Estimation of Leaf Area Index and Above-Ground Biomass of Winter Wheat Based on Optimal Spectral Index
<p>Aerial photograph of winter wheat research area and some sampling plots in Yangling, Shaanxi.</p> "> Figure 2
<p>Diagrams of architectures used in the experiments.</p> "> Figure 3
<p>Correlation matrix diagram of spectral indices and leaf area index(LAI). (<b>a</b>) DI and LAI; (<b>b</b>) FDDI and LAI; (<b>c</b>) RI and LAI; (<b>d</b>) FDRI and LAI; (<b>e</b>) NDVI and LAI; (<b>f</b>) FDNDVI and LAI; (<b>g</b>) SAVI and LAI; (<b>h</b>) FDSAVI and LAI; (<b>i</b>) TVI and LAI; (<b>j</b>) FDTVI and LAI; (<b>k</b>) mSR and LAI; (<b>l</b>) FDmSR and LAI; (<b>m</b>) mNDI and LAI; (<b>n</b>) FDmNDI and LAI.</p> "> Figure 3 Cont.
<p>Correlation matrix diagram of spectral indices and leaf area index(LAI). (<b>a</b>) DI and LAI; (<b>b</b>) FDDI and LAI; (<b>c</b>) RI and LAI; (<b>d</b>) FDRI and LAI; (<b>e</b>) NDVI and LAI; (<b>f</b>) FDNDVI and LAI; (<b>g</b>) SAVI and LAI; (<b>h</b>) FDSAVI and LAI; (<b>i</b>) TVI and LAI; (<b>j</b>) FDTVI and LAI; (<b>k</b>) mSR and LAI; (<b>l</b>) FDmSR and LAI; (<b>m</b>) mNDI and LAI; (<b>n</b>) FDmNDI and LAI.</p> "> Figure 4
<p>Correlation matrix diagram of spectral indices and above-ground biomass. (<b>a</b>) DI and above-ground biomass; (<b>b</b>) FDDI and above-ground biomass; (<b>c</b>) RI and above-ground biomass; (<b>d</b>) FDRI and above-ground biomass; (<b>e</b>) NDVI and above-ground biomass; (<b>f</b>) FDNDVI and above-ground biomass; (<b>g</b>) SAVI and above-ground biomass; (<b>h</b>) FDSAVI and above-ground biomass; (<b>i</b>) TVI and above-ground biomass; (<b>j</b>) FDTVI and above-ground biomass; (<b>k</b>) mSR and above-ground biomass; (<b>l</b>) FDmSR and above-ground biomass; (<b>m</b>) mNDI and above-ground biomass; (<b>n</b>) FDmNDI and above-ground biomass.</p> "> Figure 4 Cont.
<p>Correlation matrix diagram of spectral indices and above-ground biomass. (<b>a</b>) DI and above-ground biomass; (<b>b</b>) FDDI and above-ground biomass; (<b>c</b>) RI and above-ground biomass; (<b>d</b>) FDRI and above-ground biomass; (<b>e</b>) NDVI and above-ground biomass; (<b>f</b>) FDNDVI and above-ground biomass; (<b>g</b>) SAVI and above-ground biomass; (<b>h</b>) FDSAVI and above-ground biomass; (<b>i</b>) TVI and above-ground biomass; (<b>j</b>) FDTVI and above-ground biomass; (<b>k</b>) mSR and above-ground biomass; (<b>l</b>) FDmSR and above-ground biomass; (<b>m</b>) mNDI and above-ground biomass; (<b>n</b>) FDmNDI and above-ground biomass.</p> "> Figure 5
<p>Prediction results of modeling set and validation set of winter wheat leaf area index inversion model with different input variables and modeling methods. (<b>a</b>) SVM Model input variable is combination 1; (<b>b</b>) SVM Model input variable is combination 2; (<b>c</b>) SVM Model input variable is combination 3; (<b>d</b>) RF Model input variable is combination 1; (<b>e</b>) RF Model input variable is combination 2; (<b>f</b>) RF Model input variable is combination 3; (<b>g</b>) BPNN Model input variable is combination 1; (<b>h</b>) BPNN Model input variable is combination 2; (<b>i</b>) BPNN Model input variable is combination 3.</p> "> Figure 6
<p>Prediction results of modeling set and validation set of winter wheat above-ground biomass inversion model with different input variables and modeling methods (<b>a</b>) SVM Model input variable is combination 1; (<b>b</b>) SVM Model input variable is combination 2; (<b>c</b>) SVM Model input variable is combination 3; (<b>d</b>) RF Model input variable is combination 1; (<b>e</b>) RF Model input variable is combination 2; (<b>f</b>) RF Model input variable is combination 3; (<b>g</b>) BPNN Model input variable is combination 1; (<b>h</b>) BPNN Model input variable is combination 2; (<b>i</b>) BPNN Model input variable is combination 3.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Test Design
2.2. Data Collection
2.2.1. Measurement of LAI
2.2.2. Above-Ground Biomass
2.2.3. Acquisition of Spectral Data
2.3. Techniques for Data Analysis
2.4. Verify the Prediction Accuracy of the Models
3. Results
3.1. Extraction of Optimal Spectral Index Wavelength Combinations for LAI and Above-Ground Biomass
3.2. Establishment of LAI and Above-Ground Biomass Inversion Model Based on Optimal Spectral Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.M.; Cihlar, J. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens. Environ. 1996, 55, 153–162. [Google Scholar] [CrossRef]
- Sellers, P.J. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Li, Y.X.; Zhang, Y.Y.; Zhang, X.H.; Zou, X.C. Hyperspectral estimation of biomass of winter wheat at different growth stages based on machine learning algorithms. J. Triticeae Crops 2019, 39, 217–224, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhang, L.X.; Chen, Y.Q.; Li, Y.X.; Ma, J.C.; Du, K.M.; Zheng, F.X.; Sun, Z.F. Estimating above ground biomass of winter wheat at early growth stages based on visual spectral. Spectrosc. Spect. Anal. 2019, 39, 2501–2506, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Li, L.T.; Li, J.; Ming, J.; Wang, S.Q.; Ren, T.; Lu, J.W. Selection optimization of hyperspectral bandwidth and effective wavelength for predicting leaf area index in winter oilseed rape. Trans. Chin. Soc. Agric. Mach. 2018, 49, 156–165, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Xie, Q.Y.; Huang, W.J.; Liang, D.; Peng, D.L.; Huang, L.S.; Song, X.Y.; Zhang, D.Y.; Yang, G.J. Research on universality of least squares support vector machine method for estimation leaf area index of winter wheat. Spectrosc. Spect. Anal. 2014, 34, 489–493, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhang, J.J.; Cheng, T.; Guo, W.; Xu, X.; Ma, X.M.; Xie, Y.M.; Qiao, H.B. Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods. Plant Methods 2021, 17, 49. [Google Scholar] [CrossRef]
- Oliveira, R.A.; Junior, J.M.; Costa, C.S.; Näsi, R.; Koivumäki, N.; Niemeläinen, O.; Kaivosoja, J.; Nyholm, L.; Pistori, H.; Honkavaara, E. Silage grass sward nitrogen concentration and dry matter yield estimation using deep regression and RGB images captured by UAV. Agronomy 2022, 12, 1352. [Google Scholar] [CrossRef]
- Apolo-Apolo, O.E.; Pérez-Ruiz, M.; Martínez-Guanter, J.; Egea, G. A mixed data-based deep neural network to estimate leaf area index in wheat breeding trials. Agronomy 2020, 10, 175. [Google Scholar] [CrossRef] [Green Version]
- Hama, A.; Tanaka, K.; Mochizuki, A.; Tsuruoka, Y.; Kondoh, A. Estimating the protein concentration in rice grain using UAV imagery together with agroclimatic data. Agronomy 2020, 10, 431. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.Z.; Wang, S.W.; Song, Y.Z.; Liu, Y.; Gong, Z.P. Estimating nitrogen status of rice canopy using hyperspectral reflectance combined with BPSO–SVR in cold region. Chemometr. Intell. Lab. 2017, 172, 68–79. [Google Scholar] [CrossRef]
- Liu, S.; Yu, H.Y.; Zhang, J.H.; Zhou, H.G.; Kong, L.J.; Zhang, L.; Dang, J.M.; Sui, Y.Y. Study on Inversion Model of Chlorophyll Content in Soybean Leaf Based on Optimal Spectral Indices. Spectrosc. Spect. Anal. 2021, 41, 1912–1919, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Bekele, F.; Korecha, D.; Negatu, L. Influence of rainfall features on barley yield in Sinana district of Ethiopia. J. Agrometeorol. 2017, 19, 125–128. [Google Scholar] [CrossRef]
- Kuusk, A. Specular reflection in the signal of LAI–2000 plant canopy analyzer. Agr. Forest. Meteorol. 2016, 221, 242–247. [Google Scholar] [CrossRef]
- Lu, J.S.; Chen, S.M.; Huang, W.M.; Hu, T.T. Estimating of aboveground biomass and leaf area index of summer maize using SEPLS_ELM model. Trans. Chin. Soc. Agric. Eng. 2021, 37, 128–135, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support–vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Breiman, L. Random forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Hecht–Nielsen, R. Theory of the backpropagation neural network. Neural Netw. 1988, 1, 445. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L.; Bai, Y.L.; Lu, Y.L.; Ni, L.; Wang, Y.H.; Xu, M.Z. Quantitative relationship between effective accumulated temperature and summer maize plant height and leaf area index under different nitrogen, phosphorus and potassium treatments. Chin. Agric. Sci. 2021, 54, 4761–4777, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Li, Y.Y.; Chang, Q.R.; Liu, X.Y.; Yan, L.; Luo, D.; Wang, S. Remote sensing estimation of SPAD value of maize leaves based on hyperspectral and BP neural network. Trans. Chin. Soc. Agric. Eng. 2016, 32, 135–142, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Kira, O.; Nguy–Robertson, A.L.; Arkebauer, T.J.; Linker, R.; Gitelson, A.A. Informative spectral bands for remote green LAI estimation in C3 and C4 crops. Agr. Forest. Meteorol. 2016, 218–219, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Ancona, N.; Maglietta, R.; Stella, E. Data representations and generalization error in kernel based learning machines. Pattern Recognit. 2006, 39, 1588–1603. [Google Scholar] [CrossRef]
- Chen, J.Y.; Wang, X.T.; Zhang, Z.T.; Han, J.; Yao, Z.H.; Wei, G.F. Soil salinization monitoring method based on uav-satellite remote sensing scale-up. Trans. Chin. Soc. Agric. Mach. 2019, 50, 161–169, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Hong, Y.S.; Liu, Y.L.; Chen, Y.Y.; Liu, Y.F.; Yu, L.; Liu, Y.; Cheng, H. Application of fractional–order derivative in the quantitative estimation of soil organic matter content through visible and near–infrared spectroscopy. Geoderma 2018, 337, 758–769. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Luo, B.; Pan, D.Y.; Song, P.; Lu, W.C.; Wang, C.; Zhao, C.J. Estimation of Canopy Nitrogen Content of Soybean Crops Based on Fractional Differential Algorithm. Spectrosc. Spect. Anal. 2018, 38, 3221–3230, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhang, Y.M.; Ta, N.; Guo, S.; Chen, Q.; Zhao, L.C.; Li, F.L.; Chang, Q.R. Combining spectral and textural information from UAV RGB images for leaf area index monitoring in kiwifruit orchard. Remote Sens. 2022, 14, 1063. [Google Scholar] [CrossRef]
- Wang, F.L.; Yang, M.; Ma, L.F.; Zhang, T.; Qin, W.L.; Li, W.; Zhang, Y.H.; Sun, Z.C.; Wang, Z.M.; Li, F.; et al. Estimation of above-ground biomass of winter wheat based on consumer-grade multi-spectral UAV. Remote Sens. 2022, 14, 1251. [Google Scholar] [CrossRef]
- Xia, T.; Wu, W.B.; Zhou, Q.B.; Zhou, Y. Comparison of two inversion methods for winter wheat leaf area index based on hyperspectral remote sensing. Trans. Chin. Soc. Agric. Eng. 2013, 29, 139–147, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Azarmdel, H.; Jahanbakhshi, A.; Mohtasebi, S.S.; Muñozc, A.R. Evaluation of image processing technique as an expert system in mulberry fruit grading based on ripeness level using artificial neural networks (ANNs) and support vector machine (SVM). Postharvest Biol. Technol. 2020, 166, 111201. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, M.R. Application of Artificial Neural Network BP Algorithm in Near Infrared Spectroscopy. Infrared 2006, 27, 1–4, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Fu, Z.P.; Jiang, J.; Gao, Y.; Krienke, B.; Wang, M.; Zhong, K.T.; Cao, Q.; Tian, Y.C.; Zhu, Y.; Cao, W.X.; et al. Wheat Growth Monitoring and Yield Estimation based on Multi-Rotor Unmanned Aerial Vehicle. Remote Sens. 2020, 12, 508. [Google Scholar] [CrossRef] [Green Version]
Indexes | Leaf Area Index/(cm2·cm−2) | Above-Ground Biomass/(kg·hm−2) | ||
---|---|---|---|---|
Modeling Set | Validation Set | Modeling Set | Validation Set | |
Sample size | 44 | 22 | 44 | 22 |
Minimum values | 2.28 | 2.30 | 3247.20 | 3251.81 |
Maximum values | 4.23 | 4.23 | 5073.49 | 4795.8 |
Mean | 3.17 | 3.24 | 4159.26 | 4164.51 |
Standard deviation | 0.59 | 1.62 | 442.53 | 405.87 |
Coefficient of variation/% | 0.19 | 0.50 | 0.11 | 0.10 |
Spectral Index | Formula | Reference | |
---|---|---|---|
Original | First-Order Differential | ||
difference index (DI) | [12] | ||
ratio index (RI) | [12] | ||
normalized difference vegetation index (NDVI) | [12] | ||
soil-adjusted vegetation index (SAVI) | [12] | ||
triangular vegetation index (TVI) | [12] | ||
modified simple ratio (mSR) | [12] | ||
modified normalized difference index (mNDI) | [12] |
Spectral Index | Maximum Correlation Coefficient | Spectral Index | Maximum Correlation Coefficient | ||
---|---|---|---|---|---|
rmax | Wavelength Position (i,j)/nm | rmax | Wavelength Position (i,j)/nm | ||
DI | 0.659 | 759,758 | FDDI | 0.716 | 736,733 |
RI | 0.669 | 759,758 | FDRI | 0.613 | 742,740 |
NDVI | 0.670 | 758,753 | FDNDVI | 0.612 | 741,739 |
SAVI | 0.661 | 757,755 | FDSAVI | 0.715 | 740,732 |
TVI | 0.704 | 712,685 | FDTVI | 0.659 | 685,758 |
mSR | 0.607 | 758,754 | FDmSR | 0.602 | 738,748 |
mNDI | 0.607 | 759,756 | FDmNDI | 0.609 | 738,747 |
Spectral Index | Maximum Correlation Coefficient | Spectral Index | Maximum Correlation Coefficient | ||
---|---|---|---|---|---|
rmax | Wavelength Position (i,j)/nm | rmax | Wavelength Position (i,j)/nm | ||
DI | 0.669 | 758,757 | FDDI | 0.698 | 743,721 |
RI | 0.637 | 755,754 | FDRI | 0.534 | 757,688 |
NDVI | 0.626 | 753,750 | FDNDVI | 0.517 | 743,738 |
SAVI | 0.634 | 757,753 | FDSAVI | 0.697 | 758,697 |
TVI | 0.693 | 739,720 | FDTVI | 0.588 | 685,758 |
mSR | 0.571 | 714,717 | FDmSR | 0.540 | 726,739 |
mNDI | 0.571 | 692,721 | FDmNDI | 0.558 | 680,695 |
Model | Combination | Modeling Set R2 | Validation Set R2 | Modeling Set RMSE | Validation Set RMSE | Modeling Set MRE | Validation Set MRE | |
---|---|---|---|---|---|---|---|---|
LAI | SVM | 1 | 0.466 | 0.478 | 0.515 | 0.554 | 11.645 | 15.073 |
2 | 0.633 | 0.694 | 0.386 | 0.369 | 9.106 | 8.474 | ||
3 | 0.589 | 0.517 | 0.391 | 0.456 | 9.277 | 11.250 | ||
RF | 1 | 0.725 | 0.565 | 0.316 | 0.412 | 7.919 | 12.185 | |
2 | 0.794 | 0.830 | 0.285 | 0.276 | 7.701 | 6.920 | ||
3 | 0.722 | 0.666 | 0.358 | 0.388 | 9.026 | 10.477 | ||
BPNN | 1 | 0.600 | 0.602 | 0.374 | 0.547 | 10.525 | 12.617 | |
2 | 0.634 | 0.707 | 0.365 | 0.328 | 8.903 | 8.801 | ||
3 | 0.597 | 0.644 | 0.521 | 0.450 | 13.978 | 11.624 | ||
Above-ground biomass | SVM | 1 | 0.562 | 0.384 | 301.367 | 337.496 | 4.851 | 7.031 |
2 | 0.567 | 0.526 | 300.911 | 300.725 | 4.838 | 5.907 | ||
3 | 0.554 | 0.472 | 344.029 | 329.219 | 5.922 | 7.058 | ||
RF | 1 | 0.692 | 0.601 | 246.184 | 268.773 | 4.436 | 5.142 | |
2 | 0.721 | 0.682 | 235.769 | 235.016 | 4.312 | 4.336 | ||
3 | 0.710 | 0.633 | 246.789 | 252.856 | 4.351 | 4.693 | ||
BPNN | 1 | 0.626 | 0.609 | 275.681 | 274.168 | 4.851 | 5.633 | |
2 | 0.637 | 0.617 | 267.066 | 259.932 | 4.838 | 4.837 | ||
3 | 0.608 | 0.607 | 302.115 | 268.281 | 5.558 | 5.068 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Guo, J.; Xiang, Y.; Lu, X.; Wang, Q.; Wang, H.; Cheng, M.; Wang, H.; Wang, X.; An, J.; et al. Estimation of Leaf Area Index and Above-Ground Biomass of Winter Wheat Based on Optimal Spectral Index. Agronomy 2022, 12, 1729. https://doi.org/10.3390/agronomy12071729
Tang Z, Guo J, Xiang Y, Lu X, Wang Q, Wang H, Cheng M, Wang H, Wang X, An J, et al. Estimation of Leaf Area Index and Above-Ground Biomass of Winter Wheat Based on Optimal Spectral Index. Agronomy. 2022; 12(7):1729. https://doi.org/10.3390/agronomy12071729
Chicago/Turabian StyleTang, Zijun, Jinjin Guo, Youzhen Xiang, Xianghui Lu, Qian Wang, Haidong Wang, Minghui Cheng, Han Wang, Xin Wang, Jiaqi An, and et al. 2022. "Estimation of Leaf Area Index and Above-Ground Biomass of Winter Wheat Based on Optimal Spectral Index" Agronomy 12, no. 7: 1729. https://doi.org/10.3390/agronomy12071729
APA StyleTang, Z., Guo, J., Xiang, Y., Lu, X., Wang, Q., Wang, H., Cheng, M., Wang, H., Wang, X., An, J., Abdelghany, A., Li, Z., & Zhang, F. (2022). Estimation of Leaf Area Index and Above-Ground Biomass of Winter Wheat Based on Optimal Spectral Index. Agronomy, 12(7), 1729. https://doi.org/10.3390/agronomy12071729