Emerging Contaminants from Bioplastic Pollution in Marine Waters
"> Figure 1
<p>FTIR spectra of BB4, BB8, and BB9 plastic samples over the range 4000–400 cm<sup>−1</sup>.</p> "> Figure 2
<p><sup>1</sup>H-NMR spectra of BB4 (red), BB8 (green), and BB9 (blue) plastic samples in deuterated acetone, showing characteristic signals of aromatic protons of phthalate esters.</p> "> Figure 3
<p>Chromatograms of each biobag compared to a 3 mg/L standard solution of phthalate ester mix, with relative peak assignment.</p> "> Figure 4
<p>The aromatic region of <sup>1</sup>H-NMR spectra of seawater samples after exposure to biobags for 120 days; asterisk (*) indicates the peaks assigned to H3/H4 and H2/H5 of phthalate.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Chemicals and Selected Phthalates
2.3. FTIR and 1H-NMR Spectroscopy
2.4. HPLC-DAD Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Biobag Composition Characterization
3.2. Detection and Quantification of Phthalate Esters in Biobag Samples
3.3. Detection of Phthalates in Seawater Samples After Degradation Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Urbanek, A.K.; Rymowicz, W.; Mirończuk, A.M. Degradation of Plastics and Plastic-Degrading Bacteria in Cold Marine Habitats. Appl. Microbiol. Biotechnol. 2018, 102, 7669–7678. [Google Scholar] [CrossRef]
- Lee, A.; Liew, M.S. Ecologically Derived Waste Management of Conventional Plastics. J. Mater. Cycles Waste Manag. 2020, 22, 1–10. [Google Scholar] [CrossRef]
- Jambeck, J.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic Waste Inputs from Land into the Ocean. Mar. Pollut. 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S.; Lindeque, P.; Galloway, T.S.; Halsband, C.; Galloway, T.S. Microplastics as Contaminants in the Marine Environment: A Review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Nelms, S.E.; Duncan, E.M.; Broderick, A.C.; Galloway, T.S.; Godfrey, M.H.; Hamann, M.; Lindeque, P.K.; Godley, B.J. Plastic and Marine Turtles: A Review and Call for Research Sarah. ICES J. Mar. Sci. 2016, 73, 165–181. [Google Scholar] [CrossRef]
- Viera, J.S.C.; Marques, M.R.C.; Nazareth, M.C.; Jimenez, P.C.; Castro, Í.B. On Replacing Single-Use Plastic with so-Called Biodegradable Ones: The Case with Straws. Environ. Sci. Policy 2020, 106, 177–181. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Kwan, C.S.; Takada, H. Release of Additives and Monomers from Plastic Wastes. Handb. Environ. Chem. 2019, 78, 51–70. [Google Scholar] [CrossRef]
- Hermabessiere, L.; Dehaut, A.; Paul-Pont, I.; Lacroix, C.; Jezequel, R.; Soudant, P.; Duflos, G. Occurrence and Effects of Plastic Additives on Marine Environments and Organisms: A Review. Chemosphere 2017, 182, 781–793. [Google Scholar] [CrossRef] [PubMed]
- Suhrhoff, T.J.; Scholz-Böttcher, B.M. Qualitative Impact of Salinity, UV Radiation and Turbulence on Leaching of Organic Plastic Additives from Four Common Plastics—A Lab Experiment. Mar. Pollut. Bull. 2016, 102, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Dhavamani, J.; Beck, A.J.; Gledhill, M.; El-Shahawi, M.S.; Kadi, M.W.; Ismail, I.M.I.; Achterberg, E.P. The Effects of Salinity, Temperature, and UV Irradiation on Leaching and Adsorption of Phthalate Esters from Polyethylene in Seawater. Sci. Total Environ. 2022, 838, 155461. [Google Scholar] [CrossRef]
- Muniyasamy, S.; Ofosu, O.; John, M.J.; Anandjiwala, R.D. Mineralization of Poly(Lactic Acid) (PLA), Poly(3-Hydroxybutyrate-Co-Valerate) (PHBV) and PLA/PHBV Blend in Compost and Soil Environments. J. Renew. Mater. 2016, 4, 133–145. [Google Scholar] [CrossRef]
- Muneer, F. Plastics Versus Bioplastics. Mater. Res. Found. 2021, 99, 193–237. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Sustainability of Biodegradable Plastics: New Problem or Solution to Solve the Global Plastic Pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Massardier-Nageotte, V.; Pestre, C.; Cruard-Pradet, T.; Bayard, R. Aerobic and Anaerobic Biodegradability of Polymer Films and Physico-Chemical Characterization. Polym. Degrad. Stab. 2006, 91, 620–627. [Google Scholar] [CrossRef]
- Kliem, S.; Kreutzbruck Marc, B.C. Review on the Biological Degradation of Polymers in Various Environments. Materials 2020, 13, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Conn, R.E.; Kolstad, J.J.; Borzelleca, J.F.; Dixler, D.S.; Filer, L.J.; Ladu, B.N.; Pariza, M.W. Safety Assessment of Polylactide (PLA) for Use as a Food-Contact Polymer. Food Chem. Toxicol. 1995, 33, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.; Ngouajio, M.; Fernandez, R.T. Biodegradation and Hydrolysis Rate of Aliphatic Aromatic Polyester. Polym. Degrad. Stab. 2010, 95, 2641–2647. [Google Scholar] [CrossRef]
- ASTM D6400-19; Standard Specification for labelling of Plastic Designed to Be Aerobically Composted in Municipal or Industrial Facilities. 2019. Available online: https://cdn.standards.iteh.ai/samples/103222/63cb13be215946d3bed6ed7a9071e413/ASTM-D6400-19.pdf (accessed on 12 November 2024).
- Jian, J.; Xiangbin, Z.; Xianbo, H. An Overview on Synthesis, Properties and Applications of Poly(Butylene-Adipate-Co-Terephthalate)–PBAT. Adv. Ind. Eng. Polym. Res. 2020, 3, 19–26. [Google Scholar] [CrossRef]
- Net, S.; Sempéré, R.; Delmont, A.; Paluselli, A.; Ouddane, B. Occurrence, Fate, Behavior and Ecotoxicological State of Phthalates in Different Environmental Matrices. Environ. Sci. Technol. 2015, 49, 4019–4035. [Google Scholar] [CrossRef]
- Huang, J.; Nkrumah, P.N.; Li, Y.; Appiah-Sefah, G. Chemical Behavior of Phthalates under Abiotic Conditions in Landfills. Rev. Environ. Contam. Toxicol. 2013, 224, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lu, Q.; de Toledo, R.A.; Shim, H. Degradation of Di-2-Ethylhexyl Phthalate (DEHP) by an Indigenous Isolate Acinetobacter Sp. SN13. Int. Biodeterior. Biodegrad. 2017, 117, 205–214. [Google Scholar] [CrossRef]
- Mondal, T.; Mondal, S.; Ghosh, S.K.; Pal, P.; Soren, T.; Pandey, S.; Maiti, T.K. Phthalates—A Family of Plasticizers, Their Health Risks, Phytotoxic Effects, and Microbial Bioaugmentation Approaches. Environ. Res. 2022, 214, 114059. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.; Li, Y.; Gao, J. Interaction between Three Marine Microalgae and Two Phthalate Acid Esters. Ecotoxicol. Environ. Saf. 2019, 170, 407–411. [Google Scholar] [CrossRef]
- Lu, I.-C.; Chao, H.-R.; Mansor, W.-N.-W.; Peng, C.-W.; Hsu, Y.-C.; Yu, T.-Y.; Chang, W.-H.; Fu, L.-M. Levels of Phthalates, Bisphenol-A, Nonylphenol, and Microplastics in Fish in the Estuaries of Northern Taiwan and the Impact on Human Health. Toxics. 2021, 9, 246. [Google Scholar] [CrossRef]
- Eales, J.; Bethel, A.; Galloway, T.; Hopkinson, P.; Morrissey, K.; Short, R.E.; Garside, R. Human Health Impacts of Exposure to Phthalate Plasticizers: An Overview of Reviews. Environ. Int. 2022, 158, 106903. [Google Scholar] [CrossRef]
- Andjelković, T.; Bogdanović, D.; Kostić, I.; Kocić, G.; Nikolić, G.; Pavlović, R. Phthalates Leaching from Plastic Food and Pharmaceutical Contact Materials by FTIR and GC-MS. Environ. Sci. Pollut. Res. 2021, 28, 31380–31390. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, A.; Zuccarini, M.; Cichelli, A.; Khan, H.; Reale, M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. Int. J. Environ. Res. Public Health 2020, 17, 5655. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huang, P.; Qiu, C.; Li, J.; Hu, S.; Sun, L.; Bai, Y.; Gao, F.; Li, C.; Liu, N.; et al. Occurrence, Migration and Health Risk of Phthalates in Tap Water, Barreled Water and Bottled Water in Tianjin, China. J. Hazard. Mater. 2021, 408, 124891. [Google Scholar] [CrossRef] [PubMed]
- Atiwesh, G.; Mikhael, A.; Parrish, C.C.; Banoub, J.; Le, T.A.T. Environmental Impact of Bioplastic Use: A Review. Heliyon 2021, 7, e07918. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, Z. Observing Phthalate Leaching from Plasticized Polymer Films at the Molecular Level. Langmuir 2014, 30, 4933–4944. [Google Scholar] [CrossRef]
- Al-Natsheh, M.; Alawi, M.; Fayyad, M.; Tarawneh, I. Simultaneous GC-MS Determination of Eight Phthalates in Total and Migrated Portions of Plasticized Polymeric Toys and Childcare Articles. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 985, 103–109. [Google Scholar] [CrossRef]
- Jalil, D.; Fakhre, N. Extraction, Identification and Determination of Di-(2ethylhexyl) Phthalate (DEHP) Plasticizer in Some Stored Blood Samples Bags Using Different Spectroscopic Techniques. Haitham J. Pure Appl. Sci. 2017, 29, 155–170. [Google Scholar]
- Mckay, R.T. How the 1D-NOESY Suppresses Solvent Signal in Metabonomics NMR Spectroscopy: An Examination of the Pulse Sequence Components and Evolution. Concepts Magn. Reson. Part A Bridg. Educ. Res. 2011, 38A, 197–220. [Google Scholar] [CrossRef]
- Gao, X.; Yang, B.; Tang, Z.; Luo, X.; Wang, F.; Xu, H.; Cai, X. Determination of Phthalates Released from Paper Packaging Materials by Solid-Phase Extraction-High-Performance Liquid Chromatography. J. Chromatogr. Sci. 2014, 52, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.F.; Rhim, J.W.; Hong, S.I. Preparation of Poly(Lactide)/Poly(Butylene Adipate-Co-Terephthalate) Blend Films Using a Solvent Casting Method and Their Food Packaging Application. LWT Food Sci. Technol. 2016, 68, 454–461. [Google Scholar] [CrossRef]
- Cai, Y.; Lv, J.; Feng, J. Spectral Characterization of Four Kinds of Biodegradable Plastics: Poly (Lactic Acid), Poly (Butylenes Adipate-Co-Terephthalate), Poly (Hydroxybutyrate-Co-Hydroxyvalerate) and Poly (Butylenes Succinate) with FTIR and Raman Spectroscopy. J. Polym. Environ. 2013, 21, 108–114. [Google Scholar] [CrossRef]
- Xu, Z.; Xiong, X.; Zhao, Y.; Xiang, W.; Wu, C. Pollutants Delivered Every Day: Phthalates in Plastic Express Packaging Bags and Their Leaching Potential. J. Hazard. Mater. 2020, 384, 121282. [Google Scholar] [CrossRef] [PubMed]
- SpectraBase. Available online: https://spectrabase.com/spectrum/7fBI4GrVSem (accessed on 25 July 2024).
- Europe Plastic. Plastics—The Fast Facts 2023. 2023. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ (accessed on 12 November 2024).
- Cao, Y.; Lin, H.; Zhang, K.; Xu, S.; Yan, M.; Leung, K.M.Y.; Lam, P.K.S. Microplastics: A Major Source of Phthalate Esters in Aquatic Environments. J. Hazard. Mater. 2022, 432, 128731. [Google Scholar] [CrossRef] [PubMed]
Light Exposure | Biobag | Total Sample Weight (g) | Container |
---|---|---|---|
Light | BB4 | 2.150 | Quartz flasks |
BB8 | 1.296 | ||
BB9 | 1.921 | ||
BLANK | - | ||
Dark | BB4 | 2.256 | Dark glass bottles |
BB8 | 1.015 | ||
BB9 | 1.988 | ||
BLANK | - |
Sample Weight (mg) | Phthalate Ester | RT (min) | Conc. (mg/L) | Conc. (μg/g) | |
---|---|---|---|---|---|
BB4 | 8.6 | DMP | 2.28 | 0.41 | 95.58 |
DEP | 4.63 | 0.11 | 25.58 | ||
DBP | 11.77 | 1.67 | 389.07 | ||
DEHP | 24.25 | 3.31 | 770.47 | ||
BB8 | 7.1 | DMP | 2.26 | 0.13 | 35.49 |
DEP | 4.69 | 0.088 | 24.79 | ||
DBP | 11.77 | 1.55 | 436.06 | ||
DEHP | 24.25 | 0.51 | 143.94 | ||
BB9 | 6.0 | DMP | 2.18 | 0.052 | 17.33 |
DBP | 11.76 | 0.99 | 332.00 | ||
DEHP | 24.25 | 0.27 | 95.33 | ||
DnOP | 25.39 | 0.168 | 56.00 |
BB4 LIGHT | BB4 DARK | BB8 LIGHT | BB8 DARK | BB9 LIGHT | BB9 DARK | |
---|---|---|---|---|---|---|
7.94 ppm | 1.425 | 0.893 | 0.696 | 0.065 | 1.143 | 0.470 |
8.10 ppm | 1.523 | 0.617 | 0.709 | 0.020 | 0.893 | 0.624 |
Average Phthalate Concentration in Microcosm (mg/L) | Leachate Concentration per Biobag (μg/g) | Leachate % | |
---|---|---|---|
BB4 LIGHT | 1.47 | 342.79 | 26.77 |
BB4 DARK | 0.756 | 167.33 | 13.07 |
BB8 LIGHT | 0.70 | 271.03 | 42.33 |
BB8 DARK | 0.043 | 20.94 | 3.27 |
BB9 LIGHT | 1.018 | 264.97 | 52.92 |
BB9 DARK | 0.55 | 137.58 | 27.48 |
Compound | LOD (µg/L) | LOQ (µg/L) |
---|---|---|
DMP | 3.39 ± 0.64 | 11.23 ± 2.13 |
DEP | 5.21 ± 1.15 | 17.36 ± 3.83 |
DBP | 4.71 ± 0.3 | 15.71 ± 1.01 |
DEHP | 4.60 ± 0.71 | 15.32 ± 2.36 |
DnOP | 8.62 ± 1.82 | 28.74 ± 6.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boldrini, A.; Gaggelli, N.; Falcai, F.; Polvani, A.; Talarico, L.; Galgani, L.; Cirrone, R.; Liu, X.; Loiselle, S. Emerging Contaminants from Bioplastic Pollution in Marine Waters. Water 2024, 16, 3676. https://doi.org/10.3390/w16243676
Boldrini A, Gaggelli N, Falcai F, Polvani A, Talarico L, Galgani L, Cirrone R, Liu X, Loiselle S. Emerging Contaminants from Bioplastic Pollution in Marine Waters. Water. 2024; 16(24):3676. https://doi.org/10.3390/w16243676
Chicago/Turabian StyleBoldrini, Amedeo, Nicola Gaggelli, Francesco Falcai, Alessio Polvani, Luigi Talarico, Luisa Galgani, Riccardo Cirrone, Xinyu Liu, and Steven Loiselle. 2024. "Emerging Contaminants from Bioplastic Pollution in Marine Waters" Water 16, no. 24: 3676. https://doi.org/10.3390/w16243676
APA StyleBoldrini, A., Gaggelli, N., Falcai, F., Polvani, A., Talarico, L., Galgani, L., Cirrone, R., Liu, X., & Loiselle, S. (2024). Emerging Contaminants from Bioplastic Pollution in Marine Waters. Water, 16(24), 3676. https://doi.org/10.3390/w16243676