Assessing Drone-Based Remote Sensing Indices for Monitoring Rice Nitrogen Plant Status Under Different Irrigation Techniques
<p>(<b>a</b>) Location of the experimental sites during the rice-growing seasons S1: 2021–2022 and S2: 2022–2023 at the National Institute of Agricultural Research (INIA), Paso Farias North region of Uruguay. (<b>b</b>) Experimental design, treatments, and chlorophyll red-edge (CLre) map for panicle initiation on 13 December 2022, showing the mask used to extract the spectral information within each plot.</p> "> Figure 2
<p>Representation of (<b>I</b>) irrigation treatments: (<b>a</b>) continuous flooded irrigation (C) and (<b>b</b>) alternate wetting and drying (AWD) (<b>II</b>) Nitrogen-rate (N-rate) treatments evaluated in the study during the S1: 2021–2022 and S2: 2022–2023 rice-growing seasons. Numbers in superscript inside parentheses are Urea kg ha<sup>−1</sup>.</p> "> Figure 3
<p>Normalized difference vegetation indices (<b>a</b>) NDVI, (<b>b</b>) NDRE, and (<b>c</b>) NDRE<sup>2</sup>; chlorophyll indices (<b>d</b>) CLg, (<b>e</b>) CLr, and (<b>f</b>) CLre; and ratio indices (<b>g</b>) SCCCI, (<b>h</b>) RE-Ratio, and (i) Simple-Ratio at panicle initiation (S1 = 21 December 2021; S2 = 13 December 2022) by irrigation (alternate wetting and drying (AWD) and continuous flooded irrigation (C)), N-rate treatments (N0, N1, N2, and N3), and rice-growing season (<b>I</b>) S1: 2021–2022 and (<b>II</b>) S2: 2022–2023 at panicle initiation. Different letters within each irrigation treatment indicate statistically significant differences in VIs between N-rate treatments with a probability less than 5%.</p> "> Figure 4
<p>Sufficiency Index (SI) for the VIs assessed separated by irrigation (alternate wetting and drying (AWD) and continuous flooded irrigation (C)), N-rate treatments (N0, N1, N2, and N3), and rice-growing season (<b>I</b>) S1: 2021–2022 and (<b>II</b>) S2: 2022–2023 at panicle initiation. (<b>a</b>) Normalized indices (NDVI, NDRE, and NDRE<sup>2</sup>), (<b>b</b>) chlorophyll indices (Clg, CLr, and Clre), and (<b>c</b>) ratio indices (SCCCI, RE-Ratio, and Simple-Ratio).</p> "> Figure 5
<p>Relationship between the indices value and nitrogen uptake (N uptake) at panicle initiation by season and irrigation techniques (<b>A</b>) alternate wetting and drying (AWD) and (<b>B</b>) continuous flooded (C) for the normalized indices (<b>a</b>) NDVI, (<b>b</b>) NDRE, and (<b>c</b>) NDRE<sup>2</sup>, chlorophyll indices (<b>d</b>) Clg, (<b>e</b>) CLr, and (<b>f</b>) Clre), and ratio indices (<b>g</b>) SCCCI, (<b>h</b>) RE-Ratio, and (<b>i</b>) Simple-Ratio. Linear regression model parameters are shown only when statistically significant different. Asterisks indicates statistical significance at <span class="html-italic">p</span> < 0.01 ‘**’ and <span class="html-italic">p</span> < 0.05 ‘*’. ‘ns’: non-significant.</p> "> Figure 6
<p>Coefficient of determination (R<sup>2</sup>) for the relationship between nitrogen uptake and the vegetation indices at panicle initiation by seasons (<b>I</b>) S1: 2021–2022 and (<b>II</b>) S2: 2022–2023 and by irrigation techniques (<b>a</b>,<b>c</b>) alternate wetting and drying (AWD) and (<b>b</b>,<b>d</b>) continuous flooded irrigation (C). Vegetation indices (VIs) are sorted from highest to lowest R<sup>2</sup>. Asterisks indicates statistical significance at <span class="html-italic">p</span> < 0.01 ‘**’ and <span class="html-italic">p</span> < 0.05 ‘*’. ‘<span class="html-italic">ns</span>’: non-significant.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description and Field Management
2.2. Treatments and Experimental Design
2.3. Crop Parameters Measured
2.3.1. Biomass, Nitrogen Percentage (N%), and Plant Nitrogen Uptake (N Uptake)
2.3.2. Grain Yield and Quality
2.4. Drone-Based Multispectral Imagery
2.5. Data Analysis
3. Results
3.1. Biomass, N%, and N Uptake
3.2. Rice Grain Yield and Quality
3.3. Spectral Measurements
3.4. Relationship Between N Uptake and the Vegetation Indices at Panicle Initiation (PI)
4. Discussion
4.1. VIs Comparison for Monitoring Rice N Plant Status at Panicle Initiation
4.2. Effects of Water Management on the Vegetation Indices and N Uptake at PI
4.3. Considerations and Future Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leridon, H. World population outlook: Explosion or implosion? Popul. Soc. 2020, 573, 1–4, ISSN: 0184-7783. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture of the United Nations. How to Feed the World in 2050. 2009, pp. 1–35. Available online: https://www.fao.org/publications (accessed on 25 October 2024).
- Carracelas, G.; Hornbuckle, J.; Rosas, J.; Roel, A. Irrigation management strategies to increase water productivity in Oryza sativa (rice) in Uruguay. Agric. Water Manag. 2019, 222, 161–172. [Google Scholar] [CrossRef]
- INIA. Informes de Zafras ARROZ. Base de Datos de Empresas Arroceras. Grupo de Trabajo Arroz. 2024. Available online: http://inia.uy/investigación-e-innovación/programas-nacionales-de-investigación/Programa-Nacional-de-Investigacion-en-Produccion-de-Arroz/informes-de-zafras. (accessed on 1 October 2024).
- DIEA; MGAP. Ministry of Livestock Agriculture and Fisheries. Anual Estadístico. 2000–2023. 2023. Available online: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/comunicacion/publicaciones/anuario-estadistico-agropecuario-2021. (accessed on 1 September 2024).
- Carracelas, G.; Guilpart, N.; Cassman, K.G.; Grassini, P. Distinguishing between yield plateaus and yield ceilings: A case study of rice in Uruguay. Field Crop. Res. 2023, 292, 108808. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.R.; Walters, D.T.; Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 2003, 28, 315–358. [Google Scholar] [CrossRef]
- Lobell, D.B.; Cassman, K.G.; Field, C.B. Crop yield gaps: Their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 2009, 34, 179–204. [Google Scholar] [CrossRef]
- Yuan, S.; Linquist, B.A.; Wilson, L.T.; Cassman, K.G.; Stuart, A.M.; Pede, V.; Miro, B.; Saito, K.; Agustiani, N.; Aristya, V.E.; et al. Sustainable intensification for a larger global rice bowl. Nat. Commun. 2021, 12, 7163. [Google Scholar] [CrossRef] [PubMed]
- van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global relevance-A review. Field Crop. Res. 2013, 143, 4–17. [Google Scholar] [CrossRef]
- Dunn, B.; Dunn, T. Rice Variety Nitrogen and Agronomic Management; Agrifutures: Wagga Wagga, Australia, 2021; Available online: https://agrifutures.com.au/product/rice-variety-nitrogen-and-agronomic-management/ (accessed on 1 September 2024).
- Tamagno, S.; Eagle, A.J.; McLellan, E.L.; van Kessel, C.; Linquist, B.A.; Ladha, J.K.; Pittelkow, C.M. Quantifying N leaching losses as a function of N balance: A Path to sustainable food supply chains. Agric. Ecosyst. Environ. 2022, 324, 107714. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Adviento-Borbe, M.A.; van Kessel, C.; Hill, J.E.; Linquist, B.A. Optimizing rice yields while minimizing yield-scaled global warming potential. Global Change Biol. 2014, 20, 1382–1393. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H.; Sauer, T.J.; Dold, C.; O’brien, P.; Wacha, K. Applications of vegetative indices from remote sensing to agriculture: Past and future. MDPI Multidisciplinary Digital Publishing Institute. Inventions 2019, 4, 71. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Li, D.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Combining unmanned aerial vehicle (UAV)-based multispectral imagery and ground-based hyperspectral data for plant nitrogen concentration estimation in rice. Front. Plant Sci. 2018, 9, 936. [Google Scholar] [CrossRef] [PubMed]
- Stavrakoudis, D.; Katsantonis, D.; Kadoglidou, K.; Kalaitzidis, A.; Gitas, I.Z. Estimating rice agronomic traits using drone-collected multispectral imagery. Remote Sens. 2019, 11, 545. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Zhao, G.; Yuan, F.; Ma, X.; Tan, C.; Yu, W.; Gnyp, M.L.; Lenz-Wiedemann, V.I.S.; Rascher, U.; et al. Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China. Remote Sens. 2015, 7, 10646–10667. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Yuan, F.; Gnyp, M.L.; Yao, Y.; Cao, Q.; Wang, H.; Lenz-Wiedemann, V.I.S.; Bareth, G. Potential of RapidEye and WorldView-2 Satellite Data for Improving Rice Nitrogen Status Monitoring at Different Growth Stages. Remote Sens. 2017, 9, 227. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Kapustina, L.; Izakova, N.; Makovkina, E.; Khmelkov, M. The global drone market: Main development trends. SHS Web Conf. 2021, 129, 11004. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Dunn, B.W.; Dehaan, R.; Schmidtke, L.M.; Dunn, T.S.; Meder, R. Using field-derived hyperspectral reflectance Measurement to identify the essential wavelengths for predicting nitrogen uptake of rice at panicle initiation. J. Near Infrared Spectrosc. 2016, 24, 473–483. [Google Scholar] [CrossRef]
- Brinkhoff, J.; Dunn, B.W.; Robson, A.J.; Dunn, T.S.; Dehaan, R.L. Modeling mid-season rice nitrogen uptake using multispectral satellite data. Remote Sens. 2019, 11, 1837. [Google Scholar] [CrossRef]
- de Lima, I.P.; Jorge, R.G.; de Lima, J.L.M.P. Remote Sensing Monitoring of Rice Fields: Towards Assessing Water Saving Irrigation Management Practices. Front. Remote Sens. 2021, 2, 1–13. [Google Scholar] [CrossRef]
- Rehman, T.H.; Lundy, M.E.; Linquist, B.A. Comparative Sensitivity of Vegetation Indices Measured via Proximal and Aerial Sensors for Assessing N Status and Predicting Grain Yield in Rice Cropping Systems. Remote Sens. 2022, 14, 2770. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Li, D.; Wang, C.; Jiang, H.; Zheng, Q.; Peng, Z. Estimation of Paddy Rice Nitrogen Content and Accumulation both at Leaf and Plant Levels from UAV Hyperspectral Imagery. Remote Sens. 2021, 13, 2956. [Google Scholar] [CrossRef]
- Brinkhoff, J.; Dunn, B.W.; Robson, A.J. Rice nitrogen status detection using commercial-scale imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102627. [Google Scholar] [CrossRef]
- Raper, T.B.; Varco, J.J. Canopy-scale wavelength and vegetative index sensitivities to cotton growth parameters and nitrogen status. Precis. Agric. 2015, 16, 62–76. [Google Scholar] [CrossRef]
- Ballester, C.; Hornbuckle, J.; Brinkhoff, J.; Smith, J.; Quayle, W. Assessment of In-Season Cotton Nitrogen Status and Lint Yield Prediction from Unmanned Aerial System Imagery. Remote Sens. 2017, 9, 1149. [Google Scholar] [CrossRef]
- Ballester, C.; Jiménez-Bello, M.A.; Castel, J.R.; Intrigliolo, D.S. Usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agric. For. Meteorol. 2013, 168, 120–129. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of Spectral Remote Sensing for Agronomic Decisions. Agron. J. 2008, 100, S-117–S-131. [Google Scholar] [CrossRef]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 7th ed.; Wiley: Hoboken, NJ, USA, 2015; pp. 1–720. ISBN 978-1-118-34328-9. [Google Scholar]
- IRRI. International Rice Research Institute. Rice Knowledge Bank IRRI. Available online: http://www.knowledgebank.irri.org/step-by-step-production/growth/water-management#for-safe-alternate-wetting-and-drying (accessed on 1 September 2024).
- Lampayan, R.M.; Palis, F.G.; Flor, R.B.; Bouman, B.A.M.; Quicho, E.D.; de Dios, J.L.; Espiritu, A.; Sibayan, E.B.; Vicmudo, V.R.; Lactaoen, A.T.; et al. Adoption and dissemination of “safe alternate wetting and drying” in pump irrigated rice areas in the Philippines. In Proceedings of the 60th International Executive Council Meeting & 5th Asian Regional Conference, New Delhi, India, 6–11 December 2009; pp. 1–11. [Google Scholar]
- Carrijo, D.R.; Akbar, N.; Reis, A.F.B.; Li, C.; Gaudin, A.C.M.; Parikh, S.J.; Linquist, B.A. Impacts of variable soil drying in alternate wetting and drying rice systems on yields, grain arsenic concentration and soil moisture dynamics. Field Crop. Res. 2018, 222, 101–110. [Google Scholar] [CrossRef]
- Sun, T.; Fang, H.; Liu, W.; Ye, Y. Impact of water background on canopy reflectance anisotropy of a paddy rice field from multi-angle measurements. Agric. For. Meteorol. 2017, 233, 143–152. [Google Scholar] [CrossRef]
- Zheng, J.; Song, X.; Yang, G.; Du, X.; Mei, X.; Yang, X. Remote Sensing Monitoring of Rice and Wheat Canopy Nitrogen: A Review. Remote Sens. 2022, 14, 5712. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; Available online: https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdf (accessed on 29 October 2024).
- FERTILIZ-ARR—INIA. Available online: https://www.inia.uy/investigacion-e-innovacion/programas-nacionales-de-investigacion/Programa-Nacional-de-Investigacion-en-Produccion-de-Arroz/fertiliz-arr-una-herramienta-inia-para-la-fertilizacion-en-arroz (accessed on 1 July 2024).
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Non-destructive assessment of chlorophyll, carotenoid and anthocyanin content in higher plant leaves: Principles and algorithms. In Remote Sensing for Agriculture and the Environment; Stamatiadis, S., Lynch, J.M., Schepers, J.S., Eds.; Peripheral Editions: Ella, Greece, 2004; pp. 78–94. Available online: https://digitalcommons.unl.edu/natrespapers/263/ (accessed on 31 October 2024).
- Ballester, C.; Brinkhoff, J.; Quayle, W.C.; Hornbuckle, J. Monitoring the effects of water stress in cotton using the green, red vegetation index and red edge ratio. Remote Sens. 2019, 11, 873. [Google Scholar] [CrossRef]
- Holland, K.H.; Schepers, J.S. Derivation of a variable rate nitrogen application model for in-season fertilization of corn. Agron. J. 2010, 102, 1415–1424. [Google Scholar] [CrossRef]
- Rehman, T.H.; Lundy, M.E.; Reis, A.F.D.B.; Akbar, N.; Linquist, B.A. Reflectance Measurements from Aerial and Proximal Sensors Provide Similar Precision in Predicting the Rice Yield Response to Mid-Season N Applications. Sensors 2023, 23, 6218. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: http://www.R-project.org/ (accessed on 15 October 2024).
- Chambers, J.M. Linear models (Chapter 4). In Statistical Models in S; Chambers, J.M., Hastie, T.J., Eds.; Routledge: New York, NY, USA, 1992; pp. 1–624. [Google Scholar] [CrossRef]
- Inoue, Y.; Sakaiya, E.; Zhu, Y.; Takahashi, W. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sens. Environ. 2012, 126, 210–221. [Google Scholar] [CrossRef]
- Schlemmera, M.; Gitelson, A.; Schepersa, J.; Fergusona, R.; Peng, Y.; Shanahana, J.; Rundquist, D. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 47–54. [Google Scholar] [CrossRef]
- Xue, L.; Cao, W.; Luo, W.; Dai, T.; Zhu, Y. Monitoring Leaf Nitrogen Status in Rice with Canopy Spectral Reflectance. Agron. J. 2004, 96, 135–142. [Google Scholar] [CrossRef]
- Li, G.S.; Wu, D.H.; Su, Y.C.; Kuo, B.J.; Yang, M.D.; Lai, M.H.; Lu, H.Y.; Yang, C.Y. Prediction of plant nutrition state of rice under water-saving cultivation and panicle fertilization application decision making. Agronomy 2021, 11, 1626. [Google Scholar] [CrossRef]
- Kanke, Y.; Tubana, B.; Dalen, M.; Harrell, D. Evaluation of Red and Red-Edge Reflectance-Based Vegetation Indices for Rice Biomass and Grain Yield Prediction Models in Paddy Fields. Precis. Agric. 2016, 17, 507–530. [Google Scholar] [CrossRef]
- Hoshi, T.; Ishida, T.; Nakayama, K. Experimental Study on the Spectral Reflectance of Paddy Soils in the Field Survey; ISE-TR-84-47; Institute of Information Science and Electronics, University of Tukuba: Tukuba, Japan, 1984. [Google Scholar]
- Ito, T.; Minamino, I.; Umeki, S. Analysis of Fertilization Effects on Rice and Wheat by Time-Series Clustering of Vegetation Index Data. In Proceedings of the 5th International Symposium on Advanced Technologies and Applications in the Internet of Things (ATAIT 2023), Kusatsu, Japan, 28–29 August 2023; CEUR Workshop Proceedings. Available online: https://ceur-ws.org/Vol-3459/paper3.pdf (accessed on 1 September 2024).
- Tuong, T.P.; Bouman, B.A.M. Rice production in water scarce environments. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; Kijne, J.W., Barker, R., Molden, D., Eds.; CABI Publishing: Wallingford, UK, 2003; pp. 53–67. [Google Scholar] [CrossRef]
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Sustainability: Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, 1–7. [Google Scholar] [CrossRef]
- Champness, M.; Ballester, C.; Hornbuckle, J. Effect of Soil Moisture Deficit on Aerobic Rice in Temperate Australia. Agronomy 2023, 13, 168. [Google Scholar] [CrossRef]
- Castillo, J.; Terra, J.; Ferreira, R.; Méndez, R. Fertilización N en Arroz en Base a Indicadores Objetivos. ¿qué Sabemos Luego de 3 años de Experimentación? Treinta y Tres, INIA (Serie Actividades de Difusión 735), Cap.3. 2012, pp. 4–6. Available online: http://www.ainfo.inia.uy/digital/bitstream/item/4006/1/Ad-735-3ManSuelNutVeg-4-6.pdf (accessed on 30 October 2024).
Soil Parameters | Seasons | |
---|---|---|
S1: 2021–2022 | S2: 2022–2023 | |
pH (water) | 7.1 | 6.4 |
Tit. Acidity (meq/100 g) | 1.7 | 2.8 |
Organic Matter % | 4.0 | _ |
P Citric Acid (ppm) | 3.0 | 8.0 |
Ca (meq/100 g) | 35.2 | 30.7 |
Mg (meq/100 g) | 18.6 | 14.2 |
K int. (meq/100 g) | 0.4 | 0.4 |
Na (meq/100 g) | 0.3 | 0.5 |
PMN (mg/kg) | 11.0 | 25.0 |
CIC | 56.2 | 48.6 |
Total Bases | 54.5 | 15.8 |
Bases Saturation (%) | 97 | 94 |
Soil classification [41] | Vertisols (VR) |
Vegetation Index | Formulation | Reference |
---|---|---|
NDVI | (NIR − R)/(NIR + R) | [43] |
NDRE | (NIR − RE)/(NIR + RE) | [21,44] |
NDRE2 | ((NIR − RE)/(NIR + RE))2 | [24] |
CLg | NIR/G − 1 | [22,28,45] |
CLr | NIR/R − 1 | [22,28] |
CLre | NIR/RE − 1 | [22,28] |
SCCCI | NDRE/NDVI | [31] |
RE-Ratio | RE/R | [33,46] |
Simple-Ratio | NIR/R | [22] |
Treatments | S1: 2021/2022 | S2: 2022/2023 | ||||
---|---|---|---|---|---|---|
Biomass DM kg ha−1 | Nitrogen (N%) | N Uptake Kg N ha−1 | Biomass DM kg ha−1 | Nitrogen (N %) | N Uptake Kg N ha−1 | |
Irrigation | ||||||
AWD | 1799 | 1.9 | 34.4 | 1526 | 2.4 | 37.1 |
C | 2150 | 1.9 | 39.4 | 1585 | 2.4 | 38.9 |
Irrigation | ns | ns | ns | ns | ns | ns |
effect | ||||||
N rate | ||||||
N0 | 1450 c | 1.8 | 26.2 c | 1206 b | 2.0 b | 24.4 b |
N1 | 1874 bc | 1.8 | 34.8 bc | 1473 ab | 2.1 b | 30.6 b |
N2 | 2127 ab | 1.9 | 38.6 ab | 1718 a | 2.8 a | 47.0 a |
N3 | 2448 a | 2.0 | 48.0 a | 1826 a | 2.8 a | 50.0 a |
N-rate effect | *** | ns | *** | ** | ** | ** |
Irrigation × N-rate effect | ns | ns | ns | ns | ns | ns |
Mean | 1975 | 1.9 | 36.9 | 1556 | 2.4 | 38.0 |
Treatments | S1: 2021–2022 | S2: 2022–2023 | ||||
---|---|---|---|---|---|---|
Rice Yield (Mg ha−1) | Whole Grain % | Total White % | Rice Yield (Mg ha−1) | Whole Grain % | Total White % | |
Irrigation | ||||||
AWD | 7.2 | 64.9 | 70.9 | 10.1 | 50.9 | 70.2 |
C | 6.2 | 65.0 | 70.3 | 10.8 | 45.7 | 70.0 |
Irrigation effect | ns | ns | ns | ns | ns | ns |
Nitrogen rate | ||||||
N0 | 5.8 | 64.8 | 69.8 | 9.9 b | 46.3 | 69.8 |
N1 | 6.4 | 66.1 | 70.2 | 10.0 b | 47.8 | 70.2 |
N2 | 7.2 | 63.5 | 71.1 | 10.8 ab | 48.2 | 70.2 |
N3 | 7.2 | 65.4 | 71.4 | 11.1 a | 51.0 | 70.3 |
N-rate effect | ns | ns | ns | *** | ns | ns |
Irrigation x N-rate effect | ns | ns | *** | ns | ns | ns |
Mean | 6.7 | 65.0 | 70.6 | 10.4 | 48.3 | 70.1 |
Season-S1: 2021–2022 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Treatments | NDVI | NDRE | NDRE2 | Clg | CLr | Clre | SCCCI | RE-Ratio | Simple-Ratio |
Irrigation | |||||||||
AWD | 0.73 | 0.12 | 0.018 | 3.01 | 6.04 | 0.28 | 0.16 | 5.39 | 4.39 |
C | 0.77 | 0.13 | 0.019 | 3.29 | 7.31 | 0.31 | 0.17 | 6.24 | 5.14 |
Irrigation effect | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Nitrogen rate | |||||||||
N0 | 0.69 b | 0.09 b | 0.010 b | 2.28 b | 4.41 b | 0.18 b | 0.12 b | 4.57 b | 5.41 b |
N1 | 0.69 b | 0.10 b | 0.010 b | 2.45 b | 4.79 b | 0.22 b | 0.14 b | 4.75 b | 5.79 b |
N2 | 0.80 a | 0.15 a | 0.023 ab | 3.68 a | 8.16 a | 0.35 a | 0.19 a | 6.75 a | 9.16 a |
N3 | 0.82 a | 0.18 a | 0.030 a | 4.20 a | 9.35 a | 0.43 a | 0.22 a | 7.20 a | 10.35 a |
N-rate effect | *** | *** | ** | *** | *** | ** | *** | *** | *** |
Irrigation × N-rate effect | *** | ns | ns | ns | ns | *** | ns | ** | ** |
Mean | 0.75 | 0.13 | 0.018 | 3.15 | 6.68 | 0.29 | 0.17 | 5.82 | 7.67 |
Season-S2: 2022–2023 | |||||||||
Treatments | NDVI | NDRE | NDRE2 | Clg | CLr | Clre | SCCCI | RE-ratio | Simple-ratio |
Irrigation | |||||||||
AWD | 0.62 | 0.1 | 0.011 | 1.99 | 3.39 | 0.22 | 0.16 | 3.56 | 4.39 |
C | 0.66 | 0.12 | 0.015 | 2.32 | 4.14 | 0.27 | 0.18 | 3.98 | 5.14 |
Irrigation effect | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Nitrogen rate | |||||||||
N0 | 0.55 c | 0.07 b | 0.006 b | 1.55 b | 2.48 c | 0.16 b | 0.13 b | 3.00 c | 3.48 c |
N1 | 0.61 b | 0.09 b | 0.009 b | 1.91 b | 3.22 bc | 0.21 b | 0.15 b | 3.48 bc | 4.22 bc |
N2 | 0.68 a | 0.13 a | 0.017 a | 2.46 a | 4.32 ab | 0.29 a | 0.19 a | 4.08 ab | 5.32 ab |
N3 | 0.72 a | 0.14 a | 0.021 a | 2.71 a | 5.03 a | 0.33 a | 0.20 a | 4.53 a | 6.03 a |
N-rate effect | *** | *** | *** | *** | *** | ** | *** | *** | *** |
Irrigation × N-rate effect | *** | ** | * | *** | *** | *** | * | ** | ** |
Mean | 0.64 | 0.11 | 0.013 | 2.16 | 3.76 | 0.25 | 0.17 | 3.77 | 4.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carracelas, G.; Ballester, C.; Marchesi, C.; Roel, A.; Hornbuckle, J. Assessing Drone-Based Remote Sensing Indices for Monitoring Rice Nitrogen Plant Status Under Different Irrigation Techniques. Agronomy 2024, 14, 2976. https://doi.org/10.3390/agronomy14122976
Carracelas G, Ballester C, Marchesi C, Roel A, Hornbuckle J. Assessing Drone-Based Remote Sensing Indices for Monitoring Rice Nitrogen Plant Status Under Different Irrigation Techniques. Agronomy. 2024; 14(12):2976. https://doi.org/10.3390/agronomy14122976
Chicago/Turabian StyleCarracelas, Gonzalo, Carlos Ballester, Claudia Marchesi, Alvaro Roel, and John Hornbuckle. 2024. "Assessing Drone-Based Remote Sensing Indices for Monitoring Rice Nitrogen Plant Status Under Different Irrigation Techniques" Agronomy 14, no. 12: 2976. https://doi.org/10.3390/agronomy14122976
APA StyleCarracelas, G., Ballester, C., Marchesi, C., Roel, A., & Hornbuckle, J. (2024). Assessing Drone-Based Remote Sensing Indices for Monitoring Rice Nitrogen Plant Status Under Different Irrigation Techniques. Agronomy, 14(12), 2976. https://doi.org/10.3390/agronomy14122976