Yield and Fruit Quality of Strawberry Cultivars under Different Irrigation Regimes
<p>Monthly values of (<b>a</b>) mean, maximal (squares line patterns) and minimum (diamonds line patterns) temperature, (<b>b</b>) solar irradiance, (<b>c</b>) vapor pressure deficit (VPD) and potential evapotranspiration (ET<sub>0green</sub>; triangles line patterns) under the macro-tunnel during the 2016–2017 and 2017–2018 cropping season. Vertical bars represent the average (±SE).</p> "> Figure 2
<p>Variation of soil water content measured by 10HS probes on the top 15 and 30 cm of the T120 water treatment during (<b>a</b>) 2016–2017 in ‘Fortuna’ (T120-FOR15 and T120-FOR30) and ‘Sabrina’ (T120-SAB15 and T120-SAB30), and (<b>b</b>) 2017–2018 in ‘Fortuna’ and ‘Rociera’ (T120-ROC15 and T120-ROC30).</p> "> Figure 3
<p>Soil water content measurements taken by the frequency domain reflectometry (FDR) probe in the top 80 cm of the soil on the T65, T80, T100 and T120 water treatments throughout the 2016–2017 cropping season in (<b>a</b>) ‘Fortuna’, (<b>b</b>) ‘Sabrina’, (<b>c</b>) ‘Primoris’ and (<b>d</b>) ‘Splendor’. Each data point represents the average of three separated profiles.</p> "> Figure 4
<p>Leaf water potential measured at midday (1200–1400 h) in the study cultivars subjected to different water treatments (T65, T80, T100, T120 and T140) in the 2017 (<b>a</b>–<b>d</b>) and 2018 (<b>e</b>–<b>h</b>) cropping seasons. Each data point represents the mean ±SE (<span class="html-italic">n</span> = 3). The asterisk indicates significant (<span class="html-italic">p</span> < 0.05) differences between water treatments on each date.</p> "> Figure 5
<p>Mean values (±SE; <span class="html-italic">n</span> = 6) of (<b>a</b>,<b>b</b>) net assimilation rate (<span class="html-italic">A</span>); (<b>c</b>,<b>d</b>) stomatal conductance (gs); <b>(e</b>,<b>f</b>) transpiration rate (<span class="html-italic">E</span>) and (<b>g</b>–<b>h</b>) instantaneous water use efficiency (<span class="html-italic">A</span>/<span class="html-italic">E</span>) on the study cultivars under the water treatments in 2016–2017 and 2017–2018. Different lower-case or upper-case letters indicate significant (<span class="html-italic">p</span> < 0.05) differences between water treatments or among cultivars respectively.</p> "> Figure 6
<p>Mean values (±SE; <span class="html-italic">n</span> = 3 plots) of (<b>a</b>,<b>b</b>) plant diameter; (<b>c</b>,<b>d</b>) first class marketable fruit yield; (<b>e</b>,<b>f</b>) fruit weight and (<b>g</b>–<b>h</b>) yield efficiency of the study cultivars under the different water treatments supplied in the 2016–2017 and 2017–2018 cropping seasons. Within a cultivar, different lower case letters indicate significant (<span class="html-italic">p</span> < 0.05) differences between water treatments, and, within a water treatment, upper case letters indicate significant differences among cultivars.</p> "> Figure 7
<p>Water productivity (Kg m<sup>−3</sup>) of the study cultivars under the different water treatments supplied in the (<b>a</b>) 2016-2017 and (<b>b</b>) 2017–2018 cropping seasons. I.</p> "> Figure A1
<p>Field experimental setup in the 2016–2017 and 2017–2018 cropping seasons (pictures taken in 22-12-2016 and 20-11-2017, respectively).</p> "> Figure A2
<p>Variation of cumulated ET<sub>cSab</sub> during the 2016–2017 and 2017–2018 cropping seasons.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Experimental Design and Irrigation Scheduling
2.3. Physiological Measurements
2.3.1. Leaf Water Potential
2.3.2. Gas Exchange Measurements
2.4. Plant Growth, Fruit Production and Biomass Partitioning
2.5. Fruit Quality Analyses
2.5.1. Organoleptic Parameters
2.5.2. Functional Parameters
2.6. Statistical Analysis
3. Results
3.1. Strawberry Water Requirementes and Irrigation Water Supply
3.2. Soil Water Status
3.3. Physiological Response to Water Treatments
3.3.1. Leaf Water Potential
3.3.2. Gas Exchange Measurements
3.4. Plant Growth, Fruit Yield and Fruit Quality
4. Discussion
4.1. Cultivar Response under No Water Limitations
4.2. Cultivar Response to Different Water Supplies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammer, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, C.E. Thirsty Planet: Strategies for Sustainable Water Management; Zed Books: New York, NY, USA, 2004; 302p. [Google Scholar]
- Duarte, C.; Alonso, S.; Benito, G.; Dachs, J.; Montes, C.; Pardo, M.; Ríos, A.; Simón, R.; Valladares, F. Cambio Global: Impacto de la Actividad Humana Sobre el Sistema Tierra; Consejo Superior de Investigación Científica: Madrid, Spain, 2006; 165p. [Google Scholar]
- Costa, J.M.; Ortuño, M.F.; Chaves, M.M. Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture. J. Integr. Plant Biol. 2007, 49, 1421–1434. [Google Scholar] [CrossRef]
- Martínez-Ferri, E.; Muriel-Fernández, J.L.; Rodríguez Díaz, J.A. Soil water balance modelling using SWAP: An application for irrigation water management and climate change adaptation in citrus. Outlook Agric. 2013, 42, 93–102. [Google Scholar] [CrossRef]
- Moreno-Ortega, G.; Pliego, C.; Sarmiento, D.; Barceló, A.; Martínez-Ferri, E. Yield and fruit quality of avocado trees under different regimes of water supply in the subtropical coast of Spain. Agric. Water Manag. 2019, 221, 192–201. [Google Scholar] [CrossRef]
- Martínez-Ferri, E.; Ariza, M.T.; Domínguez, P.; Medina, J.J.; Miranda, L.; Muriel, J.L.; Montesinos, P.; Rodríguez-Díaz, J.A.; Soria, C. Cropping strawberry for improving productivity and environmental sustainability. In Strawberries: Cultivation, Antioxidant Properties and Health Benefits; Malone, N., Ed.; Nova Science Publishers: New York, NY, USA, 2014; pp. 1–20. [Google Scholar]
- FAOSTAT. Agric. Data. 2019. Available online: http://www.faostat.fao.org (accessed on 15 July 2019).
- Foundation Doñana 21. Manual de Buenas Prácticas Agrarias Sostenibles. De la Agricultura al Desarrollo Rural Sostenible. Available online: https://donana.es/publicacion/11-manual-de-buenas-practicas-agrarias-sostenibles (accessed on 20 July 2019).
- García Morillo, J.; Martin, M.; Camacho, E.; Rodríguez Díaz, J.A.; Montesinos, P. Toward precision irrigation for intensive strawberry cultivation. Agric. Water Manag. 2015, 151, 43–51. [Google Scholar] [CrossRef]
- Ariza, M.T.; Soria, C.; Medina-Mínguez, J.J.; Martínez-Ferri, E. Incidence of misshapen fruits in strawberry plants grown under tunnels is affected by cultivar, planting date, pollination, and low temperatures. Hortscience 2012, 47, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Lozano, D.; Ruiz, N.; Gavilán, P. Consumptive water use and irrigation performance of strawberries. Agric. Water Manag. 2016, 169, 44–51. [Google Scholar] [CrossRef]
- Krüger, E.; Schmidt, G.; Bruchner, U. Scheduling strawberry irrigation based upon tensiometer measurement and a climatic water balance model. Sci. Hortic. 1999, 81, 409–424. [Google Scholar] [CrossRef]
- Klamkowski, K.; Treder, W. Morphological and physiological responses of strawberry plants to water stress. Agric. Conspec. Sci. 2006, 71, 159–165. [Google Scholar]
- Grant, O.M.; Johnson, A.W.; Davies, M.J.; James, C.M.; Simpson, D.W. Physiological and morphological diversity of cultivated strawberry (Fragaria x ananassa) in response to water deficit. Environ. Exp. Bot. 2010, 68, 264–272. [Google Scholar] [CrossRef]
- Garcia-Tejero, I.F.; López-Borrallo, D.; Miranda, L.; Medina, J.J.; Arriaga, J.; Muriel-Fernández, J.L.; Martínez-Ferri, E. Estimating strawberry crop coefficients under plastic tunnels in Southern Spain by using drainage lysimeters. Sci. Hortic. 2018, 231, 233–240. [Google Scholar] [CrossRef]
- Sadras, V.O. Does partial root-zone drying improve irrigation water productivity in the field? A meta-analysis. Irrig. Sci. 2009, 27, 183–190. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Ferri, E.; Soria, C.; Ariza, M.T.; Medina, J.J.; Miranda, L.; Domíguez, P.; Muriel, J.L. Water relations, growth and physiological response of seven strawberry cultivars (Fragaria x ananassa Duch.) to different water availability. Agric. Water Manag. 2016, 164, 73–82. [Google Scholar] [CrossRef]
- Ariza, M.T.; Miranda, L.; Martinez-Ferri, E.; Medina, J.J.; Gómez-Mora, J.A.; Cervantes, L.; Soria, C. Consistency of organoleptic and yield related traits of strawberry cultivars over time. J. Berry Res. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Giné-Bordonaba, J.; Terry, L.A. Manipulating the taste related composition of strawberry fruits (Fragaria x ananassa) from different cultivars using deficit irrigation. Food Chem. 2010, 122, 1020–1026. [Google Scholar] [CrossRef] [Green Version]
- Serrano, L.; Carbonell, X.; Savé, R.; Marfa, O.; Peñuelas, J. Effects of irrigation regimes on the yield and water use of strawberry. Irrig. Sci. 1992, 13, 45–48. [Google Scholar] [CrossRef]
- Save, R.; Peñuelas, J.; Marfà, O.; Serrano, L. Changes in leaf osmotic and elastic properties and canopy structure of strawberries under mild and very mild water stress. HortScience 1993, 28, 925–927. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Savic, S.; Jensen, C.R.; Shahnazari, A.; Jacobsen, S.E.; Stikic, R.; Andersen, M.N. Water relations and yield of lysimeter-grown strawberries under limited irrigation. Sci. Hortic. 2007, 111, 128–132. [Google Scholar] [CrossRef]
- Weber, N.; Zupanc, V.; Jakopic, J.; Veberic, R.; Mikulic-Petkovsek, M.; Stampar, F. Influence of deficit irrigation on strawberry (Fragaria × ananassa Duch.) fruit quality. J. Sci. Food Agric. 2017, 97, 849–857. [Google Scholar] [CrossRef]
- López Aranda, J.M. The cultivation of the strawberry in Huelva. In The Strawberry Crop at Huelva; de Andalucía, J., Ed.; Ideas, Exclusivas y Publicidad S.L.: Sevilla, Spain, 2008; pp. 101–174. [Google Scholar]
- Domínguez, P.; Miranda, L.; Soria, C.; De los Santos, B.; Chamorro, M.; Romero, F.; Daugovish, O.; López-Aranda, J.M.; Medina, J.J. Soil biosolarization for sustainable strawberry production. Agron. Sustain. Dev. 2014, 34, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Fernández, M.D.; Bonachela, S.; Orgaz, F.; Thompson, R.; López, J.C.; Granados, M.R.; Gallardo, M.; Fereres, E. Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig. Sci. 2010, 28, 497–509. [Google Scholar] [CrossRef] [Green Version]
- Gavilán, P.; Ruiz, N.; Lozano, D. Daily forecasting of reference and strawberry crop evapotranspiration in greenhouses in a Mediterranean climate based on solar radiation estimates. Agric. Water Manag. 2015, 159, 307–317. [Google Scholar] [CrossRef]
- Hsiao, T.C. Measurements of plant water status. In Irrigation of Agricultural Crops. Monograph No. 30; Stewart, B.A., Nielsen, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1990; pp. 243–279. [Google Scholar]
- Klamkowski, K.; Treder, W. Response to drought stress of three strawberry cultivars grown under greenhouse conditions. J. Fruit Ornam. Plant Res. 2008, 16, 179–188. [Google Scholar]
- Sun, C.; Li, X.; Hu, Y.; Zhao, P.; Xu, T.; Sun, J.; Gao, X. Proline, sugars, and antioxidant enzymes respond to drought stress in the leaves of strawberry plants. Hortic. Sci. Technol. 2015, 33, 625–632. [Google Scholar] [CrossRef] [Green Version]
- Von Caemmerer, S.; Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Tulipani, S.; Mezzetti, B.; Capocasa, F.; Bompadre, S.; Beekwilder, J.; De Vos, C.R.; Capanoglu, E.; Bovy, A.; Battino, M. Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. J. Agric. Food Chem. 2008, 56, 696–704. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Ed.; Willey: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Tunc, T.; Sahin, U.; Evren, S.; Dasci, E.; Guney, E.; Aslantas, R. The deficit irrigation productivity and economy in strawberry in the different drip irrigation practices in a high plain with semi-arid climate. Sci. Hortic. 2019, 245, 47–56. [Google Scholar] [CrossRef]
- Létourneau, G.; Caron, J. Irrigation Management Scale and Water Application Method to Improve Yield and Water Productivity of Field-Grown Strawberries. Agronomy 2019, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Gendron, L.; Létourneau, G.; Anderson, L.; Sauvageau, G.; Depardieu, C.; Paddock, E.; van den Hout, A.; Levallois, R.; Daugovish, O.; Sandoval Solis, S.; et al. Real-time irrigation: Cost-effectiveness and benefits for water use and productivity of strawberries. Sci. Hortic. 2018, 240, 468–477. [Google Scholar] [CrossRef] [Green Version]
- Long, S.P.; Zhu, X.G.; Naidu, S.L.; Ort, D.R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 2006, 29, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, L.; Ariza, M.T.; Gómez-Mora, J.A.; Miranda, L.; Medina, J.J.; Soria, C.; Martínez-Ferri, E. Light exposure affects fruit quality in different strawberry cultivars under field conditions. Sci. Hortic. 2019, 252, 291–297. [Google Scholar] [CrossRef]
- Bustan, A.; Dag, A.; Yermiyahu, U.; Erel, R.; Presnov, E.; Agam, N.; Kool, D.; Iwema, J.; Zipori, I.; Ben-Gal, A. Fruit load governs transpiration of olive trees. Tree Physiol. 2016, 36, 380–391. [Google Scholar] [CrossRef]
- Hsiao, T.C. Plant Responses to Water Stress. Ann. Rev. Plant Physiol. 2003, 24, 519–570. [Google Scholar] [CrossRef]
- Ripoll, J.; Urban, L.; Staudt, M.; Lopez-Lauri, F.; Bidel, L.P.R.; Bertin, N. Water shortage and quality of fleshy fruits—making the most of the unavoidable. J. Exp. Bot. 2014, 65, 4097–4117. [Google Scholar] [CrossRef] [Green Version]
- Grant, O.M.; Davies, M.J.; Johnson, A.W.; Simpson, D.W. Physiological and growth responses to water deficits in cultivated strawberry (Fragaria × ananassa) and in one of its progenitors, Fragaria chiloensis. Environ. Exp. Bot. 2012, 83, 23–32. [Google Scholar] [CrossRef]
- Blanke, M.M.; Cooke, D.T. Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves. Plant Growth Regul. 2004, 42, 153–160. [Google Scholar] [CrossRef]
- Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía (CAPDR). Observatorio de Precios y Mercados. Síntesis de Campaña: Frutos Rojos; Campaña 2016/2017; Junta de Andalucía (CAPDR): Sevilla, Spain, 2017; 10p. [Google Scholar]
2016–2017 | 2017–2018 | |||||||
---|---|---|---|---|---|---|---|---|
T65 1 | T80 | T100 | T120 | T80 | T100 | T120 | T140 | |
IN | 223.5 | 275.1 | 343.8 | 407.1 | 284.3 | 355.3 | 421.6 | 497.5 |
Irrigation | 223.6 | 267.9 | 369.2 | 405 | 298.2 | 334.5 | 424.5 | 509.8 |
RIS | 65 | 80 | 107 | 118 | 84 | 94 | 120 | 144 |
TB | RWR | SWR | LWR | R/S | |
---|---|---|---|---|---|
2016–2017 | |||||
‘Fortuna’ | 43.29 ± 3.23 ab | 16.04 ± 1.82 b | 40.54 ± 1.08 ab | 43.90 ± 1.03 b | 0.19 ± 0.03 b |
‘Primoris’ | 38.21 ± 2.19 b | 16.11 ± 1.35 b | 37.12 ± 2.73 b | 47.54 ± 2.42 a | 0.18 ± 0.02 b |
‘Sabrina’ | 55.36 ± 1.59 a | 12.89 ± 0.98 c | 44.81 ± 1.79 a | 44.20 ± 0.97 b | 0.14 ± 0.03 c |
‘Splendor’ | 36.08 ± 4.05 b | 21.37 ± 1.36 a | 34.22 ± 1.64 b | 44.21 ± 0.26 b | 0.26 ± 0.03 a |
2017–2018 | |||||
‘Fortuna’ | 46.84 ± 5.72 ab | 14.78 ± 1.42 b | 38.97 ± 1.47 a | 46.24 ± 2.26 ab | 0.17 ± 0.02 b |
‘Primoris’ | 38.94 ± 2.94 b | 15.22 ± 2.08 b | 34.92 ± 1.45 b | 49.86 ± 2.81 a | 0.18 ± 0.03 b |
‘Rábida’ | 55.38 ± 7.49 a | 19.18 ± 3.38 a | 39.07 ± 2.90 a | 41.75 ± 1.98 b | 0.25 ± 0.06 a |
‘Rociera’ | 47.56 ± 6.30 ab | 12.26 ± 1.46 b | 38.68 ± 2.43 a | 49.05 ± 1.26 a | 0.14 ± 0.02 c |
TSS 1 | Acidity | Vit C | Firmness | TPC | TFC | TAC | TEAC | |
---|---|---|---|---|---|---|---|---|
‘Fortuna’ | ||||||||
T65 | 6.98 | 0.68 | 21.97 | 4.92 | 169.30 | 41.78 | 20.20 | 970.6 |
T80 | 6.84 | 0.68 | 22.37 | 4.68 | 159.93 | 39.86 | 23.89 | 944.3 |
T100 | 6.64 | 0.66 | 20.34 | 4.73 | 152.11 | 39.40 | 22.11 | 979.4 |
T120 | 6.58 | 0.65 | 21.51 | 5.28 | 147.86 | 33.38 | 22.89 | 1028.7 |
Average | 6.79 B | 0.67 B | 21.87 C | 4.91 B | 158.08 B | 38.42 | 22.03 A | 968.2 |
‘Primoris’ | ||||||||
T65 | 7.79 | 0.72 | 28.48 | 5.86 | 203.25 a | 58.66 a | 21.12 a | 945.2 |
T80 | 7.80 | 0.71 | 27.93 | 5.48 | 187.34 ab | 52.57 b | 18.77 b | 903.7 |
T100 | 7.60 | 0.71 | 26.87 | 5.65 | 184.08 b | 53.24 b | 18.33 b | 861.0 |
T120 | 7.51 | 0.71 | 28.05 | 5.80 | 175.55 b | 46.12 c | 17.85 b | 984.9 |
Average | 7.65 A | 0.71 B | 27.82 B | 5.72 A | 188.11 A | 52.25 A | 18.96 b | 918.9 |
‘Sabrina’ | ||||||||
T65 | 8.40 a | 0.80 | 35.86 | 5.56 | 171.94 | 49.41 | 19.58 a | 830.9 b |
T80 | 7.90 ab | 0.86 | 35.63 | 5.76 | 167.72 | 44.95 | 20.57 a | 1111.4 a |
T100 | 7.13 b | 0.84 | 32.51 | 5.71 | 170.51 | 44.44 | 18.64 ab | 1214.9 a |
T120 | 6.82 b | 0.81 | 29.94 | 5.83 | 169.23 | 42.89 | 16.96 b | 1239.3 a |
Average | 7.62 A | 0.83 A | 33.76 A | 5.72 A | 169.61 B | 45.50 B | 18.78 B | 1077.1 |
‘Splendor’ | ||||||||
T65 | 6.79 | 0.72 | 34.31 | 4.01 | 163.67 | 46.23 a | 25.60 a | 791.5 c |
T80 | 6.66 | 0.72 | 33.06 | 3.72 | 161.75 | 42.59 b | 23.77 ab | 818.2 c |
T100 | 6.62 | 0.71 | 33.42 | 3.61 | 150.38 | 39.70 bc | 21.41 bc | 951.8 b |
T120 | 6.22 | 0.70 | 32.74 | 3.70 | 161.70 | 38.61 c | 19.37 c | 1039.7 a |
Average | 6.57 B | 0.71 B | 33.38 A | 3.76 C | 159.37 B | 41.78 C | 22.53 A | 900.3 |
TSS 1 | Acidity | Vit C | Firmness | TPC | TFC | TAC | TEAC | |
---|---|---|---|---|---|---|---|---|
‘Fortuna’ | ||||||||
T80 | 5.75 | 0.69 | 34.17 | 4.72 | 148.03 | 32.54 a | 26.26 | 958.8 |
T100 | 5.83 | 0.68 | 35.43 | 4.87 | 149.85 | 30.54 a | 28.34 | 899.6 |
T120 | 5.50 | 0.65 | 34.18 | 4.58 | 138.05 | 26.10 b | 29.00 | 1096.2 |
T140 | 5.08 | 0.66 | 36.01 | 4.80 | 135.37 | 26.43 b | 25.31 | 968.0 |
Average | 5.54 B | 0.67 | 34.95 | 4.74 B | 142.83 B | 28.90 C | 27.23 A | 980.6 |
‘Primoris’ | ||||||||
T80 | 6.67 | 0.74 | 38.75 | 5.16 | 173.45 a | 44.78 a | 17.81 | 1108.1 |
T100 | 6.22 | 0.70 | 37.75 | 5.15 | 158.08 b | 39.01 b | 17.79 | 1081.4 |
T120 | 6.15 | 0.71 | 31.98 | 5.08 | 158.36 b | 37.56 b | 18.71 | 1084.0 |
T140 | 6.45 | 0.66 | 38.11 | 5.25 | 157.17 b | 35.92 b | 18.37 | 1205.3 |
Average | 6.36 A | 0.71 | 36.52 | 5.15 A | 162.18 A | 39.63 A | 18.15 B | 1111.9 |
‘Rabida’ | ||||||||
T80 | 7.28 a | 0.75 a | 33.94 | 4.84 | 172.25 a | 43.86 a | 17.30 | 1130.9 a |
T100 | 5.92 b | 0.73 a | 28.31 | 4.97 | 161.38 ab | 35.70 b | 17.11 | 1124.0 a |
T120 | 5.35 b | 0.60 b | 27.47 | 4.97 | 151.98 b | 31.71 bc | 19.30 | 982.8 b |
T140 | 6.40 ab | 0.66 ab | 31.67 | 5.01 | 147.29 b | 29.23 c | 19.19 | 1001.3 b |
Average | 6.24 A | 0.69 | 30.35 | 4.95 AB | 158.23 A | 35.13 B | 18.22 B | 1059.8 |
‘Rociera’ | ||||||||
T80 | 6.28 | 0.72 | 40.51 | 4.97 | 172.15 a | 38.19 a | 13.57 | 1164.6 a |
T100 | 6.25 | 0.69 | 37.67 | 4.80 | 156.24 ab | 35.17 ab | 13.22 | 1135.9 a |
T120 | 6.33 | 0.73 | 35.11 | 4.95 | 144.91 b | 29.43 c | 12.13 | 974.9 b |
T140 | 6.00 | 0.67 | 35.83 | 4.73 | 142.23 b | 30.28 bc | 14.21 | 1080.9 b |
Average | 6.22 A | 0.70 | 37.28 | 4.86 B | 153.88 A | 33.27 B | 13.29 C | 1089.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ariza, M.T.; Miranda, L.; Gómez-Mora, J.A.; Medina, J.J.; Lozano, D.; Gavilán, P.; Soria, C.; Martínez-Ferri, E. Yield and Fruit Quality of Strawberry Cultivars under Different Irrigation Regimes. Agronomy 2021, 11, 261. https://doi.org/10.3390/agronomy11020261
Ariza MT, Miranda L, Gómez-Mora JA, Medina JJ, Lozano D, Gavilán P, Soria C, Martínez-Ferri E. Yield and Fruit Quality of Strawberry Cultivars under Different Irrigation Regimes. Agronomy. 2021; 11(2):261. https://doi.org/10.3390/agronomy11020261
Chicago/Turabian StyleAriza, María Teresa, Luis Miranda, José Antonio Gómez-Mora, Juan Jesús Medina, David Lozano, Pedro Gavilán, Carmen Soria, and Elsa Martínez-Ferri. 2021. "Yield and Fruit Quality of Strawberry Cultivars under Different Irrigation Regimes" Agronomy 11, no. 2: 261. https://doi.org/10.3390/agronomy11020261
APA StyleAriza, M. T., Miranda, L., Gómez-Mora, J. A., Medina, J. J., Lozano, D., Gavilán, P., Soria, C., & Martínez-Ferri, E. (2021). Yield and Fruit Quality of Strawberry Cultivars under Different Irrigation Regimes. Agronomy, 11(2), 261. https://doi.org/10.3390/agronomy11020261