Urban Air Quality Modeling Using Low-Cost Sensor Network and Data Assimilation in the Aburrá Valley, Colombia
<p>Spatial distribution of the hyper-dense low-cost network Citizen Scientist and official monitoring air-quality network for particulate matter (PM)<sub>2.5</sub>. The gray raster represent the Long Term Ozone Simulation-European Operational Smog (LOTOS-EUROS) model grid, the black lines are the boundaries of the municipalities borders, and the numbers are the official station numerations followed by SIATA.</p> "> Figure 2
<p>Nested domain configuration for LOTOS-EUROS simulations. The detailed description of the domains is shown in <a href="#atmosphere-12-00091-t001" class="html-table">Table 1</a>.</p> "> Figure 3
<p>Local particulate matter emission inventories for the Aburrá Valley: (<b>a</b>) PM<sub>2.5</sub>, and (<b>b</b>) PM<sub>10</sub>. The values correspond with the estimated annual emissions.</p> "> Figure 4
<p>Graphic explanation of the experimental forecast setup. The arrows represent the inheritance of the last correction factor 24-hourly profile into the forecast. All simulations start at 23 February 19:00 UTC-5. A spin-up period consisting of the 5 days prior to the start date was used for each simulation.</p> "> Figure 5
<p>Evaluation of low-costs network against the official monitoring network for the period between 25 February 2019 and 15 March 2019. Panels (<b>a</b>–<b>c</b>) show the histograms of the MFB, RMSE and R respectively. Panels (<b>d</b>–<b>f</b>) show the MFB, RMSE and R values of each evaluated sensor.</p> "> Figure 6
<p>Spatial distribution of the different sets of sensors (complete network (<b>a</b>) and high-quality network (<b>b</b>) ) used for data assimilation and validation. Blue dots indicate the location of the low-cost sensors. Red squares correspond to the locations of the official monitoring stations that were used for data assimilation. Green stars indicate the stations from the official network whose data where used for validation of all model simulations.</p> "> Figure 7
<p>Temporal series of PM<sub>2.5</sub> concentrations from selected validation stations of the official network (<b>a</b>)–(<b>d</b>), LOTOS-EUROS without assimilation, LE-official, LE-lowcost and LE-lowcost-HQ. Time stamps are valid for local time (UTC-5). A spin-up period consisting of the 5 days prior to the start date was used for each simulation.</p> "> Figure 8
<p>Diurnal cycle of PM<sub>2.5</sub> concentrations from selection stations of the official network (<b>a</b>–<b>d</b>), LOTOS-EUROS without assimilation, LE-official, LE-lowcost and LE-lowcost-HQ. The bars and the shadows represent the standard deviation over the simulation period. The time stamps are valid for local time (UTC-5).</p> "> Figure 9
<p>Evaluation of Air Quality Index (AQI) forecast capabilities of LOTOS-EUROS for the Aburrá Valley. All figures represent the forecasts and analysis for 12 March when it corresponded to analysis day (<b>a</b>), the first (<b>b</b>), second (<b>c</b>) and third (<b>d</b>) day within the forecasting window. The five-square markers are located at the geographical location of each of the official stations used for comparisons. The upper-center square is the AQI calculated from the observed PM values, against which all other values are compared; the middle-left inner square is the AQI predicted by the LE-official simulation; the middle-right inner square is the AQI predicted by the model without assimilation; the bottom-left inner square the AQI predicted by the LE-lowcost simulation; and the bottom-right inner square is the AQI predicted by the LE-lowcost-HQ simulation. The AQI definition is as in <a href="#atmosphere-12-00091-t003" class="html-table">Table 3</a>.</p> "> Figure 10
<p>Comparison of the confusion matrices for the data assimilation (<b>a</b>) and forecast windows (<b>b</b>) depending on warning or no warning per station. The values were calculated across all the days of the corresponding window. A value of 0 corresponds with no warning, while a value of 1 indicates a warning-triggering event. For the LE simulation, there were warnings in neither the data assimilation window nor the forecast windows.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hyper-Dense Low-Cost Sensor Network
2.2. Particulate Matter Modelling
2.2.1. LOTOS-EUROS Model
2.2.2. Local Emissions Inventory
2.3. Ensemble Kalman Filter
- a LOTOS-EUROS model simulation without data assimilation (henceforth LE);
- a simulation with assimilation of data (observations) from the 14 stations of the official network (henceforth LE-official);
- a simulation with assimilation of the data from the entire low-cost network (henceforth LE-lowcost)
- a simulation with assimilation only of high-quality data from the low-cost network (henceforth LE-lowcost-HQ).
2.4. Forecast Experiments
3. Results
3.1. Evaluation with Low-Cost Sensor Network
3.2. Evaluation of Data Assimilation Runs
3.3. Evaluation of Forecasts
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, H.Y.; Bartonova, A.; Schindler, M.; Sharma, M.; Behera, S.N.; Katiyar, K.; Dikshit, O. Respiratory Disease in Relation to Outdoor Air Pollution in Kanpur, India. Arch. Environ. Occup. Health 2013, 68, 204–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.Y.; Dunea, D.; Iordache, S.; Pohoata, A. A Review of Airborne Particulate Matter Effects on Young Children’s Respiratory Symptoms and Diseases. Atmosphere 2018, 9, 150. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Sutarlie, L.; Loh, X.J. Sensors and Analytical Technologies for Air Quality: Particulate Matters and Bioaerosols. Chem. Asian J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Le, T.C.; Shukla, K.K.; Chen, Y.T.; Chang, S.C.; Lin, T.Y.; Li, Z.; Pui, D.Y.; Tsai, C.J. On the concentration differences between PM2.5 FEM monitors and FRM samplers. Atmos. Environ. 2020, 222, 117138. [Google Scholar] [CrossRef]
- Masic, A.; Bibic, D.; Pikula, B.; Blazevic, A.; Huremovic, J.; Zero, S. Evaluation of optical particulate matter sensors under realistic conditions of strong and mild urban pollution. Atmos. Meas. Tech. 2020, 13, 6427–6443. [Google Scholar] [CrossRef]
- Tagle, M.; Rojas, F.; Reyes, F.; Vásquez, Y.; Hallgren, F.; Lindén, J.; Kolev, D.; Watne, Å.K.; Oyola, P. Field performance of a low-cost sensor in the monitoring of particulate matter in Santiago, Chile. Environ. Monit. Assess. 2020, 192. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Huang, L.; Wang, Z.; Ying, Q.; Zheng, J.; Shi, X.; Hu, J. Long-term field evaluation of low-cost particulate matter sensors in Nanjing. Aerosol Air Qual. Res. 2020, 20, 242–253. [Google Scholar] [CrossRef]
- Kumar, A.; Gurjar, B.R. Low-Cost Sensors for Air Quality Monitoring in Developing Countries—A Critical View. Asian J. Water Environ. Pollut. 2019, 16, 65–70. [Google Scholar] [CrossRef]
- Ahangar, F.E.; Freedman, F.R.; Venkatram, A. Using low-cost air quality sensor networks to improve the spatial and temporal resolution of concentration maps. Int. J. Environ. Res. Public Health 2019, 16, 1252. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.Y.; Schneider, P.; Haugen, R.; Vogt, M. Performance assessment of a low-cost PM 2.5 sensor for a near four-month period in Oslo, Norway. Atmosphere 2019, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.; Castell, N.; Vogt, M.; Dauge, F.R.; Lahoz, W.A.; Bartonova, A. Mapping urban air quality in near real-time using observations from low-cost sensors and model information. Environ. Int. 2017, 106, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Lahoz, W.A.; Schneider, P. Data assimilation: Making sense of Earth Observation. Front. Environ. Sci. 2014, 2, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Popoola, O.A.; Carruthers, D.; Lad, C.; Bright, V.B.; Mead, M.I.; Stettler, M.E.; Saffell, J.R.; Jones, R.L. Use of networks of low cost air quality sensors to quantify air quality in urban settings. Atmos. Environ. 2018, 194, 58–70. [Google Scholar] [CrossRef]
- Evensen, G. The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dyn. 2003, 53, 343–367. [Google Scholar] [CrossRef]
- Hoyos, C.D.; Herrera-Mejía, L.; Roldán-Henao, N.; Isaza, A. Effects of fireworks on particulate matter concentration in a narrow valley: The case of the Medellín metropolitan area. Environ. Monit. Assess. 2019, 192, 6. [Google Scholar] [CrossRef] [Green Version]
- Manders, A.M.M.; Builtjes, P.J.H.; Curier, L.; Denier Van Der Gon, H.A.C.; Hendriks, C.; Jonkers, S.; Kranenburg, R.; Kuenen, J.J.P.; Segers, A.J.; Timmermans, R.M.A.; et al. Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport model. Geosci. Model Dev. 2017, 10, 4145–4173. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Restrepo, S.; Yarce, A.; Pinel, N.; Quintero, O.; Segers, A.; Heemink, A. Forecasting PM10 and PM2.5 in the Aburrá Valley (Medellín, Colombia) via EnKF based Data Assimilation. Atmos. Environ. 2020, 232, 117507. [Google Scholar] [CrossRef]
- Pournazeri, S.; Tan, S.; Schulte, N.; Jing, Q.; Venkatram, A. A computationally efficient model for estimating background concentrations of NOx, NO2, and O3. Environ. Model. Softw. 2014, 52, 19–37. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE): Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Boylan, J.W.; Russell, A.G. PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos. Environ. 2006, 40, 4946–4959. [Google Scholar] [CrossRef]
- Shaocai, Y.; Brian, E.; Robin, D.; Shao-Hang, C.; Schwartz, E.S. New unbiased symmetric metrics for evaluation of air quality models. Atmos. Sci. Lett. 2006, 7, 26–34. [Google Scholar] [CrossRef]
- Mues, A.; Kuenen, J.; Hendriks, C.; Manders, A.; Segers, A.; Scholz, Y.; Hueglin, C.; Builtjes, P.; Schaap, M. Sensitivity of air pollution simulations with LOTOS-EUROS to the temporal distribution of anthropogenic emissions. Atmos. Chem. Phys. 2014, 14, 939–955. [Google Scholar] [CrossRef] [Green Version]
- Sauter, F.; der Swaluw, E.V.; Manders-groot, A.; Kruit, R.W.; Segers, A.; Eskes, H. TNO Report TNO-060-UT-2012-01451; Technical Report; TNO: Utrecht, The Netherlands, 2012. [Google Scholar]
- Van Loon, M.; Builtjes, P.J.H.; Segers, A.J. Data assimilation of ozone in the atmospheric transport chemistry model LOTOS. Environ. Model. Softw. 2000, 15, 603–609. [Google Scholar] [CrossRef]
- UPB; AMVA. Inventario de Emisiones Atmosféricas del Valle de Aburrá–Actualización 2015; Technical Report; Universidad Pontificia Bolivariana–Grupo de Investigaciones Ambientales, Area Metropolitana del Valle de Aburra: Medellín, Colombia, 2017. [Google Scholar]
- Ossés de Eicker, M.; Zah, R.; Triviño, R.; Hurni, H. Spatial accuracy of a simplified disaggregation method for traffic emissions applied in seven mid-sized Chilean cities. Atmos. Environ. 2008, 42, 1491–1502. [Google Scholar] [CrossRef]
- Haklay, M.; Weber, P. OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Comput. 2008, 7, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Tuia, D.; Ossés de Eicker, M.; Zah, R.; Osses, M.; Zarate, E.; Clappier, A. Evaluation of a simplified top-down model for the spatial assessment of hot traffic emissions in mid-sized cities. Atmos. Environ. 2007, 41, 3658–3671. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.D.; González, C.M.; Osses, M.; Aristizábal, B.H. Spatial and temporal disaggregation of the on-road vehicle emission inventory in a medium-sized Andean city. Comparison of GIS-based top-down methodologies. Atmos. Environ. 2018, 179, 142–155. [Google Scholar] [CrossRef]
- Tippett, M.K.; Anderson, J.L.; Bishop, C.H.; Hamill, T.M.; Whitaker, J.S. Ensemble square root filters. Mon. Weather. Rev. 2003, 131, 1485–1490. [Google Scholar] [CrossRef] [Green Version]
- Jazwinski, A. Stochastic Processes and Filtering Theory; Number 64 in Mathematics in Science and Engineering; Acadamic Press: New York, NY, USA, 1970. [Google Scholar]
- Ott, E.; Hunt, B.R.; Szunyogh, I.; Zimin, A.V.; Kostelich, E.; Corazza, M.; Kalnay, E.; Patil, D.; Yorke, J.A. A local ensemble Kalman filter for atmospheric data assimilation. Tellus 2004, 56, 415–428. [Google Scholar] [CrossRef]
- Sakov, P.; Evensen, G.; Bertino, L. Asynchronous data assimilation with the EnKF. Tellus, Ser. Dyn. Meteorol. Oceanogr. 2010, 62, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Henao, J.J.; Mejía, J.F.; Rendón, A.M.; Salazar, J.F. Sub-kilometer dispersion simulation of a CO tracer for an inter-Andean urban valley. Atmos. Pollut. Res. 2020, 11. [Google Scholar] [CrossRef]
- Mogollón-sotelo, C.; Belalcazar, L.; Vidal, S. A support vector machine model to forecast ground-level PM2.5 in a highly populated city with a complex terrain. Air Qual. Atmos. Health 2020. [Google Scholar] [CrossRef]
- EPA. Meteorological Monitoring Guidance for Regulatory Modeling Applications; Technical Report; U.S. Environmental Protection Agency: Washington, DC, USA, 2000.
- Kohavi, R.; Provost, F. Applications of Machine Learning and the Knowledge. Appl. Mach. Learn. Knowl. Mach. Learn. 1998, 30, 349–354. [Google Scholar]
- Pachón, J.E.; Galvis, B.; Lombana, O.; Carmona, L.G.; Fajardo, S.; Rincón, A.; Meneses, S.; Chaparro, R.; Nedbor-Gross, R.; Henderson, B. Development and evaluation of a comprehensive atmospheric emission inventory for air quality modeling in the megacity of Bogotá. Atmosphere 2018, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. Meteorol. Atmos. Phys. 2004, 87, 167–196. [Google Scholar] [CrossRef]
- Alexanderian, A.; Petra, N.; Stadler, G.; Ghattas, O. A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems. SIAM J. Sci. Comput. 2016, 38, A243–A272. [Google Scholar] [CrossRef] [Green Version]
- King, S.; Kang, W.; Xu, L. Observability for optimal sensor locations in data assimilation. Int. J. Dyn. Control. 2015, 3, 416–424. [Google Scholar] [CrossRef]
- Mazzoleni, M.; Alfonso, L.; Solomatine, D. Influence of spatial distribution of sensors and observation accuracy on the assimilation of distributed streamflow data in hydrological modelling. Hydrol. Sci. J. 2017, 62, 389–407. [Google Scholar] [CrossRef]
- Yildirim, B.; Chryssostomidis, C.; Karniadakis, G. Efficient sensor placement for ocean measurements using low-dimensional concepts. Ocean Model. 2009, 27, 160–173. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.J.; Basford, P.J.; Bulot, F.M.; Apetroaie-Cristea, M.; Easton, N.H.; Davenport, C.; Foster, G.L.; Loxham, M.; Morris, A.K.; Cox, S.J. City scale particulate matter monitoring using LoRaWAN based air quality IoT devices. Sensors 2019, 19, 1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isakov, V.; Arunachalam, S.; Baldauf, R.; Breen, M.; Deshmukh, P.; Hawkins, A.; Kimbrough, S.; Krabbe, S.; Naess, B.; Serre, M.; et al. Combining dispersion modeling and monitoring data for community-scale air quality characterization. Atmosphere 2019, 10, 610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moltchanov, S.; Levy, I.; Etzion, Y.; Lerner, U.; Broday, D.M.; Fishbain, B. On the feasibility of measuring urban air pollution by wireless distributed sensor networks. Sci. Total Environ. 2015, 502, 537–547. [Google Scholar] [CrossRef]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef] [PubMed]
Domain | Longitude | Latitude | Cell Size |
---|---|---|---|
D1 | 84° W–60° W | 8.5° S–18° N | 0.27° × 0.27° |
D2 | 80.5° W–70° W | 2° N–11° N | 0.09° × 0.09° |
D3 | 77.2° W–73.9° W | 5.2° N–8.9° N | 0.03° × 0.03° |
D4 | 76° W–75° W | 5.7° N–6.8° N | 0.01° × 0.01° |
D1 | D2 | D3 | D4 | |
---|---|---|---|---|
Boundary conditions | CAMS 1.4° × 1.4° | D1 0.27° × 0.27° | D2 0.09° × 0.09° | D3 0.03° × 0.03° |
Meteorology | ECMWF 1.4° × 1.4° | ECMWF 0.07° × 0.07° | ||
Anthropogenic emissions | EDGAR V4.2 0.1° × 0.1° | Local EI 0.01° × 0.01° | ||
Biogenic emissions | MEGAN 0.1° × 0.1° | |||
Fire emissions | CAMS GFAS 0.1° × 0.1° | |||
Land use | GLC2000 0.01° × 0.01° | |||
Orography | GMTED2010 0.002° × 0.002° |
Average Concentration (μg/m3) | ||||||
---|---|---|---|---|---|---|
Pollutant | Average Time | No Warning | Warning | |||
Green | Yellow | Orange | Red | Purple | ||
PM2.5 | 24 h | 0–12 | 13–37 | 38–55 | 56–150 | ≥151 |
MFB | RMSE | R | |
---|---|---|---|
LE | −0.65 | 27.38 | 0.42 |
LE-official | −0.07 | 20.69 | 0.64 |
LE-lowcost | 0.08 | 18.39 | 0.76 |
LE-lowcost-HQ | 0.06 | 17.46 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Restrepo, S.; Yarce, A.; Pinel, N.; Quintero, O.L.; Segers, A.; Heemink, A.W. Urban Air Quality Modeling Using Low-Cost Sensor Network and Data Assimilation in the Aburrá Valley, Colombia. Atmosphere 2021, 12, 91. https://doi.org/10.3390/atmos12010091
Lopez-Restrepo S, Yarce A, Pinel N, Quintero OL, Segers A, Heemink AW. Urban Air Quality Modeling Using Low-Cost Sensor Network and Data Assimilation in the Aburrá Valley, Colombia. Atmosphere. 2021; 12(1):91. https://doi.org/10.3390/atmos12010091
Chicago/Turabian StyleLopez-Restrepo, Santiago, Andres Yarce, Nicolás Pinel, O.L. Quintero, Arjo Segers, and A.W. Heemink. 2021. "Urban Air Quality Modeling Using Low-Cost Sensor Network and Data Assimilation in the Aburrá Valley, Colombia" Atmosphere 12, no. 1: 91. https://doi.org/10.3390/atmos12010091
APA StyleLopez-Restrepo, S., Yarce, A., Pinel, N., Quintero, O. L., Segers, A., & Heemink, A. W. (2021). Urban Air Quality Modeling Using Low-Cost Sensor Network and Data Assimilation in the Aburrá Valley, Colombia. Atmosphere, 12(1), 91. https://doi.org/10.3390/atmos12010091