Locke, A.; Osmond, D.; Woodley, A. No-till imparts yield stability and greater cumulative yield under variable weather conditions in the southeastern USA piedmont. Field Crops Res. 2023, 292, 108811. [Google Scholar] [CrossRef]
- Castellini, M.; Vonella, A.V.; Ventrella, D.; Rinaldi, M.; Baiamonte, G. Determining soil hydraulic properties using infiltrometer techniques: An assessment of temporal variability in a long-term experiment under minimum- and no-tillage soil management. Sustainability 2020, 12, 5019. [Google Scholar] [CrossRef]
- Bagarello, V.; Iovino, M.; Reynolds, W. Measuring hydraulic conductivity in a cracking clay soil using the Guelph permeameter. Trans. ASAE 1999, 42, 957–964. [Google Scholar] [CrossRef]
- Philip, J. The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Sci. 1957, 84, 257–264. [Google Scholar] [CrossRef]
- Zhang, R. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J. 1997, 61, 1024. [Google Scholar] [CrossRef]
- Smiles, D.; Knight, J. A note on the use of the Philip infiltration equation. Soil Res. 1976, 14, 103–108. [Google Scholar] [CrossRef]
- Vandervaere, J.-P.; Peugeot, C.; Vauclin, M.; Angulo Jaramillo, R.; Lebel, T. Estimating hydraulic conductivity of crusted soils using disc infiltrometers and minitensiometers. J. Hydrol. HAPEX-Sahel 1997, 188–189, 203–223. [Google Scholar] [CrossRef]
- Vandervaere, J.-P.; Vauclin, M.; Elrick, D.E. Transient flow from tension infiltrometers I. The two-parameter equation. Soil Sci. Soc. Am. J. 2000, 64, 1263–1272. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, T. Hydraulic Properties of Porous Media; Colorado State University: Fort Collins, CO, USA, 1964; Hydrology Papers 3. [Google Scholar]
- Lassabatere, L.; Angulo-Jaramillo, R.; Soria Ugalde, J.M.; Cuenca, R.; Braud, I.; Haverkamp, R. Beerkan estimation of soil transfer parameters through infiltration experiments—BEST. Soil Sci. Soc. Am. J. 2006, 70, 521. [Google Scholar] [CrossRef]
- Bagarello, V.; Di Prima, S.; Iovino, M. Estimating saturated soil hydraulic conductivity by the near steady-state phase of a Beerkan infiltration test. Geoderma 2017, 303, 70–77. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 11th ed.; USDA–NRCS: Washington, DC, USA, 2010. [Google Scholar]
- Pastore, M.; Calcagnì, A. Measuring distribution similarities between samples: A distribution-free overlapping index. Front. Psychol. 2019, 10, 1089. [Google Scholar] [CrossRef]
- Pastore, M. Overlapping: A R package for Estimating Overlapping in Empirical Distributions. J. Open Source Softw 2018, 3, 1023. [Google Scholar] [CrossRef]
- Srisomkiew, S.; Kawahigashi, M.; Limtong, P.; Yuttum, O. Digital soil assessment of soil fertility for Thai jasmine rice in the Thung Kula Ronghai region, Thailand. Geoderma 2022, 409, 115597. [Google Scholar] [CrossRef]
- Nardi, D.; Marini, L. Role of abandoned grasslands in the conservation of spider communities across heterogeneous mountain landscapes. Agric. Ecosyst. Environ. 2021, 319, 107526. [Google Scholar] [CrossRef]
- Bittelli, M.; Flury, M. Errors in Water Retention Curves Determined with Pressure Plates. Soil Sci. Soc. Am. J. 2009, 73, 1453–1460. [Google Scholar] [CrossRef]
- Schelle, H.; Heise, L.; Janicke, K.; Durner, W. Water retention characteristics of soils over the whole moisture range: A comparison of laboratory methods. Eur. J. Soil Sci. 2013, 64, 814–821. [Google Scholar] [CrossRef]
- Di Prima, S.; Stewart, R.D.; Castellini, M.; Bagarello, V.; Abou Najm, M.R.; Pirastru, M.; Giadrossich, F.; Iovino, M.; Angulo-Jaramillo, R.; Lassabatere, L. Estimating the macroscopic capillary length from Beerkan infiltration experiments and its impact on saturated soil hydraulic conductivity predictions. J. Hydrol. 2020, 589, 125159. [Google Scholar] [CrossRef]
- Bagarello, V.; Di Prima, S.; Iovino, M. Comparing alternative algorithms to analyze the beerkan infiltration experiment. Soil Sci. Soc. Am. J. 2014, 78, 724. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Elrick, D.E. Ponded infiltration from a single ring: I. analysis of steady flow. Soil Sci. Soc. Am. J. 1990, 54, 1233–1241. [Google Scholar] [CrossRef]
- Wu, L.; Pan, L.; Mitchell, J.; Sanden, B. Measuring saturated hydraulic conductivity using a generalized solution for single-ring infiltrometers. Soil Sci. Soc. Am. J. 1999, 63, 788. [Google Scholar] [CrossRef]
- Ghazouani, H.; M’Hamdi, B.D.; Autovino, D.; Bel Haj, A.M.; Rallo, G.; Provenzano, G.; Boujelben, A. Optimizing subsurface dripline installation depth with Hydrus 2D/3D to improve irrigation water use efficiency in the central Tunisia. Int. J. Metrol. Qual. Eng. 2015, 6, 402. [Google Scholar] [CrossRef]
- Castellini, M.; Ventrella, D. Impact of conventional and minimum tillage on soil hydraulic conductivity in typical cropping system in southern Italy. Soil Tillage Res. 2012, 124, 47–56. [Google Scholar] [CrossRef]
- Castellini, M.; Niedda, M.; Pirastru, M.; Ventrella, D. Temporal changes of soil physical quality under two residue management systems. Soil Use Manag. 2014, 30, 423–434. [Google Scholar] [CrossRef]
- Katuwal, S.; Arthur, E.; Tuller, M.; Moldrup, P.; de Jonge, L.W. Quantification of soil pore network complexity with X-ray computed tomography and gas transport measurements. Soil Sci. Soc. Am. J. 2015, 79, 1577–1589. [Google Scholar] [CrossRef]
- Dhaliwal, J.K.; Anderson, S.H.; Lee, J.; Jagadamma, S.; Saha, D. Computed tomography scanning revealed macropore-controlled N2O emissions under long-term tillage and cover cropping practices. Sci. Total Environ. 2024, 926, 171782. [Google Scholar] [CrossRef]
- Dexter, A.R.; Czyz, E.A. Applications of S-theory in the study of soil physical degradation and its consequences. Land Degrad. Dev. 2007, 18, 369–381. [Google Scholar] [CrossRef]
- Turek, M.E.; Armindo, R.A.; Wendroth, O. Hydraulic-energy indices reveals spatial dependence in a subtropical soil under maize crop in southern Brazil. Pedosphere 2021, 31, 771–782. [Google Scholar] [CrossRef]
- Castellini, M.; Diacono, M.; Preite, A.; Montemurro, F. Short- and Medium-Term Effects of On-Farm Compost Addition on the Physical and Hydraulic Properties of a Clay Soil. Agronomy 2022, 12, 1446. [Google Scholar] [CrossRef]
- Park, E.J.; Smucker, A.J.M. Saturated hydraulic conductivity and porosity within macroaggregates modified by tillage. Soil Sci. Soc. Am. J. 2005, 69, 38–45. [Google Scholar] [CrossRef]
MT1 | MT2 | MT3 | MT4 | MT5 | NT1 | NT2 | NT3 | NT4 | NT5 | |
---|---|---|---|---|---|---|---|---|---|---|
θr (cm3 cm−3) | 0.2047 | 0.1794 | 0.1725 | 0.1928 | 0.1566 | 0.1622 | 0.1429 | 0.0999 | 0.1245 | 0.1248 |
θs (cm3 cm−3) | 0.4290 | 0.4295 | 0.4162 | 0.4670 | 0.4400 | 0.3747 | 0.4235 | 0.4000 | 0.4080 | 0.4055 |
hb (cm) | 5.4 | 4.5 | 4.4 | 4.6 | 6.2 | 32.3 | 14.8 | 15.1 | 12.7 | 14.2 |
η (-) | 0.5 | 0.3 | 0.3 | 0.4 | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 |
SE (cm3 cm−3) | 0.0005 | 0.0001 | 0.0008 | 0.0002 | 0.0002 | 0.0013 | 0.0015 | 0.0029 | 0.0016 | 0.0015 |
A1 | A3CI | A3CL | A3DL | A3SS | A4CI | A4CL | A4DL | A4SS | A5 | |
---|---|---|---|---|---|---|---|---|---|---|
N | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
Min | 104.3 | 32.9 | 39.9 | 20.1 | 29.7 | 7.9 | 9.3 | 9.2 | 11.2 | 11.5 |
Max | 12,343.7 | 8881.2 | 9702.3 | 7113.5 | 4849.1 | 2116.0 | 2311.7 | 1694.9 | 1155.4 | 1188.9 |
Mean | 4515.8 a * | 2609.6 bc | 3096.4 b | 1876.9 cd | 1559.9 d | 656.9 e | 777.3 e | 473.8 f | 389.4 f | 400.7 f |
Median | 4301.2 | 2963.6 | 3362.8 | 1452.1 | 1362.1 | 733.0 | 871.0 | 371.7 | 415.6 | 427.7 |
CV | 84.0 | 92.4 | 88.4 | 97.5 | 86.9 | 88.7 | 84.5 | 93.4 | 81.3 | 81.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellini, M.; Prima, S.D.; Giglio, L.; Leogrande, R.; Alagna, V.; Autovino, D.; Rinaldi, M.; Iovino, M. Applying a Comprehensive Model for Single-Ring Infiltration: Assessment of Temporal Changes in Saturated Hydraulic Conductivity and Physical Soil Properties. Water 2024, 16, 2950. https://doi.org/10.3390/w16202950
Castellini M, Prima SD, Giglio L, Leogrande R, Alagna V, Autovino D, Rinaldi M, Iovino M. Applying a Comprehensive Model for Single-Ring Infiltration: Assessment of Temporal Changes in Saturated Hydraulic Conductivity and Physical Soil Properties. Water. 2024; 16(20):2950. https://doi.org/10.3390/w16202950
Chicago/Turabian StyleCastellini, Mirko, Simone Di Prima, Luisa Giglio, Rita Leogrande, Vincenzo Alagna, Dario Autovino, Michele Rinaldi, and Massimo Iovino. 2024. "Applying a Comprehensive Model for Single-Ring Infiltration: Assessment of Temporal Changes in Saturated Hydraulic Conductivity and Physical Soil Properties" Water 16, no. 20: 2950. https://doi.org/10.3390/w16202950
APA StyleCastellini, M., Prima, S. D., Giglio, L., Leogrande, R., Alagna, V., Autovino, D., Rinaldi, M., & Iovino, M. (2024). Applying a Comprehensive Model for Single-Ring Infiltration: Assessment of Temporal Changes in Saturated Hydraulic Conductivity and Physical Soil Properties. Water, 16(20), 2950. https://doi.org/10.3390/w16202950