Characteristics and Driving Factors of Benthic Animal Communities in Different Water Functional Zones of the Jiangsu Section of the Yangtze River
<p>Distribution diagram of sampling points for benthic animals in the Jiangsu section of the Yangtze River.</p> "> Figure 2
<p>Distribution of the physical and chemical indicators of water bodies across different water functional zones. (Annotations a and b indicate significant differences between the two).</p> "> Figure 3
<p>Distribution of biogenic substances across different water functional zones. (Annotations a and b indicate significant differences between the two).</p> "> Figure 3 Cont.
<p>Distribution of biogenic substances across different water functional zones. (Annotations a and b indicate significant differences between the two).</p> "> Figure 4
<p>Distribution of carbon, nitrogen, and phosphorus contents in sediments from different water functional zones. (Annotations a, b, and c indicate significant differences between each pair).</p> "> Figure 5
<p>Analysis of the environmental heterogeneity across different water functional zones.</p> "> Figure 6
<p>Relative abundance of benthic animal communities in different water functional zones at the genus level. B denotes the protected zone, R denotes the reserved zone, S denotes the buffer zone, and D denotes the development and utilization zone.</p> "> Figure 7
<p>Differences in the alpha diversity index across different water functional zones (Annotations a, b, c and d indicate significant differences between each pair). (<b>a</b>) Chao1; (<b>b</b>) Pielou; (<b>c</b>) Simpson.</p> "> Figure 8
<p>PCoA map of the benthic animal communities in different water functional zones.</p> "> Figure 9
<p>Correlation analysis between benthic animal communities and environmental variables.</p> "> Figure 10
<p>CCA analysis of environmental factors and benthic animal communities.</p> "> Figure 11
<p>Ecological network of benthic animals in different water functional zones of the Jiangsu section of the Yangtze River at the class level. (<b>a</b>) Protected, (<b>b</b>) reserve, (<b>c</b>) buffer, (<b>d</b>) development and utilization zones, with nodes of different colors representing different classes and node sizes set according to degree. The green line represents a positive correlation, and the red line represents a negative correlation.</p> "> Figure 11 Cont.
<p>Ecological network of benthic animals in different water functional zones of the Jiangsu section of the Yangtze River at the class level. (<b>a</b>) Protected, (<b>b</b>) reserve, (<b>c</b>) buffer, (<b>d</b>) development and utilization zones, with nodes of different colors representing different classes and node sizes set according to degree. The green line represents a positive correlation, and the red line represents a negative correlation.</p> "> Figure 12
<p>Z<sub>i</sub>–P<sub>i</sub> diagram of benthic animals in different water functional zones. (<b>a</b>) Protected, (<b>b</b>) reserve, (<b>c</b>) buffer, (<b>d</b>) development and utilization zones. The numbers in the figure represent the proportions of the four node types. (Purple is the point inside the peripherals, fluorescent blue is the point inside the connectors, and green is the point inside the module hubs).</p> "> Figure 13
<p>Key species composition of benthic animals in the different water functional zones.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection and Identification of Benthic Animals
2.3. Determination of Physical and Chemical Indicators of Water Bodies
2.4. Determination of the Physical and Chemical Indicators of Sediments
2.5. Measurement of Hydrodynamic Indicators
2.6. Data Statistics and Analysis
3. Results
3.1. Distribution Characteristics of the Physical and Chemical Indicators of Water Bodies and Sediments
3.2. Distribution Characteristics of Benthic Animal Communities
3.3. Alpha Diversity of Benthic Animals
3.4. Beta Diversity of Benthic Animals
3.5. Relationship between Benthic Animal Communities and Environmental Variables
3.6. Analysis of Network Structure and Topological Characteristics
3.7. Impacts of the Different Water Functional Zones on Key Species of Benthic Animal Communities
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.Y.; Li, Y.; Fang, G.H.; Deng, M.; Sun, C. Ecological risk assessment and management for riverfront development along the Yangtze River in Jiangsu Province, China. Ecol. Indic. 2023, 155, 111075. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Zhou, Y.Q.; Zhang, A.G.; Li, J.; Yu, J.; Dou, Y.; He, J.; Kong, D. Perfluoroalkyl substances in drinking water sources along the Yangtze River in Jiangsu Province, China: Human health and ecological risk assessment. Ecotoxicol. Environ. Saf. 2021, 218, 112289. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.C.; Liu, C.; Liu, J.J.; Hu, S.-P.; Gao, M.-Y.; Liu, M. Thoughts and suggestions on water ecological environment protection in Jiangsu reach of the Yangtze River. Jiangsu Water Resour. 2021, S2, 26–29. [Google Scholar]
- Chen, M.K.; Tan, Y.; Xu, X.B.; Lin, Y. Identifying ecological degradation and restoration zone based on ecosystem quality: A case study of Yangtze River Delta. Appl. Geogr. 2024, 162, 103149. [Google Scholar] [CrossRef]
- Liu, G.C. Deeply grasp the core essence of the assessment index system for water ecology in the Yangtze River Basin. China Environ. Superv. 2023, 8, 36–37. [Google Scholar]
- Zhu, H.; Zhang, Y.Z.; Peng, Y.C.; Shi, B.C.; Liu, T.; Dong, H.B.; Wang, Y.; Ren, Y.C.; Xi, Y.L. Assessing the ecological health of the Qingyi River Basin using multi-community indices of biotic integrity. Ecol. Indic. 2023, 156, 111160. [Google Scholar] [CrossRef]
- Andreev, A.; Pipko, I.; Pugach, S. On the water circulation and chemical parameter distributions in the western and central Chukchi Sea in summer 2002 and summer 2019. Polar Sci. 2023, 37, 100962. [Google Scholar] [CrossRef]
- Zhang, M.S.; Chen, M.; Ding, L.; Li, S. Diversity and community structure of macrobenthos in the Hengsha East Shoal. Anhui Agric. Sci. Bull. 2024, 30, 72–78. [Google Scholar]
- Mu, W.D.; Pei, L.Y.; Zhu, Z.H.; Zhang, L.; Jia, R.; Zhang, Q. Community structure of macrobenthos in the northern waters of Beibu Gulf. J. South. Agric. 2024, 55, 299–310. [Google Scholar]
- Li, Q.; Zhang, M.Y.; Yu, M.Q.; Li, X.-X.; Chang, M.; Chen, L.-B.; Ding, S. Community structure and influencing factors of macroinvertebrate in urban rivers of Dongguan. Ecol. Environ. Sci. 2024, 33, 101–110. [Google Scholar]
- Yang, F.; Pei, Z.P.; Zhou, Q. Layout and regulation planning of into-river sewage outlets in the Yangtze River economic zone. Ecol. Environ. Monitor. Three Gorges. 2018, 3, 21–26. [Google Scholar]
- Zhou, F.X.; Chen, J.H. Atlas of Freshwater Microbes and Benthic Animals, 3rd ed.; Chemical Industry Press: Beijing, China, 2020. [Google Scholar]
- Liu, B.L.; Gao, L.; Ding, L.J.; Lv, L.; Yu, Y. Trophodynamics and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in marine food web from Laizhou Bay, China. Mar. Pollut. Bull. 2023, 194, 115307. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, C.; Wang, P.F.; Chen, J.; Miao, L.; Feng, T.; Yuan, Q.; Liu, S. How bacterioplankton community can go with cascade damming in the highly regulated Lancang-Mekong River Basin. Mol. Ecol. 2018, 27, 4444–4458. [Google Scholar] [CrossRef] [PubMed]
- State Environmental Protection Administration; Editorial Committee for Water and Wastewater Monitoring and Analysis Methods. Monitoring and Analysis Methods for Water and Wastewater, 4th ed.; Environmental Science Press: Beijing, China, 2002; pp. 20–35. [Google Scholar]
- Xue, Y.Z.; Gu, J.H.; Wei, T.Y. Principle of acoustic Doppler velocity profiler and its application in the middle and lower reaches of the Yangtze River. Mar. Sci. 2004, 10, 24–28. [Google Scholar]
- Shu, X.M.; Wang, B.Y.; Yi, A.M.; Xie, K. Accuracy analysis of bathymetry for prototype observation of the Yangtze River waterway. Des. Water Resour. Hydroelectr. Eng. 2024, 43, 41–44. [Google Scholar]
- Su, S.L.; Li, D.; Zhang, Q.; Xiao, R.; Huang, F.; Wu, J. Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China. Water Res. 2011, 45, 1781–1795. [Google Scholar] [CrossRef]
- Wang, X.S.; Zhang, G.; Li, Y.; Xu, J.-Q.; Cai, Y.-J. Water quality assessment of rivers in aquatic eco-environmental function regions in Changzhou city. Pearl River 2022, 43, 64–73+103. [Google Scholar]
- Chen, C.; Tang, Q.C.; Zhao, B.X.; Chen, Y.-X.; Xu, Y.-Q.; Wang, B.-Q. Impact of different land-use patterns of urban river on benthic communities: A case study of Wen-Rui Tang River and Yong-Qiang Tang River. J. Hydroecol. 2023, 10, 112–121. [Google Scholar]
- Di, F.; Han, D.H.; Zhao, W.B.; Zhou, D.-K.; Wang, G.; Zhao, R.; Liang, R.-C. Macroinvertebrate community characteristics and driving factors in the Chishui River (Renhuai section). Chin. J. Environ. Eng. 2023, 17, 3988–3995. [Google Scholar]
- Zhou, J.Z.; Deng, Y.; Luo, F.; He, Z.; Tu, Q.; Zhi, X. Functional molecular ecological networks. mBio. 2010, 1, e00169-10. [Google Scholar] [CrossRef]
- Wang, Y.M.; Wang, Y.T.; Shang, J.H.; Wang, L.; Li, Y.; Wang, Z.; Zou, Y.; Cai, W.; Wang, L. Redox gradients drive microbial community assembly patterns and molecular ecological networks in the hyporheic zone of effluent-dominated rivers. Water Res. 2024, 248, 120900. [Google Scholar] [CrossRef]
- Jing, Z.B.; Lu, Z.D.; Zhao, Z.N.; Cao, W.; Wang, W.; Ke, Y.; Wang, X.; Sun, W. Molecular ecological networks reveal the spatial-temporal variation of microbial communities in drinking water distribution systems. J. Environ. Sci. 2023, 124, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Shu, D.T.; Guo, Y.Q.; Zhang, B.G.; Zhang, C.; Van Nostrand, J.D.; Lin, Y.; Zhou, J.; Wei, G. Rare prokaryotic sub-communities dominate the complexity of ecological networks and soil multinutrient cycling during long-term secondary succession in China’s Loess Plateau. Sci. Total Environ. 2021, 774, 145737. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wu, H.W.; Huang, C.; Lin, H.; Li, W.; Zhao, X.; Li, Z.; Lv, S. Microbial compositions, ecological networks, and metabolomics in sediments of black-odour water in Dongguan, China. Environ. Res. 2022, 210, 112918. [Google Scholar] [CrossRef] [PubMed]
- Li, B.B.; Roley, S.S.; Duncan, D.S.; Guo, J.; Quensen, J.F.; Yu, H.Q.; Tiedje, J.M. Long-term excess nitrogen fertilizer increases sensitivity of soil microbial community to seasonal change revealed by ecological network and metagenome analyses. Soil Biol. Biochem. 2021, 160, 108349. [Google Scholar] [CrossRef]
- Dias, E.; Morais, P.; Antunes, C.; Hoffman, J.C. The benthic food web connects the estuarine habitat mosaic to adjacent ecosystems. Food Webs 2023, 35, e00282. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Cameron, T.C.; Couce, E.; Garcia, C.; Hicks, N.; Thomas, G.E.; Thompson, M.S.A.; Whitby, C.; O’Gorman, E.J. Oil and gas platforms degrade benthic invertebrate diversity and food web structure. Sci. Total Environ. 2024, 929, 172536. [Google Scholar] [CrossRef]
- Yan, Z.F.; Feng, C.L.; Xu, Y.P.; Wang, J.; Huang, N.; Jin, X.; Wu, F.; Bai, Y. Water temperature governs organophosphate ester dynamics in the aquatic food chain of Poyang Lake. Environ. Sci. Ecotechnol. 2024, 21, 100401. [Google Scholar] [CrossRef]
- Zhang, M.; Lv, X.C.; Zhu, W.X.; Gao, Y.; Dong, J.; Li, M.; Zhang, J.; Gao, X.; Li, X. The aquatic benthic food webs: The determinants of periphyton biofilms in a diversion canal and its upstream reservoir. Ecol. Eng. 2021, 170, 106363. [Google Scholar] [CrossRef]
- Olesen, J.M.; Bascompte, J.; Dupont, Y.L.; Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 2007, 104, 19891–19896. [Google Scholar] [CrossRef]
- Zhang, J.W. Study on the Driving Factors of Benthic Ciliate Diversity and Community Composition in Zhejiang Intertidal Wetland. Master’s Thesis, East China Normal University, Shanghai, China, 2023. [Google Scholar]
- Ma, Y.M. Study on the Effect of Plant–Benthic Fauna–Fish Functional Group on Self-Purification in Micropolluted Water. Master’s Thesis, Zhengzhou University, Zhengzhou, China, 2021. [Google Scholar]
Order | Longitude | Latitude | Functional Area |
---|---|---|---|
1 | 118.8007 | 32.1562 | Reservation |
2 | 118.6910 | 31.9922 | Protection |
3 | 119.6945 | 32.3147 | Protection |
4 | 119.7506 | 32.3300 | Buffer |
5 | 119.3947 | 32.2417 | Reservation |
6 | 119.5614 | 32.2264 | Reservation |
7 | 119.3951 | 32.2271 | Protection |
8 | 118.9387 | 32.1696 | Development |
9 | 119.8817 | 32.2583 | Buffer |
10 | 119.9926 | 31.9755 | Buffer |
11 | 119.9505 | 32.0023 | Protection |
12 | 120.0667 | 31.9468 | Protection |
13 | 119.0683 | 32.2387 | Reservation |
14 | 118.7629 | 32.1857 | Buffer |
15 | 120.9269 | 31.8764 | Buffer |
16 | 120.8669 | 31.9550 | Development |
17 | 121.3241 | 31.5468 | Buffer |
18 | 121.6081 | 31.7483 | Reservation |
19 | 121.0486 | 31.7915 | Buffer |
20 | 120.4908 | 32.0512 | Reservation |
21 | 120.2723 | 31.9401 | Development |
Index | r | p | VIF |
---|---|---|---|
T | −0.0098 | 0.602 | 1.36606 |
EC | −0.0243 | 0.801 | 1.56558 |
DO | 0.0199 | 0.221 | 1.26597 |
pH | 0.0442 | 0.094 | 1.41026 |
ORP | −0.0139 | 0.687 | 1.35212 |
u | 0.0125 | 0.324 | 1.55885 |
h | −0.0311 | 0.801 | 1.38854 |
TU | 0.0633 | 0.025 | 1.33172 |
TOC | −0.0007 | 0.468 | 1.39862 |
TP | 0.0104 | 0.317 | 2.82662 |
PO43− | 0.0390 | 0.119 | 2.84876 |
TN | 0.1903 | 0.001 | 6.74309 |
NO3− | 0.1564 | 0.001 | 6.80596 |
NO2− | 0.0087 | 0.403 | 1.79743 |
NH4+ | 0.0005 | 0.455 | 1.72444 |
SiO44− | −0.0421 | 0.902 | 1.52147 |
SOC | 0.1855 | 0.001 | 1.68705 |
STN | 0.0590 | 0.025 | 1.87427 |
STP | 0.1622 | 0.001 | 3.64737 |
Topological Parameter | Protection | Reservation | Buffer | Development |
---|---|---|---|---|
Nodes | 42 | 52 | 51 | 55 |
Edges | 124 | 124 | 124 | 124 |
Positive correlation (%) | 45.57 | 47.19 | 42.55 | 46.67 |
Negative correlation (%) | 54.43 | 52.81 | 57.45 | 53.33 |
Average degree | 1.881 | 1.712 | 1.843 | 1.636 |
Graph density | 0.046 | 0.034 | 0.037 | 0.030 |
Average clustering coefficient | 0.159 | 0.099 | 0.147 | 0.121 |
Average path length | 3.210 | 5.642 | 3.349 | 4.302 |
Network diameter | 8 | 13 | 7 | 13 |
Modularity | 0.502 | 0.680 | 0.674 | 0.750 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.; Lou, M.; Wu, J.; Liu, G.; Gao, H.; Guo, M. Characteristics and Driving Factors of Benthic Animal Communities in Different Water Functional Zones of the Jiangsu Section of the Yangtze River. Water 2024, 16, 2778. https://doi.org/10.3390/w16192778
Shi M, Lou M, Wu J, Liu G, Gao H, Guo M. Characteristics and Driving Factors of Benthic Animal Communities in Different Water Functional Zones of the Jiangsu Section of the Yangtze River. Water. 2024; 16(19):2778. https://doi.org/10.3390/w16192778
Chicago/Turabian StyleShi, Mengqi, Mingyue Lou, Jinhua Wu, Guangbin Liu, Han Gao, and Mingchen Guo. 2024. "Characteristics and Driving Factors of Benthic Animal Communities in Different Water Functional Zones of the Jiangsu Section of the Yangtze River" Water 16, no. 19: 2778. https://doi.org/10.3390/w16192778