Regulatory B Cells—Immunopathological and Prognostic Potential in Humans
<p>Main subtypes of human regulatory B cells. (<b>A</b>) IL-10+ regulatory B cells (Bregs) inhibit the Th1, Th17 and CD8+ T cell response, convert naïve CD4+ T cells into regulatory T cell populations and modulate pro-inflammatory cells of the innate immune system, such as macrophages, NK cells and dendritic cells via secretion of IL-10. (<b>B</b>) GrB+ regulatory B cells (GraB cells) inhibit the response of Th1 and Th17 cells and reduce the proliferation of T cells by reducing their proliferation through GrB-mediated enzymatic cleavage of the ζ-chain of their T cell receptor. (<b>C</b>) TGF-β+ Bregs act similarly to IL-10+ Bregs on naïve CD4+ T cells, generating FoxP3+ Tregs and inducing anergy in CD4+ and CD8+ T cells. (<b>D</b>) IL-35+ Bregs can promote tolerance in the context of chronic infections by supporting both IL-35-producing Tregs and their own generation. Abbreviations: Breg = regulatory B cell, CD = cluster of differentiation, DC = dendritic cell, GraB cell = GrB-secreting regulatory B cell, GrB = granzyme B, IFN = interferon, IL = interleukin, M∅ = macrophage, NK cell = natural killer cell, NO = nitric oxide, pDC = plasmacytoid dendritic cell, TGF = transforming growth factor, Th = T helper cell, TNF = tumor necrosis factor, tolDC = tolerogenic dendritic cell, Treg = regulatory T cell, ↑ = upregulation, ↓ = downregulation. Figures were prepared using BioRender (Agreement number: UA2659WLGL).</p> "> Figure 2
<p>Suppressive mechanisms of human regulatory B cells. Like regulatory T cells, the currently known subpopulations of human regulatory B cells (Bregs) utilize numerous different mechanisms for their immunosuppressive activity. These include the secretion of soluble molecules such as the cytokines IL-10, IL-35 or TGF-β as well as the cytotoxic enzyme granzyme B (GrB). On the other hand, molecules expressed on the surface of Bregs also play a major role in inhibiting immune responses. These molecules can be enzymes such as CD39, CD73 or IDO, which convert certain substrates in such a way that this results in the inhibition of certain immune cells. On the other hand, molecules that require direct contact with corresponding complementary ligands on other immune cells are also involved in the immunosuppressive effect of Bregs. These include antigen-presenting molecules such as CD1d or MHC II, costimulatory molecules such as CD80, CD86 or CD40 or ligands for so-called “death receptors” such as Fas or PD-1. Key inducers of Bregs include cytokines such as IL-21 and IL-10, the B cell receptor (BCR) and Toll-like receptors (TLRs). Abbreviations: ADO = adenosine, AMP = adenosine monophosphate, ATP = adenosine triphosphate, BCR = B cell receptor, Breg = regulatory B cell, CD = cluster of differentiation, DC = dendritic cell, FasL = Fas ligand, GrB = granzyme B, ICOSL = inducible costimulator ligand, IDO = indoleamine 2,3-dioxygenase, IFN = interferon, IL = interleukin, iTCR = invariant T cell receptor, M∅ = macrophage, MHC = major histocompatibility complex, NK cell = natural killer cell, NKT = natural killer T cell, PD-L1 = programmed cell death ligand-1, TCR = T cell receptor, TGF = transforming growth factor, Th = T helper cell, TLR = toll-like receptor, TNF = tumor necrosis factor, Treg = regulatory T cell, ↓ = downregulation. Figures were generated using BioRender (Agreement number: UA2659WLGL).</p> "> Figure 3
<p>Development of granzyme B-secreting regulatory B cells as deviation of their IL-21-dependent differentiation into plasma cells. Complete activation of CD4<sup>+</sup> T cells requires simultaneous stimulation of the T cell receptor (TCR) via MHC/peptide complexes and of CD28 by costimulatory molecules such as CD80 or CD86 on antigen-presenting cells (APC). When T cells are fully activated, they secrete IL-21 and express large amounts of CD40L on their surface, which enables them to initiate differentiation of B cells into antibody-producing plasma cells. In certain situations, the TCR of CD4<sup>+</sup> T cells can be activated without simultaneous co-stimulation via CD28. As an example, the HIV protein Nef is able to directly activate T cells via the TCR in the absence of professional APC. This results in incomplete activation of T helper cells, which react with secretion of IL-21 but no relevant upregulation of CD40L. After interaction with such incompletely activated T helper cells, BCR-stimulated B cells develop into GrB<sup>+</sup> B cells with regulatory potential (GraB cells) instead of plasma cells. Abbreviations: BCR = B cell receptor, CD = cluster of differentiation, GraB cell = GrB-secreting regulatory B cell, GrB = granzyme B, IL = interleukin, MHC = major histocompatibility complex, PMA = Phorbol-12-Myristate-13-Acetate. Figures were generated using BioRender (Agreement number: UA2659WLGL).</p> ">
Abstract
:1. Introduction
2. Diversity of the Breg Universe
Breg Type | Phenotype | Locations | Immunosuppressive Molecules | References |
---|---|---|---|---|
Granzyme B+ B cells (GraB cells) * | CD19+ CD20+ GrB+ CD86+ CD147+, IDO+, (CD38± CD25± CD27+ CD1d± CD5± CD10+ IgM±) ** | Peripheral blood, Solid tumors | Granzyme B >> TCR-ζ cleavage Granzyme B, IDO, CD25 | [23,26,28,29] [24] |
B10 cells | CD19+ CD24hi CD27+ | Spleen, peripheral blood, gastric mucosa, gastric carcinoma | IL-10 | [18,30,31,32,33] |
Immature transitional B cells * | CD19+ CD24hi CD38hi CD1dhi | Peripheral blood, liver | IL-10, CD80/86 | [34,35,36,37,38,39] |
CD5+ B cells | CD19+ CD5+ GrB+ CD1dhi | Peripheral blood | Granzyme B IL-10 | [40] [41] |
Tim-1+ B cells | CD19+ Tim-1+ | Spleen, peripheral blood | IL-10 | [42,43,44] |
Adipose tissue B cells | CD19+ CD27+ CD38hi | Adipose tissue | IL-10 | [45,46] |
Br1 cells * | CD19+ CD25+ CD71hi CD73lo | Peripheral blood | IL-10, IgG4 | [47] |
CD73+ B cells | CD19+ CD39+ CD73+ | Spleen, peripheral blood | CD39/CD73 >> AMP/Adenosin | [48,49] |
Plasmablasts | CD19+ CD24hi CD27int CD38+ CD138+ IgA+ PD-L1− IL-10+ | Lymph nodes, peripheral blood, spleen | IL-10 TGF-β | [50] [51] |
PD-L1hi B cells | CD19+ PD-L1hi | Spleen, solid tumors | PD-L1, IgA, IL-10 | [52,53,54] |
CD9+ B cells | CD19+ CD9+ | Spleen, peripheral blood | IL-10 | [55] |
* No cellular equivalent in the mouse | ** (±) Inconsistent expression on GraB cells |
3. Regulatory B Cells in Inflammatory Immunopathologies
4. Regulatory B Cells in Infections
5. Regulatory B Cells in Neoplastic Diseases
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katz, S.I.; Parker, D.; Turk, J.L. B-cell suppression of delayed hypersensitivity reactions. Nature 1974, 251, 550–551. [Google Scholar] [CrossRef]
- Dass, S.; Vital, E.M.; Emery, P. Development of psoriasis after B cell depletion with rituximab. Arthritis Rheum. 2007, 56, 2715–2718. [Google Scholar] [CrossRef]
- Guidelli, G.M.; Fioravanti, A.; Rubegni, P.; Feci, L. Induced psoriasis after rituximab therapy for rheumatoid arthritis: A case report and review of the literature. Rheumatol. Int. 2013, 33, 2927–2930. [Google Scholar] [CrossRef]
- Goetz, M.; Atreya, R.; Ghalibafian, M.; Galle, P.R.; Neurath, M.F. Exacerbation of ulcerative colitis after rituximab salvage therapy. Inflamm. Bowel Dis. 2007, 13, 1365–1368. [Google Scholar] [CrossRef] [PubMed]
- Mauri, C.; Bosma, A. Immune regulatory function of B cells. Annu. Rev. Immunol. 2012, 30, 221–241. [Google Scholar] [CrossRef]
- Catalan, D.; Mansilla, M.A.; Ferrier, A.; Soto, L.; Oleinika, K.; Aguillon, J.C.; Aravena, O. Immunosuppressive Mechanisms of Regulatory B Cells. Front. Immunol. 2021, 12, 611795. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.D.; Dittel, B.N.; Hardardottir, F.; Janeway, C.A., Jr. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 1996, 184, 2271–2278. [Google Scholar] [CrossRef] [PubMed]
- Mauri, C.; Gray, D.; Mushtaq, N.; Londei, M. Prevention of arthritis by interleukin 10-producing B cells. J. Exp. Med. 2003, 197, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Mizoguchi, A.; Mizoguchi, E.; Takedatsu, H.; Blumberg, R.S.; Bhan, A.K. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 2002, 16, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Palomares, O.; Akdis, M.; Martin-Fontecha, M.; Akdis, C.A. Mechanisms of immune regulation in allergic diseases: The role of regulatory T and B cells. Immunol. Rev. 2017, 278, 219–236. [Google Scholar] [CrossRef] [PubMed]
- Alhabbab, R.Y.; Nova-Lamperti, E.; Aravena, O.; Burton, H.M.; Lechler, R.I.; Dorling, A.; Lombardi, G. Regulatory B cells: Development, phenotypes, functions, and role in transplantation. Immunol. Rev. 2019, 292, 164–179. [Google Scholar] [CrossRef] [PubMed]
- Fillatreau, S. Regulatory roles of B cells in infectious diseases. Clin. Exp. Rheumatol. 2016, 34, S1–S5. [Google Scholar]
- Sarvaria, A.; Madrigal, J.A.; Saudemont, A. B cell regulation in cancer and anti-tumor immunity. Cell Mol. Immunol. 2017, 14, 662–674. [Google Scholar] [CrossRef] [PubMed]
- Strom, A.C.; Cross, A.J.; Cole, J.E.; Blair, P.A.; Leib, C.; Goddard, M.E.; Rosser, E.C.; Park, I.; Hultgardh Nilsson, A.; Nilsson, J.; et al. B regulatory cells are increased in hypercholesterolaemic mice and protect from lesion development via IL-10. Thromb. Haemost. 2015, 114, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Fillatreau, S.; Sweenie, C.H.; McGeachy, M.J.; Gray, D.; Anderton, S.M. B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 2002, 3, 944–950. [Google Scholar] [CrossRef]
- Carter, N.A.; Vasconcellos, R.; Rosser, E.C.; Tulone, C.; Munoz-Suano, A.; Kamanaka, M.; Ehrenstein, M.R.; Flavell, R.A.; Mauri, C. Mice lacking endogenous IL-10-producing regulatory B cells develop exacerbated disease and present with an increased frequency of Th1/Th17 but a decrease in regulatory T cells. J. Immunol. 2011, 186, 5569–5579. [Google Scholar] [CrossRef] [PubMed]
- Rosser, E.C.; Mauri, C. Regulatory B cells: Origin, phenotype, and function. Immunity 2015, 42, 607–612. [Google Scholar] [CrossRef]
- Iwata, Y.; Matsushita, T.; Horikawa, M.; Dilillo, D.J.; Yanaba, K.; Venturi, G.M.; Szabolcs, P.M.; Bernstein, S.H.; Magro, C.M.; Williams, A.D.; et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 2011, 117, 530–541. [Google Scholar] [CrossRef]
- Huai, G.; Markmann, J.F.; Deng, S.; Rickert, C.G. TGF-beta-secreting regulatory B cells: Unsung players in immune regulation. Clin. Transl. Immunol. 2021, 10, e1270. [Google Scholar] [CrossRef]
- Lighaam, L.C.; Rispens, T. The Immunobiology of Immunoglobulin G4. Semin. Liver Dis. 2016, 36, 200–215. [Google Scholar] [CrossRef]
- Jansen, K.; Cevhertas, L.; Ma, S.; Satitsuksanoa, P.; Akdis, M.; Van de Veen, W. Regulatory B cells, A to Z. Allergy 2021, 76, 2699–2715. [Google Scholar] [CrossRef] [PubMed]
- Rosser, E.C.; Mauri, C. The emerging field of regulatory B cell immunometabolism. Cell Metab. 2021, 33, 1088–1097. [Google Scholar] [CrossRef]
- Hagn, M.; Schwesinger, E.; Ebel, V.; Sontheimer, K.; Maier, J.; Beyer, T.; Syrovets, T.; Laumonnier, Y.; Fabricius, D.; Simmet, T.; et al. Human B cells secrete granzyme B when recognizing viral antigens in the context of the acute phase cytokine IL-21. J. Immunol. 2009, 183, 1838–1845. [Google Scholar] [CrossRef] [PubMed]
- Lindner, S.; Dahlke, K.; Sontheimer, K.; Hagn, M.; Kaltenmeier, C.; Barth, T.F.; Beyer, T.; Reister, F.; Fabricius, D.; Lotfi, R.; et al. Interleukin 21-Induced Granzyme B-Expressing B Cells Infiltrate Tumors and Regulate T Cells. Cancer Res. 2013, 73, 2468–2479. [Google Scholar] [CrossRef] [PubMed]
- Veh, J.; Mangold, C.; Felsen, A.; Ludwig, C.; Gerstner, L.; Reinhardt, P.; Schrezenmeier, H.; Fabricius, D.; Jahrsdorfer, B. Phorbol-12-myristate-13-acetate is a potent enhancer of B cells with a granzyme B+ regulatory phenotype. Front. Immunol. 2023, 14, 1194880. [Google Scholar] [CrossRef] [PubMed]
- Jahrsdörfer, B.; Blackwell, S.E.; Wooldridge, J.E.; Huang, J.; Andreski, M.W.; Jacobus, L.S.; Taylor, C.M.; Weiner, G.J. B-chronic lymphocytic leukemia cells and other B cells can produce granzyme B and gain cytotoxic potential after interleukin-21-based activation. Blood 2006, 108, 2712–2719. [Google Scholar] [CrossRef] [PubMed]
- Hagn, M.; Blackwell, S.E.; Beyer, T.; Ebel, V.; Fabricius, D.; Lindner, S.; Stilgenbauer, S.; Simmet, T.; Tam, C.; Neeson, P.; et al. B-CLL cells acquire APC- and CTL-like phenotypic characteristics after stimulation with CpG ODN and IL-21. Int. Immunol. 2014, 26, 383–395. [Google Scholar] [CrossRef]
- Chesneau, M.; Michel, L.; Dugast, E.; Chenouard, A.; Baron, D.; Pallier, A.; Durand, J.; Braza, F.; Guerif, P.; Laplaud, D.A.; et al. Tolerant Kidney Transplant Patients Produce B Cells with Regulatory Properties. J. Am. Soc. Nephrol. 2015, 26, 2588–2598. [Google Scholar] [CrossRef]
- Kaltenmeier, C.; Gawanbacht, A.; Beyer, T.; Lindner, S.; Trzaska, T.; Van der Merwe, J.A.; Harter, G.; Gruner, B.; Fabricius, D.; Lotfi, R.; et al. CD4+ T cell-derived IL-21 and deprivation of CD40 signaling favor the in vivo development of granzyme B-expressing regulatory B cells in HIV patients. J. Immunol. 2015, 194, 3768–3777. [Google Scholar] [CrossRef]
- Yanaba, K.; Bouaziz, J.D.; Haas, K.M.; Poe, J.C.; Fujimoto, M.; Tedder, T.F. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 2008, 28, 639–650. [Google Scholar] [CrossRef]
- Murakami, Y.; Saito, H.; Shimizu, S.; Kono, Y.; Shishido, Y.; Miyatani, K.; Matsunaga, T.; Fukumoto, Y.; Ashida, K.; Sakabe, T.; et al. Increased regulatory B cells are involved in immune evasion in patients with gastric cancer. Sci. Rep. 2019, 9, 13083. [Google Scholar] [CrossRef]
- Daien, C.I.; Tan, J.; Audo, R.; Mielle, J.; Quek, L.E.; Krycer, J.R.; Angelatos, A.; Duraes, M.; Pinget, G.; Ni, D.; et al. Gut-derived acetate promotes B10 cells with antiinflammatory effects. JCI Insight 2021, 6, e144156. [Google Scholar] [CrossRef]
- Meng, X.; Grotsch, B.; Luo, Y.; Knaup, K.X.; Wiesener, M.S.; Chen, X.X.; Jantsch, J.; Fillatreau, S.; Schett, G.; Bozec, A. Hypoxia-inducible factor-1alpha is a critical transcription factor for IL-10-producing B cells in autoimmune disease. Nat. Commun. 2018, 9, 251. [Google Scholar] [CrossRef]
- Blair, P.A.; Norena, L.Y.; Flores-Borja, F.; Rawlings, D.J.; Isenberg, D.A.; Ehrenstein, M.R.; Mauri, C. CD19+CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 2010, 32, 129–140. [Google Scholar] [CrossRef]
- Bosma, A.; Abdel-Gadir, A.; Isenberg, D.A.; Jury, E.C.; Mauri, C. Lipid-antigen presentation by CD1d+ B cells is essential for the maintenance of invariant natural killer T cells. Immunity 2012, 36, 477–490. [Google Scholar] [CrossRef]
- Das, A.; Ellis, G.; Pallant, C.; Lopes, A.R.; Khanna, P.; Peppa, D.; Chen, A.; Blair, P.; Dusheiko, G.; Gill, U.; et al. IL-10-producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection. J. Immunol. 2012, 189, 3925–3935. [Google Scholar] [CrossRef] [PubMed]
- Flores-Borja, F.; Bosma, A.; Ng, D.; Reddy, V.; Ehrenstein, M.R.; Isenberg, D.A.; Mauri, C. CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci. Transl. Med. 2013, 5, 173ra123. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, L.S.; Wu, S.D.; Wang, S.Q.; Li, L.; She, W.M.; Li, J.; Wang, J.Y.; Jiang, W. IL-10-producing regulatory B-cells suppressed effector T-cells but enhanced regulatory T-cells in chronic HBV infection. Clin. Sci. 2016, 130, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Menon, M.; Blair, P.A.; Isenberg, D.A.; Mauri, C. A Regulatory Feedback between Plasmacytoid Dendritic Cells and Regulatory B Cells Is Aberrant in Systemic Lupus Erythematosus. Immunity 2016, 44, 683–697. [Google Scholar] [CrossRef]
- Hagn, M.; Ebel, V.; Sontheimer, K.; Schwesinger, E.; Lunov, O.; Beyer, T.; Fabricius, D.; Barth, T.F.; Viardot, A.; Stilgenbauer, S.; et al. CD5+ B cells from individuals with systemic lupus erythematosus express granzyme B. Eur. J. Immunol. 2010, 40, 2060–2069. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zeng, G.; Yang, Q.; Zhang, J.; Zhu, X.; Chen, Q.; Suthakaran, P.; Zhang, Y.; Deng, Q.; Liu, H.; et al. Anti-tuberculosis treatment enhances the production of IL-22 through reducing the frequencies of regulatory B cell. Tuberculosis 2014, 94, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Yeung, M.; Camirand, G.; Zeng, Q.; Akiba, H.; Yagita, H.; Chalasani, G.; Sayegh, M.H.; Najafian, N.; Rothstein, D.M. Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J. Clin. Investig. 2011, 121, 3645–3656. [Google Scholar] [CrossRef]
- Xiao, S.; Brooks, C.R.; Zhu, C.; Wu, C.; Sweere, J.M.; Petecka, S.; Yeste, A.; Quintana, F.J.; Ichimura, T.; Sobel, R.A.; et al. Defect in regulatory B-cell function and development of systemic autoimmunity in T-cell Ig mucin 1 (Tim-1) mucin domain-mutant mice. Proc. Natl. Acad. Sci. USA 2012, 109, 12105–12110. [Google Scholar] [CrossRef] [PubMed]
- Aravena, O.; Ferrier, A.; Menon, M.; Mauri, C.; Aguillon, J.C.; Soto, L.; Catalan, D. TIM-1 defines a human regulatory B cell population that is altered in frequency and function in systemic sclerosis patients. Arthritis Res. Ther. 2017, 19, 8. [Google Scholar] [CrossRef]
- Nishimura, S.; Manabe, I.; Takaki, S.; Nagasaki, M.; Otsu, M.; Yamashita, H.; Sugita, J.; Yoshimura, K.; Eto, K.; Komuro, I.; et al. Adipose Natural Regulatory B Cells Negatively Control Adipose Tissue Inflammation. Cell Metab. 2013, 18, 759–766. [Google Scholar] [CrossRef]
- Garcia-Hernandez, M.H.; Rodriguez-Varela, E.; Garcia-Jacobo, R.E.; Hernandez-De la Torre, M.; Uresti-Rivera, E.E.; Gonzalez-Amaro, R.; Portales-Perez, D.P. Frequency of regulatory B cells in adipose tissue and peripheral blood from individuals with overweight, obesity and normal-weight. Obes. Res. Clin. Pract. 2018, 12, 513–519. [Google Scholar] [CrossRef]
- Van de Veen, W.; Stanic, B.; Yaman, G.; Wawrzyniak, M.; Söllner, S.; Akdis, D.G.; Rückert, B.; Akdis, C.A.; Akdis, M. IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. J. Allergy Clin. Immunol. 2013, 131, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Saze, Z.; Schuler, P.J.; Hong, C.S.; Cheng, D.; Jackson, E.K.; Whiteside, T.L. Adenosine production by human B cells and B cell-mediated suppression of activated T cells. Blood 2013, 122, 9–18. [Google Scholar] [CrossRef]
- Kaku, H.; Cheng, K.F.; Al-Abed, Y.; Rothstein, T.L. A novel mechanism of B cell-mediated immune suppression through CD73 expression and adenosine production. J. Immunol. 2014, 193, 5904–5913. [Google Scholar] [CrossRef]
- Matsumoto, M.; Baba, A.; Yokota, T.; Nishikawa, H.; Ohkawa, Y.; Kayama, H.; Kallies, A.; Nutt, S.L.; Sakaguchi, S.; Takeda, K.; et al. Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity 2014, 41, 1040–1051. [Google Scholar] [CrossRef]
- Shalapour, S.; Font-Burgada, J.; Di Caro, G.; Zhong, Z.; Sanchez-Lopez, E.; Dhar, D.; Willimsky, G.; Ammirante, M.; Strasner, A.; Hansel, D.E.; et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature 2015, 521, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.R.; Hams, E.; Floudas, A.; Sparwasser, T.; Weaver, C.T.; Fallon, P.G. PD-L1hi B cells are critical regulators of humoral immunity. Nat. Commun. 2015, 6, 5997. [Google Scholar] [CrossRef] [PubMed]
- Fehres, C.M.; Van Uden, N.O.; Yeremenko, N.G.; Fernandez, L.; Franco Salinas, G.; Van Duivenvoorde, L.M.; Huard, B.; Morel, J.; Spits, H.; Hahne, M.; et al. APRIL Induces a Novel Subset of IgA+ Regulatory B Cells That Suppress Inflammation via Expression of IL-10 and PD-L1. Front. Immunol. 2019, 10, 1368. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, T.; Li, M.; Yin, L.; Xue, J. Immunosuppressive B cells expressing PD-1/PD-L1 in solid tumors: A mini review. QJM 2019, 115, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Brosseau, C.; Durand, M.; Colas, L.; Durand, E.; Foureau, A.; Cheminant, M.A.; Bouchaud, G.; Castan, L.; Klein, M.; Magnan, A.; et al. CD9+ Regulatory B Cells Induce T Cell Apoptosis via IL-10 and Are Reduced in Severe Asthmatic Patients. Front. Immunol. 2018, 9, 3034. [Google Scholar] [CrossRef] [PubMed]
- Kwun, J.; Bulut, P.; Kim, E.; Dar, W.; Oh, B.; Ruhil, R.; Iwakoshi, N.; Knechtle, S.J. The role of B cells in solid organ transplantation. Semin. Immunol. 2012, 24, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Clatworthy, M.R.; Watson, C.J.; Plotnek, G.; Bardsley, V.; Chaudhry, A.N.; Bradley, J.A.; Smith, K.G. B-cell-depleting induction therapy and acute cellular rejection. N. Engl. J. Med. 2009, 360, 2683–2685. [Google Scholar] [CrossRef]
- Ozaki, K.; Spolski, R.; Feng, C.G.; Qi, C.F.; Cheng, J.; Sher, A.; Morse, H.C., 3rd; Liu, C.; Schwartzberg, P.L.; Leonard, W.J. A critical role for IL-21 in regulating immunoglobulin production. Science 2002, 298, 1630–1634. [Google Scholar] [CrossRef]
- Ettinger, R.; Sims, G.P.; Fairhurst, A.M.; Robbins, R.; Da Silva, Y.S.; Spolski, R.; Leonard, W.J.; Lipsky, P.E. IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J. Immunol. 2005, 175, 7867–7879. [Google Scholar] [CrossRef]
- Chesneau, M.; Pallier, A.; Braza, F.; Lacombe, G.; Le Gallou, S.; Baron, D.; Giral, M.; Danger, R.; Guerif, P.; Aubert-Wastiaux, H.; et al. Unique B cell differentiation profile in tolerant kidney transplant patients. Am. J. Transplant. 2014, 14, 144–155. [Google Scholar] [CrossRef]
- Pallier, A.; Hillion, S.; Danger, R.; Giral, M.; Racape, M.; Degauque, N.; Dugast, E.; Ashton-Chess, J.; Pettre, S.; Lozano, J.J.; et al. Patients with drug-free long-term graft function display increased numbers of peripheral B cells with a memory and inhibitory phenotype. Kidney Int. 2010, 78, 503–513. [Google Scholar] [CrossRef]
- Durand, J.; Chiffoleau, E. B cells with regulatory properties in transplantation tolerance. World J. Transplant. 2015, 5, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Newell, K.A.; Asare, A.; Kirk, A.D.; Gisler, T.D.; Bourcier, K.; Suthanthiran, M.; Burlingham, W.J.; Marks, W.H.; Sanz, I.; Lechler, R.I.; et al. Identification of a B cell signature associated with renal transplant tolerance in humans. J. Clin. Investig. 2010, 120, 1836–1847. [Google Scholar] [CrossRef] [PubMed]
- Sagoo, P.; Perucha, E.; Sawitzki, B.; Tomiuk, S.; Stephens, D.A.; Miqueu, P.; Chapman, S.; Craciun, L.; Sergeant, R.; Brouard, S.; et al. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J. Clin. Investig. 2010, 120, 1848–1861. [Google Scholar] [CrossRef] [PubMed]
- Tebbe, B.; Wilde, B.; Ye, Z.; Wang, J.; Wang, X.; Jian, F.; Dolff, S.; Schedlowski, M.; Hoyer, P.F.; Kribben, A.; et al. Renal Transplant Recipients Treated with Calcineurin-Inhibitors Lack Circulating Immature Transitional CD19+CD24hiCD38hi Regulatory B-Lymphocytes. PLoS ONE 2016, 11, e0153170. [Google Scholar] [CrossRef] [PubMed]
- Nova-Lamperti, E.; Fanelli, G.; Becker, P.D.; Chana, P.; Elgueta, R.; Dodd, P.C.; Lord, G.M.; Lombardi, G.; Hernandez-Fuentes, M.P. IL-10-produced by human transitional B-cells down-regulates CD86 expression on B-cells leading to inhibition of CD4+T-cell responses. Sci. Rep. 2016, 6, 20044. [Google Scholar] [CrossRef] [PubMed]
- Nova-Lamperti, E.; Chana, P.; Mobillo, P.; Runglall, M.; Kamra, Y.; McGregor, R.; Lord, G.M.; Lechler, R.I.; Lombardi, G.; Hernandez-Fuentes, M.P.; et al. Increased CD40 Ligation and Reduced BCR Signalling Leads to Higher IL-10 Production in B Cells From Tolerant Kidney Transplant Patients. Transplantation 2017, 101, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Cherukuri, A.; Rothstein, D.M.; Clark, B.; Carter, C.R.; Davison, A.; Hernandez-Fuentes, M.; Hewitt, E.; Salama, A.D.; Baker, R.J. Immunologic human renal allograft injury associates with an altered IL-10/TNF-alpha expression ratio in regulatory B cells. J. Am. Soc. Nephrol. 2014, 25, 1575–1585. [Google Scholar] [CrossRef]
- Chesneau, M.; Mai, H.L.; Danger, R.; Le Bot, S.; Nguyen, T.V.; Bernard, J.; Poullaouec, C.; Guerrif, P.; Conchon, S.; Giral, M.; et al. Efficient Expansion of Human Granzyme B-Expressing B Cells with Potent Regulatory Properties. J. Immunol. 2020, 205, 2391–2401. [Google Scholar] [CrossRef]
- Newell, K.A.; Asare, A.; Sanz, I.; Wei, C.; Rosenberg, A.; Gao, Z.; Kanaparthi, S.; Asare, S.; Lim, N.; Stahly, M.; et al. Longitudinal studies of a B cell-derived signature of tolerance in renal transplant recipients. Am. J. Transplant. 2015, 15, 2908–2920. [Google Scholar] [CrossRef]
- Shabir, S.; Girdlestone, J.; Briggs, D.; Kaul, B.; Smith, H.; Daga, S.; Chand, S.; Jham, S.; Navarrete, C.; Harper, L.; et al. Transitional B lymphocytes are associated with protection from kidney allograft rejection: A prospective study. Am. J. Transplant. 2015, 15, 1384–1391. [Google Scholar] [CrossRef] [PubMed]
- Shiu, K.Y.; McLaughlin, L.; Rebollo-Mesa, I.; Zhao, J.; Semik, V.; Cook, H.T.; Roufosse, C.; Brookes, P.; Bowers, R.W.; Galliford, J.; et al. B-lymphocytes support and regulate indirect T-cell alloreactivity in individual patients with chronic antibody-mediated rejection. Kidney Int. 2015, 88, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Shiu, K.Y.; McLaughlin, L.; Rebollo-Mesa, I.; Zhao, J.; Burton, H.; Douthwaite, H.; Wilkinson, H.; Semik, V.; Dodd, P.C.; Brookes, P.; et al. Graft dysfunction in chronic antibody-mediated rejection correlates with B-cell-dependent indirect antidonor alloresponses and autocrine regulation of interferon-gamma production by Th1 cells. Kidney Int. 2017, 91, 477–492. [Google Scholar] [CrossRef] [PubMed]
- Cherukuri, A.; Salama, A.D.; Carter, C.R.; Landsittel, D.; Arumugakani, G.; Clark, B.; Rothstein, D.M.; Baker, R.J. Reduced human transitional B cell T1/T2 ratio is associated with subsequent deterioration in renal allograft function. Kidney Int. 2017, 91, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Danger, R.; Chesneau, M.; Paul, C.; Guerif, P.; Durand, M.; Newell, K.A.; Kanaparthi, S.; Turka, L.A.; Soulillou, J.P.; Houlgatte, R.; et al. A composite score associated with spontaneous operational tolerance in kidney transplant recipients. Kidney Int. 2017, 91, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Duddy, M.; Niino, M.; Adatia, F.; Hebert, S.; Freedman, M.; Atkins, H.; Kim, H.J.; Bar-Or, A. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J. Immunol. 2007, 178, 6092–6099. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, G.; Shin, H.J.; Hyun, J.W.; Kim, S.H.; Lee, E.; Kim, H.J. Restoration of regulatory B cell deficiency following alemtuzumab therapy in patients with relapsing multiple sclerosis. J. Neuroinflamm. 2018, 15, 300. [Google Scholar] [CrossRef]
- Giacomini, E.; Rizzo, F.; Etna, M.P.; Cruciani, M.; Mechelli, R.; Buscarinu, M.C.; Pica, F.; D’Agostini, C.; Salvetti, M.; Coccia, E.M.; et al. Thymosin-alpha1 expands deficient IL-10-producing regulatory B cell subsets in relapsing-remitting multiple sclerosis patients. Mult. Scler. 2018, 24, 127–139. [Google Scholar] [CrossRef]
- Amrouche, K.; Pers, J.O.; Jamin, C. Glatiramer Acetate Stimulates Regulatory B Cell Functions. J. Immunol. 2019, 202, 1970–1980. [Google Scholar] [CrossRef]
- Blumenfeld-Kan, S.; Staun-Ram, E.; Miller, A. Fingolimod reduces CXCR4-mediated B cell migration and induces regulatory B cells-mediated anti-inflammatory immune repertoire. Mult. Scler. Relat. Disord. 2019, 34, 29–37. [Google Scholar] [CrossRef]
- Aharoni, R.; Eilam, R.; Schottlender, N.; Radomir, L.; Leistner-Segal, S.; Feferman, T.; Hirsch, D.; Sela, M.; Arnon, R. Glatiramer acetate increases T- and B-regulatory cells and decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) in an animal model of multiple sclerosis. J. Neuroimmunol. 2020, 345, 577281. [Google Scholar] [CrossRef]
- Ummarino, D. Rheumatoid arthritis: Defective IL-10-producing Breg cells. Nat. Rev. Rheumatol. 2017, 13, 132. [Google Scholar] [CrossRef]
- Banko, Z.; Pozsgay, J.; Szili, D.; Toth, M.; Gati, T.; Nagy, G.; Rojkovich, B.; Sarmay, G. Induction and Differentiation of IL-10-Producing Regulatory B Cells from Healthy Blood Donors and Rheumatoid Arthritis Patients. J. Immunol. 2017, 198, 1512–1520. [Google Scholar] [CrossRef] [PubMed]
- Zacca, E.R.; Onofrio, L.I.; Acosta, C.D.V.; Ferrero, P.V.; Alonso, S.M.; Ramello, M.C.; Mussano, E.; Onetti, L.; Cadile, I.I.; Stancich, M.I.; et al. PD-L1+ Regulatory B Cells Are Significantly Decreased in Rheumatoid Arthritis Patients and Increase after Successful Treatment. Front. Immunol. 2018, 9, 2241. [Google Scholar] [CrossRef] [PubMed]
- Mielle, J.; Audo, R.; Hahne, M.; Macia, L.; Combe, B.; Morel, J.; Daien, C. IL-10 Producing B Cells Ability to Induce Regulatory T Cells Is Maintained in Rheumatoid Arthritis. Front. Immunol. 2018, 9, 961. [Google Scholar] [CrossRef] [PubMed]
- Rosser, E.C.; Piper, C.J.M.; Matei, D.E.; Blair, P.A.; Rendeiro, A.F.; Orford, M.; Alber, D.G.; Krausgruber, T.; Catalan, D.; Klein, N.; et al. Microbiota-Derived Metabolites Suppress Arthritis by Amplifying Aryl-Hydrocarbon Receptor Activation in Regulatory B Cells. Cell Metab. 2020, 31, 837–851 e810. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Du, W.; Wang, X.; Yuan, S.; Cai, X.; Liu, D.; Li, J.; Lu, L. Multiple Functions of B Cells in the Pathogenesis of Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2019, 20, 6021. [Google Scholar] [CrossRef]
- Ye, Z.; Jiang, Y.; Sun, D.; Zhong, W.; Zhao, L.; Jiang, Z. The Plasma Interleukin (IL)-35 Level and Frequency of Circulating IL-35+ Regulatory B Cells are Decreased in a Cohort of Chinese Patients with New-onset Systemic Lupus Erythematosus. Sci. Rep. 2019, 9, 13210. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Wang, X.; Xiao, F.; Ma, K.; Liu, L.; Wang, X.; Xu, D.; Wang, F.; Shi, X.; Liu, D.; et al. IL-10-producing regulatory B cells restrain the T follicular helper cell response in primary Sjogren’s syndrome. Cell Mol. Immunol. 2019, 16, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Loisel, S.; Lansiaux, P.; Rossille, D.; Menard, C.; Dulong, J.; Monvoisin, C.; Bescher, N.; Bezier, I.; Latour, M.; Cras, A.; et al. Regulatory B Cells Contribute to the Clinical Response after Bone Marrow-Derived Mesenchymal Stromal Cell Infusion in Patients with Systemic Sclerosis. Stem Cells Transl. Med. 2023, 12, 194–206. [Google Scholar] [CrossRef]
- Zou, J.; Zeng, Z.; Xie, W.; Zeng, Z. Immunotherapy with regulatory T and B cells in periodontitis. Int. Immunopharmacol. 2022, 109, 108797. [Google Scholar] [CrossRef]
- Fonseca-Camarillo, G.; Furuzawa-Carballeda, J.; Yamamoto-Furusho, J.K. Interleukin 35 (IL-35) and IL-37: Intestinal and peripheral expression by T and B regulatory cells in patients with Inflammatory Bowel Disease. Cytokine 2015, 75, 389–402. [Google Scholar] [CrossRef]
- Zhao, M.; Gu, J.; Wang, Z. B cells in Crohn’s patients presented reduced IL-35 expression capacity. Mol. Immunol. 2020, 118, 124–131. [Google Scholar] [CrossRef]
- Weber, M.; Stein, P.; Prufer, S.; Rudolph, B.; Kreft, A.; Schmitt, E.; Bopp, T.; Roers, A.; Schild, H.; Fillatreau, S.; et al. Donor and host B cell-derived IL-10 contributes to suppression of graft-versus-host disease. Eur. J. Immunol. 2014, 44, 1857–1865. [Google Scholar] [CrossRef] [PubMed]
- Khoder, A.; Sarvaria, A.; Alsuliman, A.; Chew, C.; Sekine, T.; Cooper, N.; Mielke, S.; De Lavallade, H.; Muftuoglu, M.; Fernandez Curbelo, I.; et al. Regulatory B cells are enriched within the IgM memory and transitional subsets in healthy donors but are deficient in chronic GVHD. Blood 2014, 124, 2034–2045. [Google Scholar] [CrossRef] [PubMed]
- De Masson, A.; Bouaziz, J.D.; Le Buanec, H.; Robin, M.; O’Meara, A.; Parquet, N.; Rybojad, M.; Hau, E.; Monfort, J.B.; Branchtein, M.; et al. CD24hiCD27+ and plasmablast-like regulatory B cells in human chronic graft-versus-host disease. Blood 2015, 125, 1830–1839. [Google Scholar] [CrossRef]
- Rozmus, J.; Kariminia, A.; Abdossamadi, S.; Storer, B.E.; Martin, P.J.; Lee, S.J.; Wolff, D.; Arora, M.; Cutler, C.; Schultz, K.R. Comprehensive B Cell Phenotyping Profile for Chronic Graft-versus-Host Disease Diagnosis. Biol. Blood Marrow Transplant. 2019, 25, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Babic, A.; Kuric, L.; Zelic Kerep, A.; Desnica, L.; Lelas, A.; Milosevic, M.; Serventi-Seiwerth, R.; Durakovic, N.; Peric, Z.; Mravak Stipetic, M.; et al. B regulatory cells and monocyte subpopulations in patients with chronic graft-vs-host disease. Croat. Med. J. 2021, 62, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Van der Vlugt, L.E.; Mlejnek, E.; Ozir-Fazalalikhan, A.; Janssen Bonas, M.; Dijksman, T.R.; Labuda, L.A.; Schot, R.; Guigas, B.; Moller, G.M.; Hiemstra, P.S.; et al. CD24hiCD27+ B cells from patients with allergic asthma have impaired regulatory activity in response to lipopolysaccharide. Clin. Exp. Allergy 2014, 44, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Wirz, O.F.; Globinska, A.; Ochsner, U.; Van de Veen, W.; Eller, E.; Christiansen, E.S.; Halken, S.; Nielsen, C.; Bindslev-Jensen, C.; Anto, J.M.; et al. Comparison of regulatory B cells in asthma and allergic rhinitis. Allergy 2019, 74, 815–818. [Google Scholar] [CrossRef]
- Miyajima, S.; Shigehara, K.; Kamekura, R.; Takaki, H.; Yabe, H.; Ikegami, I.; Asai, Y.; Nishikiori, H.; Chiba, H.; Uno, E.; et al. Activated circulating T follicular helper cells and skewing of T follicular helper 2 cells are down-regulated by treatment including an inhaled corticosteroid in patients with allergic asthma. Allergol. Int. 2020, 69, 66–77. [Google Scholar] [CrossRef]
- Braza, F.; Chesne, J.; Castagnet, S.; Magnan, A.; Brouard, S. Regulatory functions of B cells in allergic diseases. Allergy 2014, 69, 1454–1463. [Google Scholar] [CrossRef]
- Mota, I.; Martins, C.; Borrego, L.M. Regulatory B cells and Allergy: Uncovering the link. J. Investig. Allergol. Clin. Immunol. 2017, 27, 204–212. [Google Scholar] [CrossRef]
- Wiest, M.; Upchurch, K.; Hasan, M.M.; Cardenas, J.; Lanier, B.; Millard, M.; Turner, J.; Oh, S.; Joo, H. Phenotypic and functional alterations of regulatory B cell subsets in adult allergic asthma patients. Clin. Exp. Allergy 2019, 49, 1214–1224. [Google Scholar] [CrossRef]
- Sheehan, W.J.; Maghzian, N.; Rastogi, D.; Bollard, C.M.; Lin, A.A. Decreased Regulatory B Cells in Pediatric Patients with Asthma. Ann. Allergy Asthma Immunol. 2023, 131, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, J.; Khaltaev, N.; Cruz, A.A.; Denburg, J.; Fokkens, W.J.; Togias, A.; Zuberbier, T.; Baena-Cagnani, C.E.; Canonica, G.W.; Van Weel, C.; et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy 2008, 63 (Suppl. S86), 8–160. [Google Scholar] [CrossRef] [PubMed]
- Kamekura, R.; Shigehara, K.; Miyajima, S.; Jitsukawa, S.; Kawata, K.; Yamashita, K.; Nagaya, T.; Kumagai, A.; Sato, A.; Matsumiya, H.; et al. Alteration of circulating type 2 follicular helper T cells and regulatory B cells underlies the comorbid association of allergic rhinitis with bronchial asthma. Clin. Immunol. 2015, 158, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.S.; Doherty, T.A.; Karta, M.R.; Das, S.; Baum, R.; Rosenthal, P.; Beppu, A.; Miller, M.; Kurten, R.; Broide, D.H. Regulatory B cells and T follicular helper cells are reduced in allergic rhinitis. J. Allergy Clin. Immunol. 2016, 138, 1192–1195 e1195. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Guo, H.; Liu, Z.; Peng, T.; Hu, X.; Han, M.; Yang, X.; Zhou, X.; Li, H. Analysis of Peripheral B Cell Subsets in Patients With Allergic Rhinitis. Allergy Asthma Immunol. Res. 2018, 10, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Sampson, H.A. Role of immediate food hypersensitivity in the pathogenesis of atopic dermatitis. J. Allergy Clin. Immunol. 1983, 71, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Guo, C.; Zhao, F.; Zhu, J.; Xu, Y.; Liu, Z.Q.; Yang, G.; Zhang, Y.Y.; Gu, X.; Xiao, L.; et al. Vasoactive intestinal peptide stabilizes intestinal immune homeostasis through maintaining interleukin-10 expression in regulatory B cells. Theranostics 2019, 9, 2800–2811. [Google Scholar] [CrossRef] [PubMed]
- Sampath, V.; Sindher, S.B.; Alvarez Pinzon, A.M.; Nadeau, K.C. Can food allergy be cured? What are the future prospects? Allergy 2020, 75, 1316–1326. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.; Lee, J.H.; Noh, G.; Bang, S.Y.; Kim, H.S.; Choi, W.S.; Cho, S.; Lee, S.S. Characterisation of allergen-specific responses of IL-10-producing regulatory B cells (Br1) in Cow Milk Allergy. Cell Immunol. 2010, 264, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, G.G. The global burden of IBD: From 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, Y.; Ishiuji, Y.; Yoshizaki, A.; Kurita, M.; Hayashi, M.; Ishiji, T.; Nakagawa, H.; Asahina, A.; Yanaba, K. IL-10-Producing Regulatory B Cells Are Decreased in Patients with Atopic Dermatitis. J. Investig. Dermatol. 2019, 139, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Golpanian, R.S.; Smith, P.; Yosipovitch, G. Itch in Organs Beyond the Skin. Curr. Allergy Asthma Rep. 2020, 20, 49. [Google Scholar] [CrossRef] [PubMed]
- Boonpiyathad, T.; Meyer, N.; Moniuszko, M.; Sokolowska, M.; Eljaszewicz, A.; Wirz, O.F.; Tomasiak-Lozowska, M.M.; Bodzenta-Lukaszyk, A.; Ruxrungtham, K.; Van de Veen, W. High-dose bee venom exposure induces similar tolerogenic B-cell responses in allergic patients and healthy beekeepers. Allergy 2017, 72, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Boonpiyathad, T.; Van de Veen, W.; Wirz, O.; Sokolowska, M.; Ruckert, B.; Tan, G.; Sangasapaviliya, A.; Pradubpongsa, P.; Fuengthong, R.; Thantiworasit, P.; et al. Role of Der p 1-specific B cells in immune tolerance during 2 years of house dust mite-specific immunotherapy. J. Allergy Clin. Immunol. 2019, 143, 1077–1086 e1010. [Google Scholar] [CrossRef]
- Sharif, H.; Singh, I.; Kouser, L.; Mosges, R.; Bonny, M.A.; Karamani, A.; Parkin, R.V.; Bovy, N.; Kishore, U.; Robb, A.; et al. Immunologic mechanisms of a short-course of Lolium perenne peptide immunotherapy: A randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 2019, 144, 738–749. [Google Scholar] [CrossRef]
- Shamji, M.H.; Kappen, J.; Abubakar-Waziri, H.; Zhang, J.; Steveling, E.; Watchman, S.; Kouser, L.; Eifan, A.; Switzer, A.; Varricchi, G.; et al. Nasal allergen-neutralizing IgG(4) antibodies block IgE-mediated responses: Novel biomarker of subcutaneous grass pollen immunotherapy. J. Allergy Clin. Immunol. 2019, 143, 1067–1076. [Google Scholar] [CrossRef]
- Van der Vlugt, L.E.; Haeberlein, S.; De Graaf, W.; Martha, T.E.; Smits, H.H. Toll-like receptor ligation for the induction of regulatory B cells. Methods Mol. Biol. 2014, 1190, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Yanaba, K.; Bouaziz, J.D.; Matsushita, T.; Tsubata, T.; Tedder, T.F. The development and function of regulatory B cells expressing IL-10 (B10 cells) requires antigen receptor diversity and TLR signals. J. Immunol. 2009, 182, 7459–7472. [Google Scholar] [CrossRef] [PubMed]
- Lenert, P.; Brummel, R.; Field, E.H.; Ashman, R.F. TLR-9 activation of marginal zone B cells in lupus mice regulates immunity through increased IL-10 production. J. Clin. Immunol. 2005, 25, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Boyette, L.B.; Macedo, C.; Hadi, K.; Elinoff, B.D.; Walters, J.T.; Ramaswami, B.; Chalasani, G.; Taboas, J.M.; Lakkis, F.G.; Metes, D.M. Phenotype, function, and differentiation potential of human monocyte subsets. PLoS ONE 2017, 12, e0176460. [Google Scholar] [CrossRef]
- Caldwell, A.B.; Cheng, Z.; Vargas, J.D.; Birnbaum, H.A.; Hoffmann, A. Network dynamics determine the autocrine and paracrine signaling functions of TNF. Genes. Dev. 2014, 28, 2120–2133. [Google Scholar] [CrossRef]
- Netea, M.G.; Nold-Petry, C.A.; Nold, M.F.; Joosten, L.A.; Opitz, B.; Van der Meer, J.H.; Van de Veerdonk, F.L.; Ferwerda, G.; Heinhuis, B.; Devesa, I.; et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 2009, 113, 2324–2335. [Google Scholar] [CrossRef]
- Dasgupta, S.; Dasgupta, S.; Bandyopadhyay, M. Regulatory B cells in infection, inflammation, and autoimmunity. Cell Immunol. 2020, 352, 104076. [Google Scholar] [CrossRef]
- Dai, Y.C.; Wang, W.D.; Zhang, J.A.; Chen, C.; Luo, H.L.; Xu, H.; Peng, Y.; Luo, H.; Yang, X.R.; Chen, X.; et al. MTB driven B cells producing IL-35 and secreting high level of IL-10 in the patients with active pulmonary tuberculosis. Mol. Immunol. 2019, 112, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Siewe, B.; Stapleton, J.T.; Martinson, J.; Keshavarzian, A.; Kazmi, N.; Demarais, P.M.; French, A.L.; Landay, A. Regulatory B cell frequency correlates with markers of HIV disease progression and attenuates anti-HIV CD8+ T cell function in vitro. J. Leukoc. Biol. 2013, 93, 811–818. [Google Scholar] [CrossRef]
- Lopez-Abente, J.; Prieto-Sanchez, A.; Munoz-Fernandez, M.A.; Correa-Rocha, R.; Pion, M. Human immunodeficiency virus type-1 induces a regulatory B cell-like phenotype in vitro. Cell Mol. Immunol. 2018, 15, 917–933. [Google Scholar] [CrossRef] [PubMed]
- Hagn, M.; Panikkar, A.; Smith, C.; Balfour, H.H., Jr.; Khanna, R.; Voskoboinik, I.; Trapani, J.A. B cell-derived circulating granzyme B is a feature of acute infectious mononucleosis. Clin. Transl. Immunol. 2015, 4, e38. [Google Scholar] [CrossRef]
- Hassuna, N.A.; Hussien, S.S.; Abdelhakeem, M.; Aboalela, A.; Ahmed, E.; Abdelrahim, S.S. Regulatory B cells (Bregs) in Helicobacter pylori chronic infection. Helicobacter 2023, 28, e12951. [Google Scholar] [CrossRef]
- Nahid-Samiei, M.; Rahimian, G.; Shafigh, M.; Taheri, F.; Karami-Hurestani, M.; Sanaei, M.J.; Heshmati, M.; Bagheri, N. Enhanced Frequency of CD19+IL-10+B Cells in Human Gastric Mucosa Infected by Helicobacter pylori. Am. J. Med. Sci. 2020, 359, 347–353. [Google Scholar] [CrossRef]
- Correale, J.; Farez, M.; Razzitte, G. Helminth infections associated with multiple sclerosis induce regulatory B cells. Ann. Neurol. 2008, 64, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Van der Vlugt, L.E.; Labuda, L.A.; Ozir-Fazalalikhan, A.; Lievers, E.; Gloudemans, A.K.; Liu, K.Y.; Barr, T.A.; Sparwasser, T.; Boon, L.; Ngoa, U.A.; et al. Schistosomes induce regulatory features in human and mouse CD1dhi B cells: Inhibition of allergic inflammation by IL-10 and regulatory T cells. PLoS ONE 2012, 7, e30883. [Google Scholar] [CrossRef]
- Ritter, M.; Osei-Mensah, J.; Debrah, L.B.; Kwarteng, A.; Mubarik, Y.; Debrah, A.Y.; Pfarr, K.; Hoerauf, A.; Layland, L.E. Wuchereria bancrofti-infected individuals harbor distinct IL-10-producing regulatory B and T cell subsets which are affected by anti-filarial treatment. PLoS Negl. Trop. Dis. 2019, 13, e0007436. [Google Scholar] [CrossRef] [PubMed]
- Andreani, G.; Ouellet, M.; Menasria, R.; Gomez, A.M.; Barat, C.; Tremblay, M.J. Leishmania infantum amastigotes trigger a subpopulation of human B cells with an immunoregulatory phenotype. PLoS Negl. Trop. Dis. 2015, 9, e0003543. [Google Scholar] [CrossRef] [PubMed]
- Schaut, R.G.; Lamb, I.M.; Toepp, A.J.; Scott, B.; Mendes-Aguiar, C.O.; Coutinho, J.F.; Jeronimo, S.M.; Wilson, M.E.; Harty, J.T.; Waldschmidt, T.J.; et al. Regulatory IgDhi B Cells Suppress T Cell Function via IL-10 and PD-L1 during Progressive Visceral Leishmaniasis. J. Immunol. 2016, 196, 4100–4109. [Google Scholar] [CrossRef]
- Bakhtiar, S.; Kaffenberger, C.; Salzmann-Manrique, E.; Donhauser, S.; Lueck, L.; Karaca, N.E.; Gonzalez-Granado, L.I.; Hazar, E.; Keles, S.; Seidel, M.G.; et al. Regulatory B cells in patients suffering from inborn errors of immunity with severe immune dysregulation. J. Autoimmun. 2022, 132, 102891. [Google Scholar] [CrossRef] [PubMed]
- Hagn, M.; Belz, G.T.; Kallies, A.; Sutton, V.R.; Thia, K.Y.; Tarlinton, D.M.; Hawkins, E.D.; Trapani, J.A. Activated mouse B cells lack expression of granzyme B. J. Immunol. 2012, 188, 3886–3892. [Google Scholar] [CrossRef]
- Kroeger, D.R.; Milne, K.; Nelson, B.H. Tumor-Infiltrating Plasma Cells Are Associated with Tertiary Lymphoid Structures, Cytolytic T-Cell Responses, and Superior Prognosis in Ovarian Cancer. Clin. Cancer Res. 2016, 22, 3005–3015. [Google Scholar] [CrossRef]
- Sautes-Fridman, C.; Petitprez, F.; Calderaro, J.; Fridman, W.H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 2019, 19, 307–325. [Google Scholar] [CrossRef]
- Di Caro, G.; Bergomas, F.; Grizzi, F.; Doni, A.; Bianchi, P.; Malesci, A.; Laghi, L.; Allavena, P.; Mantovani, A.; Marchesi, F. Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. Clin. Cancer Res. 2014, 20, 2147–2158. [Google Scholar] [CrossRef]
- Hiraoka, N.; Ino, Y.; Yamazaki-Itoh, R.; Kanai, Y.; Kosuge, T.; Shimada, K. Intratumoral tertiary lymphoid organ is a favourable prognosticator in patients with pancreatic cancer. Br. J. Cancer 2015, 112, 1782–1790. [Google Scholar] [CrossRef]
- Silina, K.; Soltermann, A.; Attar, F.M.; Casanova, R.; Uckeley, Z.M.; Thut, H.; Wandres, M.; Isajevs, S.; Cheng, P.; Curioni-Fontecedro, A.; et al. Germinal Centers Determine the Prognostic Relevance of Tertiary Lymphoid Structures and Are Impaired by Corticosteroids in Lung Squamous Cell Carcinoma. Cancer Res. 2018, 78, 1308–1320. [Google Scholar] [CrossRef]
- Hollern, D.P.; Xu, N.; Thennavan, A.; Glodowski, C.; Garcia-Recio, S.; Mott, K.R.; He, X.; Garay, J.P.; Carey-Ewend, K.; Marron, D.; et al. B Cells and T Follicular Helper Cells Mediate Response to Checkpoint Inhibitors in High Mutation Burden Mouse Models of Breast Cancer. Cell 2019, 179, 1191–1206 e1121. [Google Scholar] [CrossRef] [PubMed]
- Cabrita, R.; Lauss, M.; Sanna, A.; Donia, M.; Skaarup Larsen, M.; Mitra, S.; Johansson, I.; Phung, B.; Harbst, K.; Vallon-Christersson, J.; et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 2020, 577, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Helmink, B.A.; Reddy, S.M.; Gao, J.; Zhang, S.; Basar, R.; Thakur, R.; Yizhak, K.; Sade-Feldman, M.; Blando, J.; Han, G.; et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 2020, 577, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Petitprez, F.; De Reynies, A.; Keung, E.Z.; Chen, T.W.; Sun, C.M.; Calderaro, J.; Jeng, Y.M.; Hsiao, L.P.; Lacroix, L.; Bougouin, A.; et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 2020, 577, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Michaud, D.; Steward, C.R.; Mirlekar, B.; Pylayeva-Gupta, Y. Regulatory B cells in cancer. Immunol. Rev. 2021, 299, 74–92. [Google Scholar] [CrossRef] [PubMed]
- Wouters, M.C.A.; Nelson, B.H. Prognostic Significance of Tumor-Infiltrating B Cells and Plasma Cells in Human Cancer. Clin. Cancer Res. 2018, 24, 6125–6135. [Google Scholar] [CrossRef]
- Iglesia, M.D.; Parker, J.S.; Hoadley, K.A.; Serody, J.S.; Perou, C.M.; Vincent, B.G. Genomic Analysis of Immune Cell Infiltrates Across 11 Tumor Types. J. Natl. Cancer Inst. 2016, 108, djw144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, J.; Wang, H.; Song, S.W. Identification of a five B cell-associated gene prognostic and predictive signature for advanced glioma patients harboring immunosuppressive subtype preference. Oncotarget 2016, 7, 73971–73983. [Google Scholar] [CrossRef] [PubMed]
- Klopfenstein, Q.; Truntzer, C.; Vincent, J.; Ghiringhelli, F. Cell lines and immune classification of glioblastoma define patient’s prognosis. Br. J. Cancer 2019, 120, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep. 2017, 18, 248–262. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, Z.M.; Going, J.J.; Edwards, J.; Elsberger, B.; McMillan, D.C. The relationship between lymphocyte subsets and clinico-pathological determinants of survival in patients with primary operable invasive ductal breast cancer. Br. J. Cancer 2013, 109, 1676–1684. [Google Scholar] [CrossRef] [PubMed]
- Iglesia, M.D.; Vincent, B.G.; Parker, J.S.; Hoadley, K.A.; Carey, L.A.; Perou, C.M.; Serody, J.S. Prognostic B-cell signatures using mRNA-seq in patients with subtype-specific breast and ovarian cancer. Clin. Cancer Res. 2014, 20, 3818–3829. [Google Scholar] [CrossRef] [PubMed]
- Garaud, S.; Buisseret, L.; Solinas, C.; Gu-Trantien, C.; De Wind, A.; Van den Eynden, G.; Naveaux, C.; Lodewyckx, J.N.; Boisson, A.; Duvillier, H.; et al. Tumor infiltrating B-cells signal functional humoral immune responses in breast cancer. JCI Insight 2019, 5, e129641. [Google Scholar] [CrossRef] [PubMed]
- Sharonov, G.V.; Serebrovskaya, E.O.; Yuzhakova, D.V.; Britanova, O.V.; Chudakov, D.M. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat. Rev. Immunol. 2020, 20, 294–307. [Google Scholar] [CrossRef]
- Jones, H.P.; Wang, Y.C.; Aldridge, B.; Weiss, J.M. Lung and splenic B cells facilitate diverse effects on in vitro measures of antitumor immune responses. Cancer Immun. 2008, 8, 4. [Google Scholar]
- Li, Q.; Teitz-Tennenbaum, S.; Donald, E.J.; Li, M.; Chang, A.E. In vivo sensitized and in vitro activated B cells mediate tumor regression in cancer adoptive immunotherapy. J. Immunol. 2009, 183, 3195–3203. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Bian, G.R.; Zhou, Y.; Wang, Y.; Hu, J.; Liu, X.; Xu, Y. Clinical significance of regulatory B cells in the peripheral blood of patients with oesophageal cancer. Cent. Eur. J. Immunol. 2015, 40, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Ishigami, E.; Sakakibara, M.; Sakakibara, J.; Masuda, T.; Fujimoto, H.; Hayama, S.; Nagashima, T.; Sangai, T.; Nakagawa, A.; Nakatani, Y.; et al. Coexistence of regulatory B cells and regulatory T cells in tumor-infiltrating lymphocyte aggregates is a prognostic factor in patients with breast cancer. Breast Cancer 2019, 26, 180–189. [Google Scholar] [CrossRef]
- Lechner, A.; Schlosser, H.A.; Thelen, M.; Wennhold, K.; Rothschild, S.I.; Gilles, R.; Quaas, A.; Siefer, O.G.; Huebbers, C.U.; Cukuroglu, E.; et al. Tumor-associated B cells and humoral immune response in head and neck squamous cell carcinoma. Oncoimmunology 2019, 8, 1535293. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, Y.; Dong, L.; Zhang, Q.; Wang, C.; Zhang, Y.; Li, X.; Fu, Z. Circulating exosomes from esophageal squamous cell carcinoma mediate the generation of B10 and PD-1high Breg cells. Cancer Sci. 2019, 110, 2700–2710. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, H.; Liu, Z. The Role of Regulatory B Cells in Patients with Acute Myeloid Leukemia. Med. Sci. Monit. 2019, 25, 3026–3031. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Mirlekar, B.; Johnson, B.M.; Brickey, W.J.; Wrobel, J.A.; Yang, N.; Song, D.; Entwistle, S.; Tan, X.; Deng, M.; et al. STING-induced regulatory B cells compromise NK function in cancer immunity. Nature 2022, 610, 373–380. [Google Scholar] [CrossRef]
- Chen, T.; Song, D.; Min, Z.; Wang, X.; Gu, Y.; Wei, B.; Yao, J.; Chen, K.; Jiang, Z.; Xie, H.; et al. Perioperative dynamic alterations in peripheral regulatory T and B cells in patients with hepatocellular carcinoma. J. Transl. Med. 2012, 10, 14. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Z.; Qin, Y.; Tang, G.; Cai, G.; Liu, Y.; Zhang, J.; Zhang, P.; Shen, Q.; Shen, L.; et al. Th17, synchronically increased with Tregs and Bregs, promoted by tumour cells via cell-contact in primary hepatic carcinoma. Clin. Exp. Immunol. 2018, 192, 181–192. [Google Scholar] [CrossRef]
- Hetta, H.F.; Mekky, M.A.; Zahran, A.M.; Abdel-Malek, M.O.; Ramadan, H.K.; Shafik, E.A.; Abbas, W.A.; Abbas El-Masry, M.; Mohamed, N.A.; Kamel, A.A.; et al. Regulatory B Cells and Their Cytokine Profile in HCV-Related Hepatocellular Carcinoma: Association with Regulatory T Cells and Disease Progression. Vaccines 2020, 8, 380. [Google Scholar] [CrossRef]
Observations with Regard to Regulatory B Cells | References |
---|---|
Correlation of B cell-depleting therapy with impaired graft survival | [57] |
Increased frequency of Bregs with memory phenotype and expression of costimulatory molecules such as CD80, CD86, CD40 and CD62 | [61] |
Tolerance to allografts due to IL-10-producing Bregs | [60,63,64,65,66,67] |
Correlation of low IL-10/TNF-α ratios with poor graft outcome due to lack of inhibition of Th1-type cytokine production by transitional B cells | [68] |
Inhibition of CD4+CD25+ effector T cells by IL-21-dependent granzyme B-expressing Bregs and resulting tolerance after kidney transplantation | [28,69] |
Association of transitional IL-10+ B cells with renal transplant tolerance | [70,71] |
B cells activate autocrine IL-10 signaling pathway in CD4+ T cells in response to IFN-γ production, disruption of this mechanism causes increased IFN-γ production | [72,73] |
Ratio of transitional T1/T2 cells as a predictor of kidney graft function. Increased IL-10 secretion and decreased TNF-α secretion by Th1 cells | [74] |
Identification of tolerant patients based on genetic characteristics (AKR1C3, CD40, CTLA4, ID3, MZB1, TCL1A) and clinical parameters | [75] |
Observations with Regard to Regulatory B Cells | References | |
---|---|---|
Multiple Sclerosis (MS) | Reduced IL-10 production by Bregs | [76] |
Quantitative deficit of Bregs | [77,78] | |
Association of treatment success with numerical increase of Bregs in MS | [77,78,79,80,81] | |
Rheumatoid Arthritis (RA) | Lack of IL-10-producing B cells | [82,83] |
Lack of PD-L1-expressing B cells | [84] | |
Conversion of naive T cells into Th1 cells by B10 cells | [85] | |
Suppression of RA activity via aryl-hydrocarbon receptor on Bregs | [86] | |
Systemic lupus erythematosus (SLE) | Functional impairment of the inhibitory effect of Bregs in SLE patients | [34,87] |
Suppression of the expansion of granzyme B-secreting CD5+ B cells by IL-21 in SLE patients | [40] | |
Lack of IL-10+ and IL-35+ B cells in SLE patients | [88] | |
Sjögren’s syndrome | Restricted IL-10 production and TfH cell suppression | [89] |
Systemic sclerosis | Induction of IL-10+ Bregs after application of mesenchymal stromal cells in systemic sclerosis | [90] |
Periodontitis | Review of therapeutic application approaches of Bregs and Tregs in periodontitis | [91] |
Chronic inflammatory bowel diseases | Reduced IL-35 expression on regulatory T and B cells in patients with inflammatory bowel disease | [92,93] |
Graft-versus-host disease (GvHD) | IL-10 is a significant prognostic factor with regard to the suppression of GvHD | [94] |
Bregs from patients with cGVHD produce less IL-10 than Bregs from healthy donors and patients without cGVHD | [95] | |
Lack of Bregs (CD24++CD271 und CD27++CD38++ plasmablastic B cells) and defective IL-10 production correlate with cGVHD severity | [96] | |
Occurrence of chronic GvHD associated with significantly reduced frequencies of transitional CD10+ B cells | [97] | |
The severity of cGvHD correlates with a lack of Bregs | [98] |
Observations with Regard to Regulatory B Cells | References | |
---|---|---|
Bronchial asthma | Numerical deficit of CD24++CD27+ Bregs, impaired IL-10 secretion under LPS stimulation | [99,100,101] |
Induction of apoptosis in CD3+CD4+CD25+ effector T cells by CD9+ Bregs | [102] | |
Number of RSV-infected Bregs correlates with increased viral load and reduced number of Th1 memory cells in the blood | [103] | |
Lack of CD1d+CD5+ B cells in patients with allergic asthma | [104] | |
Decreased frequency of regulatory B cells in pediatric patients with bronchial asthma | [105] | |
Allergic rhinitis | Increased frequency of CD19+CD24hiCD27+ Bregs, decreased frequency of CD19+CD24hiCD38hi, CD19+CD25+CD71+CD73 and CD19+CD5hiCD1d+ Bregs | [106,107,108,109] |
Lower frequency of IL-10-producing CD19+CD25+CD71+ Bregs after TLR9 stimulation | [100] | |
Food allergy | Decreased number of TGF-β+CD19+CD5+ and CD19+CD5+Foxp3+ Bregs in patients with cow’s milk allergy | [110,111,112] |
Increased frequency of CD19+CD5+ B cells in cow milk tolerant individuals compared to individuals with cow’s milk allergy | [113] | |
Impairment of CD19+CD25+CD71+ Bregs with regard to IL-10 secretion | [114] | |
Atopic dermatitis | Deficit in CD24++CD38++-Bregs >> inverse correlation between Breg number and severity of atopic dermatitis | [115,116] |
Allergen immunotherapy (AIT) | Increased frequency of IL-10+ IgG4+ bee venom allergen-specific B cells in non-allergic beekeepers and allergic patients after AIT | [47] |
Increased frequency of CD25+CD71+IL-10+ Bregs in beekeepers and allergic patients after AIT | [117] | |
HDM-AIT therapy is associated with increased number of IL-10+ and/or IL-1RA+ Bregs | [118] | |
LPP immunotherapy induces Bregs in patients with rhinoconjunctivitis with or without asthma | [119] | |
Subcutaneous immunotherapy with grass pollen (SCIT) associated with induction of IgG4 in serum, number of IL-10+ Bregs increased during season in active group | [120] |
Observations with Regard to Regulatory B Cells | References | |
---|---|---|
Viral Infections | ||
FSME (Vaccination) | GrB secretion by Bregs as an early cellular immune response to inhibit viral replication | [23] |
HBV | Increased proportion of IL-10-producing B cells in chronic hepatitis B | [36] |
HIV | Association of HIV with PDL1+ Bregs and increased IL-10 production | [129] |
Inhibition of T cell proliferation via degradation of the TCR-ζ chain by granzyme B-expressing GraB cells | [29] | |
Expression of immunosuppressive cytokines (IL-10, TGF-β, IL-35) by CD19+CD24++CD38++-Bregs after contact with HIV-1 particles | [130] | |
EBV | Increased granzyme B secretion by B cells after acute infection with Ebstein-Barr virus (EBV) | [131] |
RSV | Number of RSV-infected Bregs correlates with increased viral load and reduced number of Th1 memory cells in the blood | [103] |
Bacterial Infections | ||
Mycobacterium tuberculosis | Induction of CD19+CD1d+CD5+ Bregs and IL-10+ IL-35+ Bregs by Mycobacterium tuberculosis with subsequent suppression of Th17 cells | [41,128] |
Helicobacter pylori | Suppression of CD24+CD38+ Bregs after infections with Helicobacter pylori | [132] |
Induction of IL-10+ BC by Helicobacter pylori | [133] | |
Helminthoses | ||
Trypanosoma cruzi, Paracoccidioides brasiliensis | Increased IL-10 production by Bregs in MS patients with helminthoses, association with less severe course of MS | [134] |
Schistosoma haematobium | Increased frequency of IL-10-producing B cells in infections with Schistosoma haematobium | [135] |
Wuchereria bancrofti | Increased frequency of Bregs and Tregs in infections with W. bancrofti with positive influence on their survival by IL-10 | [136] |
Parasitoses | ||
Leishmania | IL-10-mediated regulation of T cells by Bregs in Leishmania infantum | [137] |
T cell suppression by regulatory B10 cells in visceral leishmaniasis with overproduction of IgD, IL-10 and PDL1 | [138] |
Observations with Regard to Regulatory B Cells | References |
---|---|
Breg-associated secretion of IgG4 promotes tumor growth | [160,161] |
Granzyme B-expressing B cells in the microenvironment of various gynecological tumor diseases support immune tolerance to tumor antigens | [24] |
Infiltration of tumors by Bregs as a negative predictor in breast, gastric, esophageal and squamous cell carcinomas in the head and neck region | [31,162,163,164,165] |
CD19+CD24+CD38+ Bregs as a negative prognostic factor in acute myeloid leukemia (AML) | [166] |
Increased IL-10 production by CD19+CD24++CD27+ B cells in gastric carcinoma | [31] |
STING-induced IL-35+ Bregs suppress NK cells in pancreas carcinoma | [167] |
Increased number of CD19+IL-10+ Bregs after surgery in patients with hepatocellular carcinoma (HCC) | [168] |
Positive correlation between numbers of Bregs, regulatory T cells and TH17 cells as well as concentration of IL-10, IL-35 and BAFF in patients with primary hepatocellular carcinoma (PHC) | [169,170] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veh, J.; Ludwig, C.; Schrezenmeier, H.; Jahrsdörfer, B. Regulatory B Cells—Immunopathological and Prognostic Potential in Humans. Cells 2024, 13, 357. https://doi.org/10.3390/cells13040357
Veh J, Ludwig C, Schrezenmeier H, Jahrsdörfer B. Regulatory B Cells—Immunopathological and Prognostic Potential in Humans. Cells. 2024; 13(4):357. https://doi.org/10.3390/cells13040357
Chicago/Turabian StyleVeh, Johanna, Carolin Ludwig, Hubert Schrezenmeier, and Bernd Jahrsdörfer. 2024. "Regulatory B Cells—Immunopathological and Prognostic Potential in Humans" Cells 13, no. 4: 357. https://doi.org/10.3390/cells13040357
APA StyleVeh, J., Ludwig, C., Schrezenmeier, H., & Jahrsdörfer, B. (2024). Regulatory B Cells—Immunopathological and Prognostic Potential in Humans. Cells, 13(4), 357. https://doi.org/10.3390/cells13040357