Catchment Attributes Influencing Performance of Global Streamflow Reanalysis
<p>Spatial distributions of <span class="html-italic">KGE</span> (<b>a</b>) and its three components (<b>b</b>–<b>d</b>).</p> "> Figure 2
<p>Heatmap of the correlation between between <span class="html-italic">KGE</span> and its components (<span class="html-italic">r</span>, <span class="html-italic">γ</span>, <span class="html-italic">β</span>) and catchment attributes. The cells with hatching indicate a <span class="html-italic">p</span>-value of <0.05.</p> "> Figure 3
<p>Summary plots showing each dot corresponds to a catchment, and the vertical distribution indicates the density.</p> "> Figure 4
<p>Additive effects of two attributes. The first box shows the SHAP value of the first attribute. The following three boxes represent the SHAP values of the first attribute combined with the low, intermediate, and high values of the second attribute.</p> "> Figure 5
<p>SHAP dependence plots depicting the mechanism by which the SHAP values change along with catchment attributes. Each subfigure represents a scatter plot of the SHAP value of the attribute versus its corresponding attribute value. Each dot represents a catchment and the density indicates the concentration of the dots (<b>a</b>–<b>l</b>).</p> "> Figure 6
<p>Spatial pattern of the key catchment attributes based on SHAP values. The spatial distribution of the clusters for primary drivers (<b>a</b>); and the boxplots of key catchment attributes’ SHAP values of each cluster (<b>b</b>).</p> "> Figure 7
<p>Relative contribution of key catchment attributes for seasonal <span class="html-italic">KGE</span>: (<b>a</b>) December–January–February (DJF); (<b>b</b>) March–April–May (MAM); (<b>c</b>) June–July–August (JJA); and (<b>d</b>) September–October–November (SON).</p> "> Figure 8
<p>SHAP dependence plots depicting the mechanism by which the SHAP values change with each key catchment attribute by season. Each subfigure represents a scatter plot of the SHAP value for the attribute across the four seasons versus its corresponding attribute value. Each dot represents a catchment (<b>a</b>–<b>l</b>).</p> "> Figure 9
<p>Heatmap of SHAP interaction values across four seasons.</p> ">
Abstract
:1. Introduction
2. Data
2.1. Global Streamflow Reanalysis
2.2. CAMELS Dataset
3. Methods
3.1. Assessment Performance
3.2. Random Forest Modeling
3.3. Shapley Additive Explanations
3.4. Self-Organizing Map Clustering
4. Results
4.1. Performance of Streamflow Reanalysis
4.2. Effects of Catchment Attributes
4.3. Seasonality Effects of Key Catchment Attributes
5. Discussion
5.1. Key Control Factors on Streamflow Reanalysis Discharge Simulations
5.2. Relationship Between Streamflow Reanalysis Performance and Catchment Attributes
5.3. Seasonal Variations in the Effects of Topographic Characteristics
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Open Research
References
- Alcamo, J.; Döll, P.; Henley, B.J.; Kaspar, F.; Lehner, B.; Rösch, T.; Siebert, S. Development and Testing of the WaterGAP 2 Global Model of Water Use and Availability. Hydrol. Sci. J. 2003, 48, 317–337. [Google Scholar] [CrossRef]
- Döll, P.; Kaspar, F.; Lehner, B. A Global Hydrological Model for Deriving Water Availability Indicators: Model Tuning and Validation. J. Hydrol. 2003, 270, 105–134. [Google Scholar] [CrossRef]
- Greve, P.; Burek, P.; Wada, Y. Using the Budyko Framework for Calibrating a Global Hydrological Model. Water Resour. Res. 2020, 56, e2019WR026280. [Google Scholar] [CrossRef]
- Alfieri, L.; Lorini, V.; Hirpa, F.A.; Harrigan, S.; Zsoter, E.; Prudhomme, C.; Salamon, P. A Global Streamflow Reanalysis for 1980–2018. J. Hydrol. X 2020, 6, 100049. [Google Scholar] [CrossRef]
- Burek, P.; Satoh, Y.; Kahil, T.; Tang, T.; Greve, P.; Smilovic, M.; Guillaumot, L.; Zhao, F.; Wada, Y. Development of the Community Water Model (CWatM v1.04)—A High-Resolution Hydrological Model for Global and Regional Assessment of Integrated Water Resources Management. Geosci. Model Dev. 2020, 13, 3267–3298. [Google Scholar] [CrossRef]
- Gosling, S.N.; Zaherpour, J.; Mount, N.J.; Hattermann, F.F.; Dankers, R.; Arheimer, B.; Breuer, L.; Ding, J.; Haddeland, I.; Kumar, R.; et al. A Comparison of Changes in River Runoff from Multiple Global and Catchment-Scale Hydrological Models under Global Warming Scenarios of 1 °C, 2 °C and 3 °C. Clim. Change 2017, 141, 577–595. [Google Scholar] [CrossRef]
- van der Wiel, K.; Wanders, N.; Selten, F.M.; Bierkens, M.F.P. Added Value of Large Ensemble Simulations for Assessing Extreme River Discharge in a 2 °C Warmer World. Geophys. Res. Lett. 2019, 46, 2093–2102. [Google Scholar] [CrossRef]
- Yang, T.; Sun, F.; Gentine, P.; Liu, W.; Wang, H.; Yin, J.; Du, M.; Liu, C. Evaluation and Machine Learning Improvement of Global Hydrological Model-Based Flood Simulations. Environ. Res. Lett. 2019, 14, 114027. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Cockburn, C.; Lamouroux, N.; Pella, H.; Snelder, T.; Tockner, K.; Trautmann, T.; Watt, C.; Datry, T. Global Prevalence of Non-Perennial Rivers and Streams. Nature 2021, 594, 391–397. [Google Scholar] [CrossRef]
- Emerton, R.E.; Stephens, E.M.; Pappenberger, F.; Pagano, T.C.; Weerts, A.H.; Wood, A.W.; Salamon, P.; Brown, J.D.; Hjerdt, N.; Donnelly, C.; et al. Continental and Global Scale Flood Forecasting Systems. WIREs Water 2016, 3, 391–418. [Google Scholar] [CrossRef]
- McDonnell, J.J.; Sivapalan, M.; Vaché, K.; Dunn, S.; Grant, G.; Haggerty, R.; Hinz, C.; Hooper, R.; Kirchner, J.; Roderick, M.L.; et al. Moving beyond Heterogeneity and Process Complexity: A New Vision for Watershed Hydrology. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Kuentz, A.; Arheimer, B.; Hundecha, Y.; Wagener, T. Understanding Hydrologic Variability across Europe through Catchment Classification. Hydrol. Earth Syst. Sci. 2017, 21, 2863–2879. [Google Scholar] [CrossRef]
- Andersson, J.; Pechlivanidis, I.; Gustafsson, D.; Donnelly, C.; Arheimer, B. Key Factors for Improving Large-Scale Hydrological Model Performance. Eur. Water 2015, 49, 77–88. [Google Scholar]
- Zaherpour, J.; Gosling, S.N.; Mount, N.; Schmied, H.M.; Veldkamp, T.I.E.; Dankers, R.; Eisner, S.; Gerten, D.; Gudmundsson, L.; Haddeland, I.; et al. Worldwide Evaluation of Mean and Extreme Runoff from Six Global-Scale Hydrological Models That Account for Human Impacts. Environ. Res. Lett. 2018, 13, 065015. [Google Scholar] [CrossRef]
- Merz, R.; Miniussi, A.; Basso, S.; Petersen, K.-J.; Tarasova, L. More Complex Is Not Necessarily Better in Large Scale Hydrological Modelling—A Model Complexity Experiment across the Contiguous United States. Bull. Am. Meteorol. Soc. 2022, 103, E1947–E1967. [Google Scholar] [CrossRef]
- Ward, P.J.; Jongman, B.; Salamon, P.; Simpson, A.; Bates, P.; De Groeve, T.; Muis, S.; de Perez, E.C.; Rudari, R.; Trigg, M.A.; et al. Usefulness and Limitations of Global Flood Risk Models. Nat. Clim. Change 2015, 5, 712–715. [Google Scholar] [CrossRef]
- Addor, N.; Do, H.X.; Alvarez-Garreton, C.; Coxon, G.; Fowler, K.; Mendoza, P.A. Large-Sample Hydrology: Recent Progress, Guidelines for New Datasets and Grand Challenges. Hydrol. Sci. J. 2020, 65, 712–725. [Google Scholar] [CrossRef]
- Newman, A.J.; Clark, M.P.; Sampson, K.; Wood, A.; Hay, L.E.; Bock, A.; Viger, R.J.; Blodgett, D.; Brekke, L.; Arnold, J.R.; et al. Development of a Large-Sample Watershed-Scale Hydrometeorological Data Set for the Contiguous USA: Data Set Characteristics and Assessment of Regional Variability in Hydrologic Model Performance. Hydrol. Earth Syst. Sci. 2015, 19, 209–223. [Google Scholar] [CrossRef]
- Parajka, J.; Viglione, A.; Rogger, M.; Salinas, J.L.; Sivapalan, M.; Blöschl, G. Comparative Assessment of Predictions in Ungauged Basins – Part 1: Runoff-Hydrograph Studies. Hydrol. Earth Syst. Sci. 2013, 17, 1783–1795. [Google Scholar] [CrossRef]
- Massmann, C. Identification of Factors Influencing Hydrologic Model Performance Using a Top-down Approach in a Large Number of U.S. Catchments. Hydrol. Process. 2020, 34, 4–20. [Google Scholar] [CrossRef]
- Yan, H.; Sun, N.; Eldardiry, H.; Thurber, T.B.; Reed, P.M.; Malek, K.; Gupta, R.; Kennedy, D.; Swenson, S.C.; Hou, Z.; et al. Large Ensemble Diagnostic Evaluation of Hydrologic Parameter Uncertainty in the Community Land Model Version 5 (CLM5). J. Adv. Model. Earth Syst. 2023, 15, e2022MS003312. [Google Scholar] [CrossRef]
- Lan, T.; Lin, K.; Xu, C.-Y.; Liu, Z.; Cai, H. A Framework for Seasonal Variations of Hydrological Model Parameters: Impact on Model Results and Response to Dynamic Catchment Characteristics. Hydrol. Earth Syst. Sci. 2020, 24, 5859–5874. [Google Scholar] [CrossRef]
- Deng, C.; Liu, P.; Wang, D.; Wang, W. Temporal Variation and Scaling of Parameters for a Monthly Hydrologic Model. J. Hydrol. 2018, 558, 290–300. [Google Scholar] [CrossRef]
- Addor, N.; Nearing, G.; Prieto, C.; Newman, A.J.; Le Vine, N.; Clark, M.P. A Ranking of Hydrological Signatures Based on Their Predictability in Space. Water Resour. Res. 2018, 54, 8792–8812. [Google Scholar] [CrossRef]
- Lin, X.; Fan, J.; Hou, Z.J.; Wang, J. Machine Learning of Key Variables Impacting Extreme Precipitation in Various Regions of the Contiguous United States. J. Adv. Model. Earth Syst. 2023, 15, e2022MS003334. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Harrigan, S.; Zsoter, E.; Alfieri, L.; Prudhomme, C.; Salamon, P.; Wetterhall, F.; Barnard, C.; Cloke, H.; Pappenberger, F. GloFAS-ERA5 Operational Global River Discharge Reanalysis 1979–Present. Earth Syst. Sci. Data 2020, 12, 2043–2060. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, Y.; Zhang, Y.; Nourani, V.; Li, Q.; Li, L.; Shangguan, W. Towards Interpreting Machine Learning Models for Predicting Soil Moisture Droughts. Environ. Res. Lett. 2023, 18, 074002. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Van Der Knijff, J.M.; Younis, J.; De Roo, A.P.J. LISFLOOD: A GIS-based Distributed Model for River Basin Scale Water Balance and Flood Simulation. Int. J. Geogr. Inf. Sci. 2010, 24, 189–212. [Google Scholar] [CrossRef]
- Hirpa, F.A.; Salamon, P.; Beck, H.E.; Lorini, V.; Alfieri, L.; Zsoter, E.; Dadson, S.J. Calibration of the Global Flood Awareness System (GloFAS) Using Daily Streamflow Data. J. Hydrol. 2018, 566, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Chen, Z.; Tu, T.; Yan, D.; Chen, X. Unravelling the Potential of Global Streamflow Reanalysis in Characterizing Local Flow Regime. Sci. Total Environ. 2022, 838, 156125. [Google Scholar] [CrossRef] [PubMed]
- Addor, N.; Newman, A.J.; Mizukami, N.; Clark, M.P. The CAMELS Data Set: Catchment Attributes and Meteorology for Large-Sample Studies. Hydrol. Earth Syst. Sci. 2017, 21, 5293–5313. [Google Scholar] [CrossRef]
- Pelletier, J.D.; Broxton, P.D.; Hazenberg, P.; Zeng, X.; Troch, P.A.; Niu, G.-Y.; Williams, Z.; Brunke, M.A.; Gochis, D. A Gridded Global Data Set of Soil, Intact Regolith, and Sedimentary Deposit Thicknesses for Regional and Global Land Surface Modeling. J. Adv. Model. Earth Syst. 2016, 8, 41–65. [Google Scholar] [CrossRef]
- Miller, D.A.; White, R.A. A Conterminous United States Multilayer Soil Characteristics Dataset for Regional Climate and Hydrology Modeling. Earth Interact. 1998, 2, 1–26. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Mao, G.; Wang, Z.; Zeng, Z.; Chen, A.; Wang, K.; Chen, D. Intercomparison of Ten ISI-MIP Models in Simulating Discharges along the Lancang-Mekong River Basin. Sci. Total Environ. 2021, 765, 144494. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff Conditions in the Upper Danube Basin under an Ensemble of Climate Change Scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar] [CrossRef]
- Mathevet, T.; Michel, C.; Andréassian, V.; Perrin, C. A Bounded Version of the Nash-Sutcliffe Criterion for Better Model Assessment on Large Sets of Basins. IAHS-AISH Publ. 2006, 307, 211–219. [Google Scholar]
- Li, W.; Migliavacca, M.; Forkel, M.; Denissen, J.M.C.; Reichstein, M.; Yang, H.; Duveiller, G.; Weber, U.; Orth, R. Widespread Increasing Vegetation Sensitivity to Soil Moisture. Nat. Commun. 2022, 13, 3959. [Google Scholar] [CrossRef] [PubMed]
- Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and Variable Importance in Random Forests. Stat. Comput. 2017, 27, 659–678. [Google Scholar] [CrossRef]
- Shapley, L.S. Stochastic Games*. Proc. Natl. Acad. Sci. 1953, 39, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Li, L.; Fisher, J.B.; Zeng, Z.; Zhou, S.; Tan, X.; Liu, B.; Chen, X. The Responses of Ecosystem Water Use Efficiency to CO2, Nitrogen Deposition, and Climatic Drivers across China. J. Hydrol. 2023, 622, 129696. [Google Scholar] [CrossRef]
- Kohonen, T. The Self-Organizing Map. Proc. IEEE 1990, 78, 1464–1480. [Google Scholar] [CrossRef]
- Knoben, W.J.M.; Freer, J.E.; Woods, R.A. Technical Note: Inherent Benchmark or Not? Comparing Nash–Sutcliffe and Kling–Gupta Efficiency Scores. Hydrol. Earth Syst. Sci. 2019, 23, 4323–4331. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Wagener, T.; Tallaksen, L.M.; Engeland, K. Evaluation of Nine Large-Scale Hydrological Models with Respect to the Seasonal Runoff Climatology in Europe. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Mai, J.; Craig, J.R.; Tolson, B.A.; Arsenault, R. The Sensitivity of Simulated Streamflow to Individual Hydrologic Processes across North America. Nat. Commun. 2022, 13, 455. [Google Scholar] [CrossRef]
- Hoch, J.M.; Sutanudjaja, E.H.; Wanders, N.; van Beek, R.L.P.H.; Bierkens, M.F.P. Hyper-Resolution PCR-GLOBWB: Opportunities and Challenges from Refining Model Spatial Resolution to 1 km over the European Continent. Hydrol. Earth Syst. Sci. 2023, 27, 1383–1401. [Google Scholar] [CrossRef]
- Moges, D.M.; Virro, H.; Kmoch, A.; Cibin, R.; Rohith, A.N.; Martínez-Salvador, A.; Conesa-García, C.; Uuemaa, E. How Does the Choice of DEMs Affect Catchment Hydrological Modeling? Sci. Total Environ. 2023, 892, 164627. [Google Scholar] [CrossRef]
- Poncelet, C.; Merz, R.; Merz, B.; Parajka, J.; Oudin, L.; Andréassian, V.; Perrin, C. Process-Based Interpretation of Conceptual Hydrological Model Performance Using a Multinational Catchment Set. Water Resour. Res. 2017, 53, 7247–7268. [Google Scholar] [CrossRef]
- Barnhart, T.B.; Molotch, N.P.; Livneh, B.; Harpold, A.A.; Knowles, J.F.; Schneider, D. Snowmelt Rate Dictates Streamflow. Geophys. Res. Lett. 2016, 43, 8006–8016. [Google Scholar] [CrossRef]
- Niu, G.-Y.; Yang, Z.-L. Effects of Frozen Soil on Snowmelt Runoff and Soil Water Storage at a Continental Scale. J. Hydrometeorol. 2006, 7, 937–952. [Google Scholar] [CrossRef]
- Freudiger, D.; Kohn, I.; Seibert, J.; Stahl, K.; Weiler, M. Snow Redistribution for the Hydrological Modeling of Alpine Catchments. WIREs Water 2017, 4, e1232. [Google Scholar] [CrossRef]
Type | Name | Unit | Data Source |
---|---|---|---|
Topographic characteristics | Area | km2 | N15—USGS data |
Mean elevation | m | N15—USGS data | |
Mean slope | m/km | N15—USGS data | |
Climatic indices | Precipitation seasonality | — | N15—Daymet |
Fraction of precipitation falling as snow | — | N15—Daymet | |
Aridity | — | N15—Daymet | |
Frequency of high-precipitation events | days/year | N15—Daymet | |
Duration of high-precipitation events | days | N15—Daymet | |
Timing of high-precipitation events | season | N15—Daymet | |
Timing of low-precipitation events | season | N15—Daymet | |
Soil characteristics | Depth to bedrock | m | Pelletier et al. (2016) [35] |
Soil depth | m | Miller and White (1998)—STATSGO [36] | |
Sand fraction | % | Miller and White (1998)—STATSGO [36] | |
Silt fraction | % | Miller and White (1998)—STATSGO [36] | |
Clay fraction | % | Miller and White (1998)—STATSGO [36] | |
Water fraction | % | Miller and White (1998)—STATSGO [36] | |
Other fraction | % | Miller and White (1998)—STATSGO [36] | |
Land cover characteristics | Forest fraction | — | N15—USGS data |
LAI maximum | — | MODIS | |
Green vegetation fraction difference | — | MODIS | |
Fraction of dominant land cover | — | MODIS | |
Dominant land cover | — | MODIS | |
Root depth 50% | m | MODIS | |
Root depth 99% | m | MODIS | |
Geological characteristics | Dominant geological class | — | GLiM |
Fraction of dominant geological class | — | GLiM | |
Fraction of carbonate rocks | — | GLiM | |
Subsurface porosity | — | GLHYMPS | |
Subsurface permeability | m2 | GLHYMPS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X. Catchment Attributes Influencing Performance of Global Streamflow Reanalysis. Water 2024, 16, 3582. https://doi.org/10.3390/w16243582
Ding X. Catchment Attributes Influencing Performance of Global Streamflow Reanalysis. Water. 2024; 16(24):3582. https://doi.org/10.3390/w16243582
Chicago/Turabian StyleDing, Xinjun. 2024. "Catchment Attributes Influencing Performance of Global Streamflow Reanalysis" Water 16, no. 24: 3582. https://doi.org/10.3390/w16243582
APA StyleDing, X. (2024). Catchment Attributes Influencing Performance of Global Streamflow Reanalysis. Water, 16(24), 3582. https://doi.org/10.3390/w16243582