Assessing AgERA5 and MERRA-2 Global Climate Datasets for Small-Scale Agricultural Applications †
<p>Map of the study area (<b>a</b>) where the grids of the AgERA5 (<b>b</b>) and MERRA-2 (<b>c</b>) climate datasets are overlaid over the weather stations.</p> "> Figure 2
<p>Soil taxonomical classes of the study area at the level of reference soil group.</p> "> Figure 3
<p>Relationship between observed and estimated total annual precipitation values using AgERA5 and MERRA-2 datasets with various interpolation methods. The linear regression lines in blue color, the 95% confidence intervals, and the x = y lines in black color are also plotted.</p> "> Figure 4
<p>Relationship between observed and estimated total annual potential evapotranspiration values using AgERA5 and MERRA-2 datasets with various interpolation methods. The linear regression lines in blue color, the 95% confidence intervals, and the x = y lines in black color are also plotted.</p> "> Figure 5
<p>Relationship between annual irrigation requirements values calculated using observed vs. estimated data using AgERA5 and MERRA-2 datasets with various interpolation methods. The linear regression lines in blue color, the 95% confidence intervals, and the x = y lines in black color are also plotted.</p> "> Figure 6
<p>Map with the station coverage which is the basis for the E-OBS precipitation dataset for (<b>a</b>) Greece and (<b>b</b>) all over Europe. E-OBS is a land-only gridded daily observational dataset for precipitation, temperature, sea level pressure, global radiation, wind speed, and relative humidity in Europe [<a href="#B47-atmosphere-16-00263" class="html-bibr">47</a>].</p> ">
Abstract
:1. Introduction
- (1)
- Directly comparing weather station data with the corresponding reanalysis grid cells;
- (2)
- Comparing weather station data with downscaled reanalysis data using two spatial interpolation techniques.
2. Materials and Methods
2.1. Description of the Study Area
2.2. Datasets
2.2.1. Meteorological Stations Data
2.2.2. AgERA5
2.2.3. MERRA-2
2.2.4. Soil Data
2.3. Data Pre-Processing
- AgERA5’s 2 m temperature (K) was converted to degrees Celsius:
- AgERA5’s 10 m wind speed was downscaled to 2 m, using the following equation [34]:
- AgERA5’s solar radiation flux (J/m2/day) was converted to solar radiation (W/m2):
- MERRA-2’s all sky surface shortwave downward irradiance (MJ/m2/day) was converted to solar radiation (W/m2):
2.4. Reference Evapotranspiration Calculation
2.5. Development of a Main Algorithm for Determining Irrigation Needs
2.6. Spatial Interpolation Methodology
2.7. Reanalysis Models Evaluation Methodology
- Regression lines (intercept, slope, and coefficient of determination R2)
- Root Mean Square Error
- Mean Bias Error
3. Results
3.1. Reanalysis Models Validation
3.1.1. Precipitation Analysis
3.1.2. Potential Evapotranspiration (ETp) Analysis
3.1.3. Irrigation Planning Analysis
3.2. Predictive Accuracy and Bias Assessment
- Precipitation: For AgERA5, the RMSE decreases significantly when using interpolation methods compared to the raw data, with the best performance being a 29.8% decrease in RMSE seen in the IDW daily coefficient (154.9 mm). In contrast, MERRA-2 has generally higher RMSE values, with the raw data at 220.7 mm and interpolation methods yielding marginal deteriorations, the worst being an RMSE of 231 mm, a 9.3% increase in RMSE, with IDW daily coefficient. A general observation is that RMSE values are very high considering the low precipitation depths in the area.
- Potential evapotranspiration (ETp): AgERA5 again shows a clear improvement with interpolation, particularly the IDW daily coefficient, which reduces the RMSE from 116.3 mm (raw) to 69 mm, signifying a 46.3% decrease in RMSE, with the IDW average coefficient being a close second (69.3 mm). MERRA-2 exhibits marginally better performance in the raw data with RMSE = 112.3 mm, and higher errors with interpolation methods (137 mm or a 22% increase in IDW simple and 130.8 mm or a 16.5% increase in IDW average coefficient), with the exception of IDW daily coefficient (103.7 mm), which exhibits a 7.7% decrease in RMSE.
- Irrigation: The RMSE for AgERA5 shows minimal variation between the raw data and various interpolation methods, with values ranging from 49.8 mm to 54.9 mm, a relative difference of −8.1% to +1.3%. For MERRA-2, the raw data results in a higher RMSE of 111.5 mm, though interpolation reduces the error significantly, with the IDW daily coefficient producing the lowest RMSE of 49.4 mm, which constitutes a 56% reduction in RMSE and marks the best performing dataset of all. However, the high RMSE values in all cases highlight the high risks of over-irrigation or under-irrigation when using these datasets, suggesting that these datasets may have limited utility for applications requiring high precision irrigation management.
- Precipitation: For AgERA5, the MBE decreases with interpolation, with IDW daily coef. showing the lowest bias (140 mm), compared to 218.0 mm in the raw data. However, there is overestimation in all cases. MERRA-2 has a very low underestimation for raw but very big overestimation for all other cases.
- Potential evapotranspiration (ETp): AgERA5 shows a notable reduction in bias with interpolation, but there is overestimation in all cases. In MERRA-2, the raw data have a positive bias, but interpolation methods lead to substantial overestimation, with MBE values reaching −137 mm.
- Irrigation: AgERA5 shows minimal bias with interpolation methods, particularly with IDW simple. MERRA-2 shows a significant underestimation in the raw data, but interpolation leads to big overestimation.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, C.; Tong, F.; Jin, J.; Zhou, Y.; Nie, B.; Cui, Y.; Zhang, L. Variation characteristic analysis of regional agricultural water consumption under Budyko-type framework. Hydrol. Sci. J. 2024, 69, 1973–1984. [Google Scholar] [CrossRef]
- Lemma, T.D.; Gamba, P.; Wedajo, G.K. Evaluation of Era5, and Space-Based Precipitation Estimation Over Awash River Basin, Ethiopia. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 3799–3802. [Google Scholar]
- Zhou, Y.; Wang, J.; Grigorieva, E.; Li, K.; Xu, H. Performance Evaluation of Multi-Typed Precipitation Products for Agricultural Research in the Amur River Basin over the Sino–Russian Border Region. Remote Sens. 2023, 15, 2577. [Google Scholar] [CrossRef]
- Talchabhadel, R.; Sharma, S.; Khadka, N.; Hamal, K.; Karki, S.; Thapa, B.R. An outlook on the applicability of satellite precipitation products for monitoring extreme precipitation events in Nepal Himalaya. Weather 2022, 77, 174–180. [Google Scholar] [CrossRef]
- Cammalleri, C. A unified streamflow drought index for both perennial and intermittent rivers at global scale. Hydrol. Sci. J. 2024, 69, 1848–1859. [Google Scholar] [CrossRef]
- Saddique, N.; Muzammil, M.; Jahangir, I.; Sarwar, A.; Ahmed, E.; Aslam, R.A.; Bernhofer, C. Hydrological evaluation of 14 satellite-based, gauge-based and reanalysis precipitation products in a data-scarce mountainous catchment. Hydrol. Sci. J. 2022, 67, 436–450. [Google Scholar] [CrossRef]
- Xu, Y.; Han, S.; Shi, C.; Tao, R.; Zhang, J.; Zhang, Y.; Wang, Z. Comparative Analysis of Three Near-Surface Air Temperature Reanalysis Datasets in Inner Mongolia Region. Sustainability 2023, 15, 13046. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, N. Evaluation and Comparison of Six High-Resolution Daily Precipitation Products in Mainland China. Remote Sens. 2022, 15, 223. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Li, X.; Qin, X.; Yang, J.; Zhang, Y. Evaluation of ERA5, ERA-Interim, JRA55 and MERRA2 reanalysis precipitation datasets over the Poyang Lake Basin in China. Int. J. Climatol. 2022, 42, 10435–10450. [Google Scholar] [CrossRef]
- Abdollahi, B.; Alidoost, F.; Moshir Panahi, D.; Hut, R.; van de Giesen, N. ERA5 and ERA-Interim Data Processing for the GlobWat Global Hydrological Model. Water 2022, 14, 1950. [Google Scholar] [CrossRef]
- Hassler, B.; Lauer, A. Comparison of Reanalysis and Observational Precipitation Datasets Including ERA5 and WFDE5. Atmosphere 2021, 12, 1462. [Google Scholar] [CrossRef]
- Mavromatis, T. Evaluation of Reanalysis Data in Meteorological and Climatological Applications: Spatial and Temporal Considerations. Water 2022, 14, 2769. [Google Scholar] [CrossRef]
- Jimenez, A.-F.; Cardenas, P.-F.; Canales, A.; Jimenez, F.; Portacio, A. A survey on intelligent agents and multi-agents for irrigation scheduling. Comput. Electron. Agric. 2020, 176, 105474. [Google Scholar] [CrossRef]
- Kazou, M.; Pagiati, L.; Dotsika, E.; Proxenia, N.; Kotseridis, Y.; Tsakalidou, E. The Microbial Terroir of the Nemea Zone Agiorgitiko cv.: A First Metataxonomic Approach. Aust. J. Grape Wine Res. 2023, 2023, 8791362. [Google Scholar] [CrossRef]
- Soulis, K.X.; Psomiadis, E.; Londra, P.; Skuras, D. A New Model-Based Approach for the Evaluation of the Net Contribution of the European Union Rural Development Program to the Reduction of Water Abstractions in Agriculture. Sustainability 2020, 12, 7137. [Google Scholar] [CrossRef]
- Jamroen, C.; Komkum, P.; Fongkerd, C.; Krongpha, W. An Intelligent Irrigation Scheduling System Using Low-Cost Wireless Sensor Network Toward Sustainable and Precision Agriculture. IEEE Access. 2020, 8, 172756–172769. [Google Scholar] [CrossRef]
- Fernández García, I.; Lecina, S.; Ruiz-Sánchez, M.C.; Vera, J.; Conejero, W.; Conesa, M.R.; Domínguez, A.; Pardo, J.J.; Léllis, B.C.; Montesinos, P. Trends and Challenges in Irrigation Scheduling in the Semi-Arid Area of Spain. Water 2020, 12, 785. [Google Scholar] [CrossRef]
- Boogaard, H.; Schubert, J.; De Wit, A.; Lazebnik, J.; Hutjes, R.; Van der Grijn, G. Agrometeorological indicators from 1979 to present derived from reanalysis. In Copernicus Climate Change Service (C3S) Climate Data Store (CDS); Wageningen Environmental Research: Wageningen, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Shahzaman, M.; Zhu, W.; Ullah, I.; Mustafa, F.; Bilal, M.; Ishfaq, S.; Nisar, S.; Arshad, M.; Iqbal, R.; Aslam, R.W. Comparison of Multi-Year Reanalysis, Models, and Satellite Remote Sensing Products for Agricultural Drought Monitoring over South Asian Countries. Remote Sens. 2021, 13, 3294. [Google Scholar] [CrossRef]
- Dos Santos, R.A.; Mantovani, E.C.; Bufon, V.B.; Fernandes-Filho, E.I. Improving actual evapotranspiration estimates through an integrated remote sensing and cutting-edge machine learning approach. Comput. Electron. Agric. 2024, 225, 109258. [Google Scholar] [CrossRef]
- Delgado-Ramírez, G.; Bolaños-González, M.A.; Quevedo-Nolasco, A.; López-Pérez, A.; Estrada-Ávalos, J. Estimation of Reference Evapotranspiration in a Semi-Arid Region of Mexico. Sensors 2023, 23, 7007. [Google Scholar] [CrossRef]
- Rolle, M.; Tamea, S.; Claps, P. Climate-driven trends in agricultural water requirement: An ERA5-based assessment at daily scale over 50 years. Environ. Res. Lett. 2022, 17, 44017. [Google Scholar] [CrossRef]
- Pelosi, A.; Bolognesi, S.F.; D’Urso, G.; Chirico, G.B. Assessing crop evapotranspiration by combining ERA5-Land meteorological reanalysis data and visible and near-infrared satellite imagery. In Proceedings of the 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento, Italy, 3–5 November 2021. [Google Scholar]
- Vanella, D.; Longo-Minnolo, G.; Belfiore, O.R.; Ramírez-Cuesta, J.M.; Pappalardo, S.; Consoli, S.; D’Urso, G.; Chirico, G.B.; Coppola, A.; Comegna, A.; et al. Comparing the use of ERA5 reanalysis dataset and ground-based agrometeorological data under different climates and topography in Italy. J. Hydrol. Reg. Stud. 2022, 42, 101182. [Google Scholar] [CrossRef]
- Lorite, I.J.; Ramírez-Cuesta, J.M.; Cruz-Blanco, M.; Santos, C. Using weather forecast data for irrigation scheduling under semi-arid conditions. Irrig. Sci. 2015, 33, 411–427. [Google Scholar] [CrossRef]
- Dosiadis, E.; Katsogiannou, A.; Nikitakis, E.; Valiantza, E.; Gerontidis, S.; Soulis, K.; Kalivas, D. Assessing Global Climate Datasets for Small-Scale Agricultural Applications: The Case of Nemea, Greece. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 14–19 April 2024; p. 3839. [Google Scholar]
- Koundouras, S.; Marinos, V.; Gkoulioti, A.; Kotseridis, Y.; van Leeuwen, C. Influence of Vineyard Location and Vine Water Status on Fruit Maturation of Nonirrigated Cv. Agiorgitiko (Vitis vinifera L.). Effects on Wine Phenolic and Aroma Components. J. Agric. Food Chem. 2006, 54, 5077–5086. [Google Scholar] [CrossRef]
- Petropoulos, S.; Kanellopoulou, A.; Paraskevopoulos, I.; Kotseridis, Y.; Kallithraka, S. Characterization of grape and wine proanthocyanidins of Agiorgitiko (Vitis vinifera L. cv.) cultivar grown in different regions of Nemea. J. Food Compos. Anal. 2017, 63, 98–110. [Google Scholar] [CrossRef]
- Soulis, K.X.; Nikitakis, E.E.; Katsogiannou, A.N.; Kalivas, D.P. Examination of empirical and Machine Learning methods for regression of missing or invalid solar radiation data using routine meteorological data as predictors. AIMS Geosci. 2024, 10, 939–964. [Google Scholar] [CrossRef]
- Soulis, K.; Kalivas, D.; Apostolopoulos, C. Delimitation of Agricultural Areas with Natural Constraints in Greece: Assessment of the Dryness Climatic Criterion Using Geostatistics. Agronomy 2018, 8, 161. [Google Scholar] [CrossRef]
- NASA POWER Project: The MERRA-2 Data Was Obtained from the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) Prediction of Worldwide Energy Resource (POWER). Available online: https://power.larc.nasa.gov/ (accessed on 10 February 2025).
- IUSS Working Group WRB. World Reference Base or Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Allan, R.; Pereira, L. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Porporato, A.; Daly, E.; Rodriguez-Iturbe, I. Soil Water Balance and Ecosystem Response to Climate Change. Am. Nat. 2004, 164, 625. [Google Scholar] [CrossRef] [PubMed]
- Campos, I.; Balbontín, C.; González-Piqueras, J.; González-Dugo, M.P.; Neale, C.M.U.; Calera, A. Combining a water balance model with evapotranspiration measurements to estimate total available soil water in irrigated and rainfed vineyards. Agric. Water Manag. 2016, 165, 141–152. [Google Scholar] [CrossRef]
- Ritchie, J.T. Soil water availability. Plant Soil. 1981, 58, 327–338. [Google Scholar] [CrossRef]
- Tibebe, M.; Zemadim, B. Water demand analysis and irrigation requirement for major crops at Holetta Catchment, Awash Subbasin, Ethiopia. J. Nat. Sci. Res. 2015, 5, 117–127. [Google Scholar]
- FAO. Cropwat—A Computer Program for Irrigation Planning and Management; FAO: Rome, Italy, 1992. [Google Scholar]
- Zang, H.; Jiang, X.; Cheng, L.; Zhang, F.; Wei, Z.; Sun, G. Combined empirical and machine learning modeling method for estimation of daily global solar radiation for general meteorological observation stations. Renew. Energy 2022, 195, 795–808. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- R Core Team. R Version 4.4.1: A Language and Environment for Statistical Computing. 2024. Available online: https://www.R-project.org/ (accessed on 1 October 2024).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation, R Package Version 04; Posit: Boston, MA, USA, 2014; Volume 3, 156. [CrossRef]
- Hamal, K.; Sharma, S.; Khadka, N.; Baniya, B.; Ali, M.; Shrestha, M.S.; Xu, T.; Shrestha, D.; Dawadi, B. Evaluation of MERRA-2 Precipitation Products Using Gauge Observation in Nepal. Hydrology 2020, 7, 40. [Google Scholar] [CrossRef]
- Shi, M.; Liu, X.; Fan, P.; Zhang, W.; Gao, W. Evaluation and application analysis of kilometer-scale convective parameters derived from a statistical downscaling method over Central China. Clim. Dyn. 2023, 61, 4563–4586. [Google Scholar] [CrossRef]
- Copernicus Knowledge Base. E-OBS Daily Gridded Observations for Europe from 1950 to Present: Product User Guide; Copernicus: Brussels, Belgium, 2024. [Google Scholar]
- Mirás-Avalos, J.; Araujo, E. Optimization of Vineyard Water Management: Challenges, Strategies, and Perspectives. Water 2021, 13, 746. [Google Scholar] [CrossRef]
- Romero, M.; Luo, Y.; Su, B.; Fuentes, S. Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management. Comput. Electron. Agric. 2018, 147, 109–117. [Google Scholar] [CrossRef]
- Lavado, N.; Prieto, M.H.; Mancha, L.A.; Moreno, D.; Valdés, M.E.; Uriarte, D. Combined effect of crop forcing and reduced irrigation as techniques to delay the ripening and improve the quality of cv. Tempranillo (Vitis vinifera L.) berries in semi-arid climate conditions. Agric. Water Manag. 2023, 288, 108469. [Google Scholar] [CrossRef]
- Ramírez-Cuesta, J.M.; Intrigliolo, D.S.; Lorite, I.J.; Moreno, M.A.; Vanella, D.; Ballesteros, R.; Hernández-López, D.; Buesa, I. Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model. Agric. Water Manag. 2023, 281, 108247. [Google Scholar] [CrossRef]
AgERA5 | MERRA-2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Station | Precipitation Observed | Raw | IDW Simple | IDW Daily Coef | IDW Avg Coef | Raw | IDW Simple | IDW Daily Coef | IDW Avg Coef |
(mm) | |||||||||
1 | 483.3 | 695.8 | 646.4 | 613.7 | 622.8 | 585.7 | 609.5 | 607.5 | 607.8 |
2 | 481.6 | 695.8 | 671.1 | 640.8 | 649.7 | 585.7 | 609.2 | 607.9 | 608.1 |
3 | 492.5 | 695.8 | 664.1 | 641.7 | 648.2 | 585.7 | 411.5 | 609.8 | 610.0 |
4 | 404.9 | 695.8 | 606.3 | 536.6 | 562.2 | 585.7 | 605.8 | 598.0 | 599.3 |
5 | 304.6 | 695.8 | 587.0 | 509.8 | 538.4 | 585.7 | 603.3 | 595.2 | 595.9 |
6 | 352.9 | 445.3 | 500.1 | 431.0 | 455.6 | 585.7 | 601.7 | 593.9 | 594.7 |
7 | 301.9 | 563.4 | 562.2 | 494.2 | 517.1 | 585.7 | 602.6 | 596.1 | 597.4 |
8 | 262.8 | 563.4 | 521.3 | 460.3 | 481.2 | 585.7 | 585.2 | 578.9 | 580.0 |
9 | 365.9 | 445.3 | 475.7 | 407.2 | 548.8 | 585.7 | 598.0 | 590.9 | 591.7 |
10 | 358.1 | 492.4 | 530.5 | 477.5 | 496.5 | 585.7 | 601.9 | 596.8 | 597.8 |
AgERA5 | MERRA-2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Station | ETp Observed | Raw | IDW Simple | IDW Daily Coef | IDW Avg Coef | Raw | IDW Simple | IDW Daily Coef | IDW Avg Coef |
(mm) | |||||||||
1 | 561.4 | 613.6 | 625.3 | 592.4 | 593.3 | 548.4 | 688.7 | 653.5 | 686.5 |
2 | 602.5 | 613.7 | 625.9 | 594.2 | 595.1 | 548.4 | 689.3 | 654.0 | 688.0 |
3 | 503.2 | 659.6 | 625.2 | 613.7 | 614.3 | 548.4 | 690.3 | 655.0 | 691.0 |
4 | 493.6 | 659.6 | 645.7 | 609.7 | 611.6 | 548.4 | 687.8 | 651.9 | 678.5 |
5 | 524.0 | 659.8 | 648.1 | 608.2 | 610.3 | 548.5 | 688.8 | 652.5 | 677.8 |
6 | 542.4 | 705.2 | 663.0 | 625.1 | 627.0 | 548.5 | 690.1 | 653.7 | 679.8 |
7 | 546.1 | 682.3 | 647.4 | 611.7 | 613.5 | 548.4 | 690.5 | 654.3 | 683.0 |
8 | 596.6 | 701.0 | 674.6 | 641.5 | 643.2 | 548.4 | 697.7 | 660.6 | 690.3 |
9 | 563.7 | 705.0 | 667.4 | 627.6 | 621.1 | 548.4 | 692.8 | 656.0 | 683.6 |
10 | 604.0 | 700.5 | 660.7 | 632.3 | 633.8 | 548.4 | 691.8 | 655.5 | 685.9 |
AgERA5 | MERRA-2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Station | Irrigation Observed | Raw | IDW Simple | IDW Daily Coef | IDW Avg Coef | Raw | IDW Simple | IDW Daily Coef | IDW Avg Coef |
(mm) | |||||||||
1 | 368.2 | 371.2 | 350.2 | 312.0 | 311.0 | 329.6 | 427.0 | 405.5 | 426.6 |
2 | 402.5 | 382.2 | 342.6 | 326.2 | 323.0 | 342.1 | 420.7 | 400.4 | 420.4 |
3 | 321.3 | 400.1 | 380.1 | 345.4 | 345.0 | 342.1 | 421.3 | 402.0 | 421.5 |
4 | 323.5 | 400.1 | 380.7 | 363.4 | 363.4 | 342.1 | 421.1 | 417.6 | 418.5 |
5 | 341.5 | 367.2 | 367.1 | 343.2 | 345.1 | 320.1 | 414.0 | 414.1 | 414.0 |
6 | 352.4 | 410.1 | 379.9 | 378.7 | 378.8 | 299.5 | 382.7 | 379.8 | 381.5 |
7 | 388.6 | 406.9 | 369.3 | 367.7 | 350.2 | 329.6 | 428.2 | 407.6 | 427.4 |
8 | 464.3 | 429.4 | 387.4 | 387.0 | 388.1 | 329.6 | 428.1 | 408.2 | 426.5 |
9 | 388.7 | 439.2 | 412.9 | 389.6 | 366.3 | 320.1 | 413.2 | 414.1 | 413.5 |
10 | 427.9 | 430.4 | 390.2 | 388.7 | 387.9 | 329.6 | 427.3 | 407.2 | 427.7 |
AgERA5 | MERRA-2 | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Raw | IDW Simple | IDW Daily Coef | IDW Avg Coef | Raw | IDW Simple | IDW Daily Coef | IDW Avg Coef |
RMSE (mm) | ||||||||
Precipitation | 220.5 | 198.2 | 154.9 | 177.6 | 220.7 | 227.5 | 231.0 | 229.1 |
ETp | 116.3 | 96.6 | 69.0 | 69.3 | 112.3 | 137.0 | 103.7 | 130.8 |
Irrigation | 54.2 | 49.8 | 50.0 | 54.9 | 111.5 | 49.8 | 49.4 | 49.7 |
ANOVA for irrigation water requirements | ||||||||
ANOVA F/p-value | 21.8/ 0.000 | 14.7/ 0.000 | 13.3/ 0.000 | 28.6/ 0.000 | 21.8/ 0.000 | 14.7/ 0.000 | 13.3/ 0.000 | 28.6/ 0.000 |
AgERA5 | MERRA-2 | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Raw | IDW Simple | IDW Daily Coef | IDW Avg Coef | Raw | IDW Simple | IDW Daily Coef | IDW Avg Coef |
MBE (mm) | ||||||||
Precipitation | −218 | −196 | −140 | −171 | 13 | −202 | −217 | −217 |
ETp | −116 | −95 | −62 | −63 | 122 | −137 | −101 | −131 |
Irrigation | −26 | 2 | 18 | 22 | 75 | −40 | −28 | −40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soulis, K.; Dosiadis, E.; Nikitakis, E.; Charalambopoulos, I.; Kairis, O.; Katsogiannou, A.; Palli Gravani, S.; Kalivas, D. Assessing AgERA5 and MERRA-2 Global Climate Datasets for Small-Scale Agricultural Applications. Atmosphere 2025, 16, 263. https://doi.org/10.3390/atmos16030263
Soulis K, Dosiadis E, Nikitakis E, Charalambopoulos I, Kairis O, Katsogiannou A, Palli Gravani S, Kalivas D. Assessing AgERA5 and MERRA-2 Global Climate Datasets for Small-Scale Agricultural Applications. Atmosphere. 2025; 16(3):263. https://doi.org/10.3390/atmos16030263
Chicago/Turabian StyleSoulis, Konstantinos, Evangelos Dosiadis, Evangelos Nikitakis, Ioannis Charalambopoulos, Orestis Kairis, Aikaterini Katsogiannou, Stergia Palli Gravani, and Dionissios Kalivas. 2025. "Assessing AgERA5 and MERRA-2 Global Climate Datasets for Small-Scale Agricultural Applications" Atmosphere 16, no. 3: 263. https://doi.org/10.3390/atmos16030263
APA StyleSoulis, K., Dosiadis, E., Nikitakis, E., Charalambopoulos, I., Kairis, O., Katsogiannou, A., Palli Gravani, S., & Kalivas, D. (2025). Assessing AgERA5 and MERRA-2 Global Climate Datasets for Small-Scale Agricultural Applications. Atmosphere, 16(3), 263. https://doi.org/10.3390/atmos16030263