Protein Disulphide Isomerase A1 Is Involved in the Regulation of Breast Cancer Cell Adhesion and Transmigration via Lung Microvascular Endothelial Cells
<p>Effect of PDIA1 inhibition on clonogenic capacity of breast cancer cells. The clonogenicity of MCF-7 (<b>A</b>) and MDA-MB-231 (<b>B</b>) cells treated with bepristat 2a as well as MCF-7 (<b>C</b>) and MDA-MB-231 (<b>D</b>) cells transduced with lentiviral vectors carrying short hairpin RNA (shRNA) against PDIA1 or negative sequence after selection with puromycin in regarding to wild type cell line. Data represent the means ± SD with points for individual measurements, the representative photos are also presented. Statistical analysis was calculated using parametric one-way ANOVA followed by Dunnett’s multiple comparisons test (* <span class="html-italic">p</span> = 0.05, ** <span class="html-italic">p</span> = 0.01, *** <span class="html-italic">p</span> = 0.001, **** <span class="html-italic">p</span> = 0.0001).</p> "> Figure 2
<p>Effects of PDIA1 inhibition on wound-healing and migration of breast cancer cells and endothelial cells. ECIS Wound-Healing Assay of hLMVEC, MCF-7 and MDA-MB-231 cells and breast cancer sublines with silencing of PDIA1 (shN, shPDIA1-1 and shPDIA1-3). Real time tracings in hLMVECs (<b>A</b>), MCF-7 (<b>C</b>) and MDA-MB-231 (<b>E</b>) cell lines after addition of bepristat 2a at various concentrations (1, 10, 30 or 50 µM) and after PDIA1 silencing in MCF-7 (<b>G</b>) and MDA-MB-231 (<b>I</b>) cell lines. Area under the curve boxplots represent AUC quantitation of changes in migration rate of bepristat 2a-treated hLMVECs (<b>B</b>), MCF-7 (<b>D</b>) and MDA-MB-231 (<b>F</b>) cell lines versus non-treated controls as well as MCF-7 (<b>H</b>) or MDA-MB-231 (<b>J</b>) sublines transduced against PDIA1 (shPDIA1-1, shPDIA1-3) or wild type cells regarding to negative sequence (shN). The line graphs and AUC boxplots represent mean ± SD of three independent experiments. Statistical analysis was calculated using parametric one-way ANOVA followed by Dunnett’s multiple comparisons test (* <span class="html-italic">p</span> = 0.05, ** <span class="html-italic">p</span> = 0.01, *** <span class="html-italic">p</span> = 0.001).</p> "> Figure 3
<p>Effect of PDIA1 inhibition on adhesion of breast cancer cells to the endothelium, collagen type I and fibronectin and their transendothelial migration across hLMVEC monolayer. Effect of bepristat 2a on adhesion of MCF-7 (<b>A</b>,<b>E</b>) and MDA-MB-231 (<b>B</b>,<b>F</b>) cells to hLMVEC, collagen type I and fibronectin, respectively, and MCF-7 (<b>C</b>,<b>G</b>) and MDA-MB-231 (<b>D</b>,<b>H</b>) cells transduced with lentiviral vectors carrying short hairpin RNA (shRNA) against PDIA1 or negative sequence after selection with puromycin in regarding to wild type cell line. Transendothelial migration of MCF-7 (<b>I</b>) and MDA-MB-231 (<b>J</b>) cells treated with bepristat 2a and MCF-7 (<b>K</b>) and MDA-MB-231 (<b>L</b>) sublines with silenced PDIA1 expression across hLMVEC monolayers. Data represent mean ± SD of three independent experiments. Statistical analysis was performed using one-way ANOVA followed by Dunnett’s multiple comparisons test or nonparametric Kruskal–Wallis followed by Dunn’s multiple comparisons test (* <span class="html-italic">p</span> = 0.05, ** <span class="html-italic">p</span> = 0.01, *** <span class="html-italic">p</span> = 0.001, **** <span class="html-italic">p</span> = 0.0001).</p> "> Figure 4
<p>Effects of exogenous PDIA1 and PDIA3 on adhesive interaction between breast cancer cells and different substrates. Effect of exogenous proteins PDIA1 and PDIA3 on adhesion of MCF-7 (<b>A</b>–<b>F</b>) and MDA-MB-231 (<b>G</b>–<b>L</b>) cells to collagen type I, fibronectin and lung microvascular hLMVEC cells, respectively. Data represent mean ± SD of three independent experiments. Statistical analysis was performed using one-way ANOVA followed by Dunnett’s multiple comparisons test (* <span class="html-italic">p</span> = 0.05, ** <span class="html-italic">p</span> = 0.01, *** <span class="html-italic">p</span> = 0.001).</p> "> Figure 5
<p>Effects of thiol blocker, pCMBS on adhesion of cancer cells to fibronectin and collagen type I. Effect of inhibiting ecto-sulfhydryls by p-chloromercuribenzene sulphonate (pCMBS) on adhesion of MCF-7 (<b>A</b>,<b>B</b>) and MDA-MB-231 (<b>C</b>,<b>D</b>) cells to collagen type I and fibronectin. Data represent mean ± SD of three independent experiments. Statistical analysis was performed using one-way ANOVA followed by Dunnett’s multiple comparisons test (* <span class="html-italic">p</span> = 0.05, ** <span class="html-italic">p</span> = 0.01, *** <span class="html-italic">p</span> = 0.001).</p> "> Figure 6
<p>The scheme of lentiviral vector used for silencing of PDIA1 expression and sequences of short hairpin RNAs (shRNAs) cloned to the plasmid.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Relative Content of PDIA1 in Comparison to Other Isoforms of PDIs in MDA-MB-231, MCF-7 and hLMVEC Cell Lines
2.2. Silencing of PDIA1 in MDA-MB-231 and MCF-7 Cell Lines
2.3. Inhibition of PDIA1 by Bepristat 2a
2.4. Effect of PDIA1 Inhibition on Cell Proliferation
2.5. Effect of PDIA1 Inhibition on Clonogenic Capacity of Breast Cancer Cells
2.6. Effects of PDIA1 Inhibition on Wound Healing and Migration of Breast Cancer Cells and Endothelial Cells
2.7. Effect of PDIA1 Inhibition on Adhesion of Cancer Cells to the Endothelium
2.8. Effects of PDIA1 Inhibition on Adhesion of Cancer Cells to Fibronectin and Collagen Type I
2.9. Effect of PDIA1 Inhibition on Transmigration of Cancer Cells across the Endothelium
2.10. Effects of Exogenous PDIA1 and PDIA3 Proteins on Adhesion of Cancer Cells to Fibronectin and Collagen Type I and the Endothelium
2.11. Effects of Thiol Blockers on Adhesion of Cancer Cells to Fibronectin and Collagen Type I
2.12. Effect of PDIA1 Inhibition on ICAM-1 Expression
2.13. Effect of PDIA1 Inhibition on Mitochondrial Respiration
2.14. Content of Integrins in MDA-MB-231, MCF-7 and hLMVEC Cell Lines
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Cell Culture
4.2. Proteomic Studies
4.3. Knockdown of PDIA1 in Human Breast Adenocarcinoma MDA-MB-231 and MCF-7
4.4. Real-Time PCR and Western Blot
4.5. Measurements of Bepristat 2a Effect on Insulin Reduction Catalyzed by PDIA1 and Other PDIs
4.6. SRB Assay
4.7. MTS Assay
4.8. Caspase 3/7 Activity
4.9. Cell Cycle Analysis
4.10. Long-Term Colony Formation Assay
4.11. Electric Cell-Substrate Impedance-Sensing Assays
4.12. Adhesion Assay
4.12.1. Cancer Cell Adhesion to Lung Microvascular Endothelial Cells
4.12.2. Cancer Cell Adhesion to Fibronectin or Collagen Type I
4.13. Transendothelial Migration Assay
4.14. Expression of ICAM-1
4.15. Analysis of Cellular Bioenergetics by Extracellular Flux Technology
4.16. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Spano, D.; Heck, C.; De Antonellis, P.; Christofori, G.; Zollo, M. Molecular networks that regulate cancer metastasis. Semin. Cancer Biol. 2012, 22, 234–249. [Google Scholar] [CrossRef] [PubMed]
- Hess, K.R.; Varadhachary, G.R.; Taylor, S.H.; Wei, W.; Raber, M.N.; Lenzi, R.; Abbruzzese, J.L. Metastatic patterns in adenocarcinoma. Cancer 2006, 106, 1624–1633. [Google Scholar] [CrossRef] [PubMed]
- Berman, A.T.; Thukral, A.D.; Hwang, W.T.; Solin, L.J.; Vapiwala, N. Incidence and patterns of distant metastases for patients with early-stage breast cancer after breast conservation treatment. Clin. Breast Cancer 2013, 13, 88–94. [Google Scholar] [CrossRef]
- Pillar, N.; Polsky, A.L.; Weissglas-Volkov, D.; Shomron, N. Comparison of breast cancer metastasis models reveals a possible mechanism of tumor aggressiveness. Cell Death Dis. 2018, 9, 1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medeiros, B.; Allan, A.L. Molecular mechanisms of breast cancer metastasis to the lung: Clinical and experimental perspectives. Int. J. Mol. Sci. 2019, 20, 2272. [Google Scholar] [CrossRef] [Green Version]
- Bennett, T.A.; Edwards, B.S.; Sklar, L.A.; Rogelj, S. Sulfhydryl Regulation of L-Selectin Shedding: Phenylarsine Oxide Promotes Activation-Independent L-Selectin Shedding from Leukocytes. J. Immunol. 2000, 164, 4120–4129. [Google Scholar] [CrossRef] [Green Version]
- Hahm, E.; Li, J.; Kim, K.; Huh, S.; Rogelj, S.; Cho, J. Extracellular protein disulfide isomerase regulates ligand-binding activity of AMΒ2 integrin and neutrophil recruitment during vascular inflammation. Blood 2013, 121, 3789–3800. [Google Scholar] [CrossRef] [Green Version]
- Laurindo, F.R.M.; Pescatore, L.A.; De Castro Fernandes, D. Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radic. Biol. Med. 2012, 52, 1954–1969. [Google Scholar] [CrossRef]
- Tanaka, L.Y.; Laurindo, F.R.M. Vascular remodeling: A redox-modulated mechanism of vessel caliber regulation. Free Radic. Biol. Med. 2017, 109, 11–21. [Google Scholar] [CrossRef]
- De Bessa, T.C.; Pagano, A.; Moretti, A.I.S.; Oliveira, P.V.S.; Mendonça, S.A.; Kovacic, H.; Laurindo, F.R.M. Subverted regulation of Nox1 NADPH oxidase-dependent oxidant generation by protein disulfide isomerase A1 in colon carcinoma cells with overactivated KRas. Cell Death Dis. 2019, 10, 143. [Google Scholar] [CrossRef]
- Parakh, S.; Atkin, J.D. Novel roles for protein disulphide isomerase in disease states: A double edged sword? Front. Cell Dev. Biol. 2015, 3, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Lin, Y.; Detwiler, T.C. Protein disulfide isomerase activity is released by activated platelets. Blood 1992, 79, 2226–2228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terada, K.; Manchikalapudi, P.; Noiva, R.; Jauregui, H.O.; Stockert, R.J.; Schilsky, M.L. Secretion, surface localization, turnover, and steady state expression of protein disulfide isomerase in rat hepatocytes. J. Biol. Chem. 1995, 270, 20410–20416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotchkiss, K.A.; Matthias, L.J.; Hogg, P.J. Exposure of the cryptic Arg-Gly-Asp sequence in thrombospondin-1 by protein disulfide isomerase. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1998, 1388, 478–488. [Google Scholar] [CrossRef]
- Xu, S.; Sankar, S.; Neamati, N. Protein disulfide isomerase: A promising target for cancer therapy. Drug Discov. Today 2014, 19, 222–240. [Google Scholar] [CrossRef]
- Popielarski, M.; Ponamarczuk, H.; Stasiak, M.; Michalec, L.; Bednarek, R.; Studzian, M.; Pulaski, L.; Swiatkowska, M. The role of Protein Disulfide Isomerase and thiol bonds modifications in activation of integrin subunit alpha11. Biochem. Biophys. Res. Commun. 2018, 495, 1635–1641. [Google Scholar] [CrossRef]
- Ramos, F.S.; Serino, L.T.R.; Carvalho, C.M.S.; Lima, R.S.; Urban, C.A.; Cavalli, I.J.; Ribeiro, E.M.S.F. PDIA3 and PDIA6 gene expression as an aggressiveness marker in primary ductal breast cancer. Genet. Mol. Res. 2015, 14, 6960–6967. [Google Scholar] [CrossRef]
- Popielarski, M.; Ponamarczuk, H.; Stasiak, M.; Watała, C.; Świątkowska, M. Modifications of disulfide bonds in breast cancer cell migration and invasiveness. Am. J. Cancer Res. 2019, 9, 1554–1582. [Google Scholar]
- Shen, H.; Huang, J.; Pei, H.; Zeng, S.; Tao, Y.; Shen, L.; Zeng, L.; Zhu, H. Comparative proteomic study for profiling differentially expressed proteins between Chinese left- and right-sided colon cancers. Cancer Sci. 2013, 104, 135–141. [Google Scholar] [CrossRef]
- Negroni, L.; Taouji, S.; Arma, D.; Pallares-Lupon, N.; Leong, K.; Beausang, L.A.; Latterich, M.; Bossé, R.; Balabaud, C.; Schmitter, J.M.; et al. Integrative quantitative proteomics unveils proteostasis imbalance in human hepatocellular carcinoma developed on nonfibrotic livers. Mol. Cell. Proteom. 2014, 13, 3473–3483. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.M.; Lin, L.Z.; Zhou, D.H.; Zhou, J.X.; Xiong, S.Q. Expression of prolyl 4-hydroxylase beta-polypeptide in non-small cell lung cancer treated with Chinese medicines. Chin. J. Integr. Med. 2015, 21, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Wen, C.; Peng, Z.; Shao, Y.Y.; Hu, L.; Li, S.; Li, C.; Zhou, H.H. P4HB and PDIA3 are associated with tumor progression and therapeutic outcome of diffuse gliomas. Oncol. Rep. 2018, 39, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, Y.; Lin, Y.H.; Guo, S.; Ning, P.F.; Zheng, Z.C.; Wang, Y.; Zhao, Y. Prognostic value of hypoxia-inducible factor-1 alpha and prolyl 4-hydroxylase beta polypeptide overexpression in gastric cancer. World J. Gastroenterol. 2018, 24, 2381–2391. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Zhuang, J.; Wang, G.; Ni, J.; Wang, J.; Ye, Y. P4HB promotes HCC tumorigenesis through downregulation of GRP78 and subsequent upregulation of epithelial-to-mesenchymal transition. Oncotarget 2017, 8, 8512–8521. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Yang, J.; Zhang, Q.; Xu, Q.; Lu, L.; Wang, J.; Xia, W. P4HB knockdown induces human HT29 colon cancer cell apoptosis through the generation of reactive oxygen species and inactivation of STAT3 signaling. Mol. Med. Rep. 2019, 19, 231–237. [Google Scholar] [CrossRef]
- Lahav, J.; Jurk, K.; Hess, O.; Barnes, M.J.; Farndale, R.W.; Luboshitz, J.; Kehrel, B.E. Sustained integrin ligation involves extracellular free sulfhydryls and enzymatically catalyzed disulfide exchange. Blood 2002, 100, 2472–2478. [Google Scholar] [CrossRef] [Green Version]
- Lahav, J.; Wijnen, E.M.; Hess, O.; Hamaia, S.W.; Griffiths, D.; Makris, M.; Knight, C.G.; Essex, D.W.; Farndale, R.W. Enzymatically catalyzed disulfide exchange is required for platelet adhesion to collagen via integrin α2β1. Blood 2003, 102, 2085–2092. [Google Scholar] [CrossRef]
- Rosenberg, N.; Mor-Cohen, R.; Sheptovitsky, V.H.; Romanenco, O.; Hess, O.; Lahav, J. Integrin-mediated cell adhesion requires extracellular disulfide exchange regulated by protein disulfide isomerase. Exp. Cell Res. 2019, 381, 77–85. [Google Scholar] [CrossRef]
- Stojak, M.; Kaczara, P.; Motterlini, R.; Chlopicki, S. Modulation of cellular bioenergetics by CO-releasing molecules and NO-donors inhibits the interaction of cancer cells with human lung microvascular endothelial cells. Pharmacol. Res. 2018, 136, 160–171. [Google Scholar] [CrossRef]
- Rosette, C.; Roth, R.B.; Oeth, P.; Braun, A.; Kammerer, S.; Ekblom, J.; Denissenko, M.F. Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis 2005, 26, 943–950. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.H.; Tai, L.K.; Wong, L.L.; Chiu, L.L.; Sethi, S.K.; Koay, E.S.C. Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer. Mol. Cell. Proteom. 2005, 4, 1686–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zong, J.; Guo, C.; Liu, S.; Sun, M.Z.; Tang, J. Proteomic research progress in lymphatic metastases of cancers. Clin. Transl. Oncol. 2012, 14, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Kondo, R.; Ishino, K.; Wada, R.; Takata, H.; Peng, W.X.; Kudo, M.; Kure, S.; Kaneya, Y.; Taniai, N.; Yoshida, H.; et al. Downregulation of protein disulfide-isomerase A3 expression inhibits cell proliferation and induces apoptosis through STAT3 signaling in hepatocellular carcinoma. Int. J. Oncol. 2019, 54, 1409–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senft, D.; Ronai, Z.A. Adaptive Stress Responses During Tumor Metastasis and Dormancy. Trends Cancer 2016, 2, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Hoeller, O.; Gong, D.; Weiner, O.D. How to understand and outwit adaptation. Dev. Cell 2014, 28, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Bekendam, R.H.; Bendapudi, P.K.; Lin, L.; Nag, P.P.; Pu, J.; Kennedy, D.R.; Feldenzer, A.; Chiu, J.; Cook, K.M.; Furie, B.; et al. A substrate-driven allosteric switch that enhances PDI catalytic activity. Nat. Commun. 2016, 7, 12579. [Google Scholar] [CrossRef]
- Jasuja, R.; Passam, F.H.; Kennedy, D.R.; Kim, S.H.; Van Hessem, L.; Lin, L.; Bowley, S.R.; Joshi, S.S.; Dilks, J.R.; Furie, B.; et al. Protein disulfide isomerase inhibitors constitute a new class of antithrombotic agents. J. Clin. Investig. 2012, 122, 2104–2113. [Google Scholar] [CrossRef]
- Thongwatchara, P.; Promwikorn, W.; Srisomsap, C.; Chokchaichamnankit, D.; Boonyaphiphat, P.; Thongsuksai, P. Differential protein expression in primary breast cancer and matched axillary node metastasis. Oncol. Rep. 2011, 26, 185–191. [Google Scholar] [CrossRef]
- Versteeg, H.H.; Ruf, W. Tissue factor coagulant function is enhanced by protein-disulfide isomerase independent of oxidoreductase activity. J. Biol. Chem. 2007, 282, 25416–25424. [Google Scholar] [CrossRef] [Green Version]
- Essex, D.W.; Wu, Y. Multiple protein disulfide isomerases support thrombosis. Curr. Opin. Hematol. 2018, 25, 395–402. [Google Scholar] [CrossRef]
- Jurk, K.; Lahav, J.; Van Aken, H.; Brodde, M.F.; Nofer, J.R.; Kehrel, B.E. Extracellular protein disulfide isomerase regulates feedback activation of platelet thrombin generation via modulation of coagulation factor binding. J. Thromb. Haemost. 2011, 9, 2278–2290. [Google Scholar] [CrossRef]
- Jiang, X.M.; Fitzgerald, M.; Grant, C.M.; Hogg, P.J. Redox control of exofacial protein thiols/disulfides by protein disulfide isomerase. J. Biol. Chem. 1999, 274, 2416–2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essex, D.W. The role of thiols and disulfides in platelet function. Antioxid. Redox Signal. 2004, 6, 736–746. [Google Scholar] [CrossRef] [PubMed]
- Jordan, P.A.; Gibbins, J.M. Extracellular disulfide exchange and the regulation of cellular function. Antioxid. Redox Signal. 2006, 8, 312–324. [Google Scholar] [CrossRef]
- Gofer-Dadosh, N.; Klepfish, A.; Schmilowitz, H.; Shaklai, M.; Lahav, J. Affinity modulation in platelet α2β1 following ligand binding. Biochem. Biophys. Res. Commun. 1997, 232, 724–727. [Google Scholar] [CrossRef] [PubMed]
- Lahav, J.; Gofer-Dadosh, N.; Luboshitz, J.; Hess, O.; Shaklai, M. Protein disulfide isomerase mediates integrin-dependent adhesion. FEBS Lett. 2000, 475, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, H.; Ehling, M.; Kato, K.; Kanai, K.; Van Lessen, M.; Frye, M.; Zeuschner, D.; Nakayama, M.; Vestweber, D.; Adams, R.H. Integrin β1 controls VE-cadherin localization and blood vessel stability. Nat. Commun. 2015, 6, 6429. [Google Scholar] [CrossRef] [Green Version]
- Taherian, A.; Li, X.; Liu, Y.; Haas, T.A. Differences in integrin expression and signaling within human breast cancer cells. BMC Cancer 2011, 11, 293. [Google Scholar] [CrossRef] [Green Version]
- Zutter, M.M.; Santoro, S.A. Widespread histologic distribution of the alpha 2 beta 1 integrin cell-surface collagen receptor. Am. J. Pathol. 1990, 137, 113–120. [Google Scholar]
- Adorno-Cruz, V.; Liu, H. Regulation and functions of integrin α2 in cell adhesion and disease. Genes Dis. 2019, 6, 16–24. [Google Scholar] [CrossRef]
- Lampugnani, M.G.; Resnati, M.; Dejana, E.; Marchisio, P.C. The role of integrins in the maintenance of endothelial monolayer integrity. J. Cell Biol. 1991, 112, 479–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimura, K.; Meckel, K.F.; Laird, L.S.; Chia, C.Y.; Park, J.J.; Olino, K.L.; Tsunedomi, R.; Harada, T.; Iizuka, N.; Hazama, S.; et al. Integrin α2 mediates selective metastasis to the liver. Cancer Res. 2009, 69, 7320–7328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etoh, T.; Thomas, L.; Pastel-Levy, C.; Colvin, R.B.; Mihm, M.C.; Randolph Byers, H. Role of integrin α2β1 (VLA-2) in the migration of human melanoma cells on laminin and type IV collagen. J. Investig. Dermatol. 1993, 100, 640–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haidari, M.; Zhang, W.; Caivano, A.; Chen, Z.; Ganjehei, L.; Mortazavi, A.; Stroud, C.; Woodside, D.G.; Willerson, J.T.; Dixon, R.A.F. Integrin α2β1 mediates tyrosine phosphorylation of vascular endothelial cadherin induced by invasive breast cancer cells. J. Biol. Chem. 2012, 287, 32981–32992. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Stankovic, M.; Lee, B.P.L.; Aurrand-Lions, M.; Hahn, C.N.; Lu, Y.; Imhof, B.A.; Vadas, M.A.; Gamble, J.R. JAM-C induces endothelial cell permeability through its association and regulation of β3 integrins. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1200–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Zijl, F.; Krupitza, G.; Mikulits, W. Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutat. Res. Rev. Mutat. Res. 2011, 728, 23–34. [Google Scholar] [CrossRef]
- Bliss, R.D.; Kirby, J.A.; Browell, D.A.; Lennard, T.W.J. The role of β1 1 integrins in adhesion of two breast carcinoma cell lines to a model endothelium. Clin. Exp. Metastasis 1995, 13, 173–183. [Google Scholar] [CrossRef]
- Miles, F.L.; Pruitt, F.L.; Van Golen, K.L.; Cooper, C.R. Stepping out of the flow: Capillary extravasation in cancer metastasis. Clin. Exp. Metastasis 2008, 25, 305–324. [Google Scholar] [CrossRef]
- Hakanpaa, L.; Sipila, T.; Leppanen, V.M.; Gautam, P.; Nurmi, H.; Jacquemet, G.; Eklund, L.; Ivaska, J.; Alitalo, K.; Saharinen, P. Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat. Commun. 2015, 6, 5962. [Google Scholar] [CrossRef]
- Chen, M.B.; Lamar, J.M.; Li, R.; Hynes, R.O.; Kamm, R.D. Elucidation of the roles of tumor integrin β1 in the extravasation stage of the metastasis cascade. Cancer Res. 2016, 76, 2513–2524. [Google Scholar] [CrossRef] [Green Version]
- Hamidi, H.; Ivaska, J. Every step of the way: Integrins in cancer progression and metastasis. Nat. Rev. Cancer 2018, 18, 533–548. [Google Scholar] [CrossRef] [Green Version]
- Sitek, B.; Waldera-Lupa, D.M.; Poschmann, G.; Meyer, H.E.; Stühler, K. Application of label-free proteomics for differential analysis of lung carcinoma cell line A549. Methods Mol. Biol. 2012, 893, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Malinowska, A.; Kistowski, M.; Bakun, M.; Rubel, T.; Tkaczyk, M.; Mierzejewska, J.; Dadlez, M. Diffprot—Software for non-parametric statistical analysis of differential proteomics data. J. Proteom. 2012, 75, 4062–4073. [Google Scholar] [CrossRef] [PubMed]
- Ishihama, Y.; Oda, Y.; Tabata, T.; Sato, T.; Nagasu, T.; Rappsilber, J.; Mann, M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteom. 2005, 4, 1265–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, J.; Wycislo, K.L.; Pondenis, H.; Fan, T.M.; Das, A. Comparative proteomic investigation of metastatic and non-metastatic osteosarcoma cells of human and canine origin. PLoS ONE 2017, 12, e0183930. [Google Scholar] [CrossRef] [PubMed]
- Rossowska, J.; Anger, N.; Szczygiel, A.; Mierzejewska, J.; Pajtasz-Piasecka, E. Intratumoral lentivector-mediated TGF-β1 gene downregulation as a potent strategy for enhancing the antitumor effect of therapy composed of cyclophosphamide and dendritic cells. Front. Immunol. 2017, 8, 713. [Google Scholar] [CrossRef]
- Pawlak, A.; Ziolo, E.; Fiedorowicz, A.; Fidyt, K.; Strzadala, L.; Kalas, W. Long-lasting reduction in clonogenic potential of colorectal cancer cells by sequential treatments with 5-azanucleosides and topoisomerase inhibitors. BMC Cancer 2016, 16, 893. [Google Scholar] [CrossRef] [Green Version]
- Essex, D.W.; Li, M. Protein disulphide isomerase mediates platelet aggregation and secretion. Br. J. Haematol. 1999, 104, 448–454. [Google Scholar] [CrossRef]
- Leader, A.; Mor-Cohen, R.; Ram, R.; Sheptovitsky, V.; Seligsohn, U.; Rosenberg, N.; Lahav, J. The role of protein disulfide isomerase in the post-ligation phase of β3 integrin-dependent cell adhesion. Thromb. Res. 2015, 136, 1259–1265. [Google Scholar] [CrossRef]
PDI Isoform | hLMVEC [Mean ± SD] | MCF-7 [Mean ± SD] | MDA-MB-231 [Mean ± SD] |
---|---|---|---|
PDIA1 | 10.297 ± 1.374 | 8.987 ± 2.895 | 7.220 ± 0.907 |
PDIA3 | 7.313 ± 0.918 | 7.920 ± 4.092 | 5.063 ± 0.903 |
PDIA4 | 4.020 ± 0.000 | 4.387 ± 2.620 | 2. 943 ± 1.101 |
PDIA5 | 0.233 ± 0.085 | 0.235 ± 0.120 | not detected |
PDIA6 | 3.503 ± 0.231 | 2.807 ± 0.512 | 1.833 ± 0.006 |
PDIA9 | 2.160 ± 0.000 | 2.630 ± 1.250 | 2.190 ± 0.460 |
PDIA10 | 0.660 ± 0.087 | 1.380 ± 0.314 | 0.663 ± 0.179 |
PDIA11 | 0.420 ± 0.104 | 0.850 ± 0.678 | 0.567 ± 0.319 |
PDIA12 | 0.130 ± 0.104 | 0.130 ± 0.000 | 0.130 ± 0.000 |
PDIA13 | 0.177 ± 0.095 | not detected | 0.130 ± 0.071 |
PDIA14 | 0.110 ± 0.000 | 0.240 ± 0.000 | not detected |
PDIA15 | 3.443 ± 1.564 | 1.670 ± 0.962 | 1.783 ± 0.365 |
PDIA16 | 1.217 ± 0.266 | 0.440 ± 0.173 | 0.540 ± 0.000 |
PDIA17 | not detected | 6.117 ± 1.58 | 0.230 ± 0.000 |
PDIA18 | not detected | 1.640 ± 0.896 | not detected |
PDIA19 | 0.380 ± 0.104 | 0.260 ± 0.000 | 0.100 ± 0.000 |
PDI Isoform | MCF-7 Cells | MDA-MB-231 Cells | ||||||
---|---|---|---|---|---|---|---|---|
Wild Type | shN | shPDIA1-1 | shPDIA1-3 | Wild Type | shN | shPDIA1-1 | shPDIA1-3 | |
PDIA1 | 9.032 ± 0.846 | 8.845 ± 1.853 | 0.163 ± 0.085 | 2.043 ± 0.611 | 5.002 ± 0.508 | 2.000 ± 1.185 | 4.348 ± 2.359 | 1.145 ± 0.382 |
PDIA3 | 7.454 ± 1.309 | 7.700 ± 2.079 | 7.388 ± 1.078 | 7.597 ± 1.594 | 5.366 ± 1.523 | 6.653 ± 1.631 | 5.418 ± 0.979 | 7.565 ± 1.292 |
PDIA4 | 5.448 ± 0.879 | 5.190 ± 0.846 | 5.630 ± 0.664 | 2.707 ± 0.320 | 3.698 ± 0.947 | 4.035 ± 0.424 | 4.270 ± 0.757 | 3.508 ± 0.622 |
PDIA5 | 0.070 ± 0.000 | 0.150 ± 0.080 | 0.150 ± 0.080 | 0.070 ± 0.000 | not detected | 0.070 ± 0.000 | 0.070 ± 0.000 | 0.070 ± 0.000 |
PDIA6 | 2.986 ± 0.646 | 3.110 ±00.334 | 3.030 ± 0.404 | 2.790 ± 0.191 | 2.576 ± 0.490 | 3.048 ± 0.638 | 2.966 ± 0.538 | 3.200 ± 0.347 |
PDIA9 | 3.654 ± 0.747 | 3.410 ± 0.589 | 2.940 ± 0.323 | 2.80 ± 0.606 | 2.018 ± 0.487 | 2.088 ± 0.756 | 2.118 ± 0.566 | 2.350 ± 0.784 |
PDIA10 | 1.850 ± 0.565 | 1.950 ± 0.533 | 1.848 ± 0.125 | 1.173 ± 0.231 | 0.604 ± 0.252 | 0.878 ± 0.229 | 0.776 ± 0.287 | 0.605 ± 0.187 |
PDIA11 | 0.600 ± 0.110 | 0.868 ± 0.23 | 0.868 ± 0.243 | 0.420 ± 0.104 | 0.580 ± 0.291 | 0.435 ± 0.090 | 0.672 ± 0.254 | 0.535 ± 0.183 |
PDIA12 | 0.130 ± 0.000 | 0.130 ± 0.000 | 0.130 ± 0.000 | 0.130 ± 0.000 | 0.130 ± 0.000 | 0.130 ± 0.000 | 0.137 ± 0.012 | 0.130 ± 0.000 |
PDIA13 | not detected | not detected | 0.080 ± 0.000 | not detected | not detected | not detected | 0.080 ± 0.000 | 0.080 ± 0.000 |
PDIA14 | 0.143 ± 0.065 | 0.175 ± 0.092 | 0.173 ± 0.072 | not detected | 0.110 ± 0.000 | 0.110 ± 0.000 | 0.130 ± 0.000 | 0.110 ± 0.000 |
PDIA15 | 2.928 ± 0.544 | 2.793 ± 0.313 | 2.738 ± 0.594 | 2.220 ± 0.43 | 2.128 ± 0.396 | 2.330 ± 0.850 | 2.060 ± 0.477 | 2.185 ± 0.259 |
PDIA16 | 1.094 ± 0.252 | 0.933 ± 0.340 | 1.255 ± 0.230 | 0.440 ± 0.173 | 0.765 ± 0.488 | 0.558 ± 0.274 | 1.250 ± 0.430 | 0.598 ± 0.534 |
PDIA17 | 10.732 ± 1.024 | 9.200 ± 2.680 | 11.320 ± 2.096 | 8.420 ± 2.399 | 0.423 ± 0.167 | 1.130 ± 0.565 | 0.697 ± 0.537 | 0.375 ± 0.205 |
PDIA18 | 1.554 ± 0.740 | 1.305 ± 0.576 | 1.305 ± 0.576 | 1.253 ± 0.595 | not detected | not detected | 0.240 ± 0.000 | 0.240 ± 0.000 |
PDIA19 | 0.130 ± 0.057 | 0.193 ± 0.081 | 0.305 ± 0.900 | 0.133 ± 0.029 | 0.050 ± 0.000 | 0.083 ± 0.029 | 0.078 ± 0.049 | 0.063 ± 0.025 |
Bepristat 2a [µM] | Enzymatic Activity, % of Initial | ||||
---|---|---|---|---|---|
PDIA1 | PDIA3 | PDIA4 | PDIA6 | PDIA17 | |
200 | 20 ± 6 | 36 ± 5 | 80 ± 2 | 69 ± 4 | 46 ± 8 |
20 | 42 ± 2 | 86 ± 4 | 89 ± 3 | 99 ± 2 | 95 ± 3 |
2 | 63 ± 2 | 103 ± 4 | 102 ± 2 | 95 ± 3 | 98 ± 3 |
0.2 | 72 ± 3 | 105 ± 2 | 100 ± 2 | 103 ± 2 | 100 ± 2 |
0.02 | 90 ± 3 | not detected | not detected | not detected | not detected |
IC50 | 2.1 | 127 | >200 | >200 | ≥200 |
Integrin | hLMVEC [Mean ± SD] | MCF-7 [Mean ± SD] | MDA-MB-231 [Mean ± SD] |
---|---|---|---|
β1 | 0.853 ± 0.133 | 0.250 ± 0.180 | 0.950 ± 0.499 |
β3 | 0.100 ± 0.000 | not detected | not detected |
β4 | 0.050 ± 0.036 | 0.110 ± 0.000 | 0.347 ± 0.119 |
β5 | 0.050 ± 0.000 | 0.050 ± 0.000 | 0.050 ± 0.000 |
α2 | 0.430 ± 0.000 | 0.180 ± 0.000 | 0.407 ± 0.151 |
α3 | 0.157 ± 0.075 | not detected | 0.520 ± 0.115 |
α5 | 0.477 ± 0.064 | not detected | 0.080 ± 0.000 |
α6 | 0.183 ± 0.100 | not detected | 0.270 ± 0.200 |
αV | 0.387 ± 0.050 | 0.040 ± 0.000 | 0.103 ± 0.060 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojak, M.; Milczarek, M.; Kurpinska, A.; Suraj-Prazmowska, J.; Kaczara, P.; Wojnar-Lason, K.; Banach, J.; Stachowicz-Suhs, M.; Rossowska, J.; Kalviņš, I.; et al. Protein Disulphide Isomerase A1 Is Involved in the Regulation of Breast Cancer Cell Adhesion and Transmigration via Lung Microvascular Endothelial Cells. Cancers 2020, 12, 2850. https://doi.org/10.3390/cancers12102850
Stojak M, Milczarek M, Kurpinska A, Suraj-Prazmowska J, Kaczara P, Wojnar-Lason K, Banach J, Stachowicz-Suhs M, Rossowska J, Kalviņš I, et al. Protein Disulphide Isomerase A1 Is Involved in the Regulation of Breast Cancer Cell Adhesion and Transmigration via Lung Microvascular Endothelial Cells. Cancers. 2020; 12(10):2850. https://doi.org/10.3390/cancers12102850
Chicago/Turabian StyleStojak, Marta, Magdalena Milczarek, Anna Kurpinska, Joanna Suraj-Prazmowska, Patrycja Kaczara, Kamila Wojnar-Lason, Joanna Banach, Martyna Stachowicz-Suhs, Joanna Rossowska, Ivars Kalviņš, and et al. 2020. "Protein Disulphide Isomerase A1 Is Involved in the Regulation of Breast Cancer Cell Adhesion and Transmigration via Lung Microvascular Endothelial Cells" Cancers 12, no. 10: 2850. https://doi.org/10.3390/cancers12102850
APA StyleStojak, M., Milczarek, M., Kurpinska, A., Suraj-Prazmowska, J., Kaczara, P., Wojnar-Lason, K., Banach, J., Stachowicz-Suhs, M., Rossowska, J., Kalviņš, I., Wietrzyk, J., & Chlopicki, S. (2020). Protein Disulphide Isomerase A1 Is Involved in the Regulation of Breast Cancer Cell Adhesion and Transmigration via Lung Microvascular Endothelial Cells. Cancers, 12(10), 2850. https://doi.org/10.3390/cancers12102850