Radiometric Cross-Calibration of GF-4 PMS Sensor Based on Assimilation of Landsat-8 OLI Images
"> Figure 1
<p>The location of the Dunhuang calibration sites.</p> "> Figure 2
<p>The GF-4 PMS and Landsat-8 OLI images over the calibration sites in this study, and the red, yellow and green polygons in figure represent the ranges of gypsum, desert, and water test sites, respectively: (<b>a</b>) The GF-4 PMS image shows the calibration sites in Dunhuang (NIR, Red, Green); (<b>b</b>) The Landsat-8 OLI image shows calibration sites in Dunhuang (NIR, Red, Green).</p> "> Figure 3
<p>A comparison of the spectral response for the corresponding channels in the GF-4 PMS and Landsat-8 OLI.</p> "> Figure 4
<p>Flow chart of cross-calibration based on data assimilation.</p> "> Figure 5
<p>Results of spectral matching to show the mean reflectance retrieved from atmospherically corrected Landsat-8 OLI (red points) and their matched spectrum in the USGS spectral library and from field measurements (blue curves): (<b>a</b>) gypsum; (<b>b</b>) desert; (<b>c</b>) water.</p> "> Figure 6
<p>Gain and offset coefficients of ROIs for the four bands of GF-4 PMS. The ROIs were sampled from water, desert, and gypsum sites, respectively.</p> "> Figure 7
<p>Biases between calibrated radiance derived by the four versions of calibration coefficients and simulated radiance using Landsat-8 OLI image. The yellow points represent the radiance biases derived by the proposed method RTM-DA that have the minimum mean bias when compared with those gathered from RTM-BRDF and SM methods, as well as the officially provided coefficients.</p> "> Figure 8
<p>Evaluation of calibrated surface reflectance of GF-4 PMS using simulated surface reflectance by Landsat-8 OLI. The results of the four versions of calibration coefficients are plotted in this figure. The yellow points represent the results derived by the proposed method RTM-DA that distribute closest to the 1:1 line for the four bands when compared to the other methods.</p> "> Figure 9
<p>The mean differences between the calibrated surface reflectance of GF-4 PMS and the simulated surface reflectance by Landsat-8 OLI. The results of the four versions of calibration coefficients are plotted. The red error bars represent the validation results of the proposed method RTM-DA with the smallest mean and variance of differences in different ranges for the four bands.</p> ">
Abstract
:1. Introduction
2. Calibration Sites and Data Sets
2.1. Calibration Sites
2.2. Data Sets
3. Methodology
3.1. TOA Reflectance Calculation
3.2. Atmospheric Correction, Spectral and BRDF Adjustment and Simulation
3.3. The SCE-UA Algorithm
3.4. Cross-Calibration
- Geometrically register the GF-4 PMS and reference Landsat-8 OLI images with error controlled to within one pixel. Select regions of interest (ROI) as presented in Li et al. [8].
- Calculate the TOA reflectance in the Landsat-8 OLI image using Equations (4). Then perform atmospheric correction to obtain the surface reflectance of ROIs in the Landsat-8 OLI image , immediately after the registration and ROIs selection step.
- Perform Spectral matching to get the optimal spectra from the USGS spectral library to calculate between GF-4 PMS and Landsat-8 OLI by Equation (9). Use the minimum Mahalanobis distance between the Landsat-8 OLI surface reflectance and the spectra in USGS library to determine the best-matching spectra.
- Initialize the calibration coefficients and of GF-4 PMS and BDRF adjustment factor . Then use the initial values to calculate the TOA reflectance of GF-4 PMS data using Equations (1)–(3) and derive the surface reflectance using the 6S atmospheric correction model . The simulated surface reflectance of Landsat-8 OLI is obtained using Equation (11).
- Compare the Landsat-8 OLI simulated surface reflectance and the retrieved reflectance . If the difference between them is small enough to satisfy the convergence condition, then the optimal calibration coefficients and BDRF adjustment factor are obtained. If the opposite happens, the SCE-UA optimization algorithm is used to update the values of , , and to calculate a new Landsat-8 OLI simulated surface reflectance . Perform the same loop iteration, until reaching the termination condition.
4. Experimental Results and Analysis
4.1. Cross-Calibration Results
4.2. Validation Results
4.3. Uncertainty Analysis
- The uncertainty of Landsat-8 OLI calibration (σ1): The calibration uncertainty of Landsat-8 OLI for reflectance is within 3% [18].
- The uncertainty of SBAF caused by lack of ground measured spectrum (σ2): It can be seen from the Equation (8) that the calculation of SBAF requires continuous surface reflectance.
- 3.
- The uncertainty caused by atmosphere parameters (σ3, σ4) [40]: In this research the parameter of the aerosol type of the 6S model was set to the desert type.
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Teillet, P.; Markham, B.; Irish, R.R. Landsat cross-calibration based on near simultaneous imaging of common ground targets. Remote Sens. Environ. 2006, 102, 264–270. [Google Scholar] [CrossRef]
- Jiang, G.M.; Li, Z.L. Cross-calibration of msg1-seviri infrared channels with terra-modis channels. Int. J. Remote Sens. 2009, 30, 753–769. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, X.; Li, X.; Li, X. The cross-calibration of cbers-02b/ccd visible-near infrared channels with terra/modis channels. Int. J. Remote Sens. 2013, 34, 3688–3698. [Google Scholar] [CrossRef]
- Obata, K.; Miura, T.; Yoshioka, H.; Huete, A.R.; Vargas, M. Spectral cross-calibration of viirs enhanced vegetation index with modis: A case study using year-long global data. Remote Sens. 2016, 8, 34. [Google Scholar] [CrossRef]
- Gao, H.; Gu, X.; Yu, T.; Liu, L.; Sun, Y.; Xie, Y.; Liu, Q. Validation of the calibration coefficient of the gaofen-1 pms sensor using the landsat 8 oli. Remote Sens. 2016, 8, 132. [Google Scholar] [CrossRef]
- Gao, H.; Gu, X.; Yu, T.; Sun, Y.; Liu, Q. Cross-calibration of gf-1 pms sensor with landsat 8 oli and terra modis. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4847–4854. [Google Scholar] [CrossRef]
- Mishra, N.; Haque, M.O.; Leigh, L.; Aaron, D.; Helder, D.; Markham, B. Radiometric cross calibration of landsat 8 operational land imager (oli) and landsat 7 enhanced thematic mapper plus (etm+). Remote Sens. 2014, 6, 12619–12638. [Google Scholar] [CrossRef]
- Li, J.; Feng, L.; Pang, X.; Gong, W.; Zhao, X. Radiometric cross calibration of gaofen-1 wfv cameras using landsat-8 oli images: A simple image-based method. Remote Sens. 2016, 8, 411. [Google Scholar] [CrossRef]
- Lucht, W.; Roujean, J.L. Considerations in the parametric modeling of brdf and albedo from multiangular satellite sensor observations. Remote Sens. Rev. 2000, 18, 343–379. [Google Scholar] [CrossRef]
- Li, X.; Gu, X.; Yu, T.; Li, X. Enhanced radiometric calibration coefficients for ccd camera by considering brdf of calibration sites. J. Remote Sens. Beijing 2006, 10, 636. [Google Scholar]
- Kaufman, Y.; Tanré, D.; Remer, L.A.; Vermote, E.; Chu, A.; Holben, B. Operational remote sensing of tropospheric aerosol over land from eos moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.; Sobrino, J.; Fédèle, E. Analysis of directional effects on atmospheric correction. Remote Sens. Environ. 2013, 128, 276–288. [Google Scholar] [CrossRef]
- Angal, A.; Xiong, X.; Wu, A.; Chander, G.; Choi, T. Multitemporal cross-calibration of the terra modis and landsat 7 etm+ reflective solar bands. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1870–1882. [Google Scholar] [CrossRef]
- Feng, L.; Li, J.; Gong, W.; Zhao, X.; Chen, X.; Pang, X. Radiometric cross-calibration of gaofen-1 wfv cameras using landsat-8 oli images: A solution for large view angle associated problems. Remote Sens. Environ. 2016, 174, 56–68. [Google Scholar] [CrossRef]
- Yang, A.; Zhong, B.; Lv, W.; Wu, S.; Liu, Q. Cross-calibration of gf-1/wfv over a desert site using landsat-8/oli imagery and zy-3/tlc data. Remote Sens. 2015, 7, 10763–10787. [Google Scholar] [CrossRef]
- Yang, A.; Zhong, B.; Wu, S.; Liu, Q. Radiometric cross-calibration of gf-4 in multispectral bands. Remote Sens. 2017, 9, 232. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for landsat mss, tm, etm+, and eo-1 ali sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.; Loveland, T.; Woodcock, C.; Allen, R.; Anderson, M.; Helder, D.; Irons, J.; Johnson, D.; Kennedy, R. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Hu, X.; Liu, J.; Sun, L.; Rong, Z.; Li, Y.; Zhang, Y.; Zheng, Z.; Wu, R.; Zhang, L.; Gu, X. Characterization of crcs dunhuang test site and vicarious calibration utilization for fengyun (fy) series sensors. Can. J. Remote Sens. 2010, 36, 566–582. [Google Scholar] [CrossRef]
- Chen, L.; Hu, X.; Xu, N.; Zhang, P. The application of deep convective clouds in the calibration and response monitoring of the reflective solar bands of fy-3a/mersi (medium resolution spectral imager). Remote Sens. 2013, 5, 6958–6975. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Tian, L.; Yu, H.; Zhang, W. An evaluation of the temporal stability of hj-1 ccd data using a desert calibration site and landsat 7 etm+. Int. J. Remote Sens. 2015, 36, 3733–3750. [Google Scholar] [CrossRef]
- Wu, D.; Yin, Y.; Wang, Z.; Gu, X.; Verbrugghe, M.; Guyot, G. Radiometric characterisation of dunhuang satellite calibration test site (china). Phys. Meas. Signat. Remote Sens. 1997, 1, 151–160. [Google Scholar]
- Levy, R.C.; Remer, L.A.; Tanré, D.; Mattoo, S.; Kaufman, Y.J. Algorithm for Remote Sensing of Tropospheric Aerosol over Dark Targets from Modis: Collections 005 and 051: Revision 2; feb 2009. Available online: https://pdfs.semanticscholar.org/e5f8/fa50577584a2ef9d2ed6417b4156fb9b474b.pdf (accessed on 23 April 2017).
- Clark, R.N.; Swayze, G.A.; Wise, R.; Livo, K.E.; Hoefen, T.; Kokaly, R.F.; Sutley, S.J. Usgs Digital Spectral Library Splib06a. Available online: https://speclab.cr.usgs.gov/spectral.lib06/ds231/ (accessed on 23 April 2017).
- Thuillier, G.; Hersé, M.; Labs, D.; Foujols, T.; Peetermans, W.; Gillotay, D.; Simon, P.; Mandel, H. The solar spectral irradiance from 200 to 2400 nm as measured by the solspec spectrometer from the atlas and eureca missions. Sol. Phys. 2003, 214, 1–22. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.-J. Second simulation of the satellite signal in the solar spectrum, 6s: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- US National Bureau of Standards; Nicodemus, F.E. Geometrical Considerations and Nomenclature for Reflectance; US Department of Commerce, National Bureau of Standards: Washington, DC, USA, 1977; Volume 160.
- Roujean, J.L.; Leroy, M.; Deschamps, P.Y. A bidirectional reflectance model of the earth’s surface for the correction of remote sensing data. J. Geophys. Res. Atmos. 1992, 97, 20455–20468. [Google Scholar] [CrossRef]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An algorithm for the retrieval of albedo from space using semiempirical brdf models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef]
- Rahman, H.; Pinty, B.; Verstraete, M.M. Coupled surface-atmosphere reflectance (csar) model: 2. Semiempirical surface model usable with noaa advanced very high resolution radiometer data. J. Geophys. Res. Atmos. 1993, 98, 20791–20801. [Google Scholar] [CrossRef]
- Staylor, W.F.; Suttles, J.T. Reflection and emission models for deserts derived from nimbus-7 erb scanner measurements. J. Appl. Meteorol. 1986, 25, 196–202. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal modis–landsat data fusion for relative radiometric normalization, gap filling, and prediction of landsat data. Remote Sens. Environ. 2008, 112, 3112–3130. [Google Scholar] [CrossRef]
- Chander, G.; Mishra, N.; Helder, D.L.; Aaron, D.B.; Angal, A.; Choi, T.; Xiong, X.; Doelling, D.R. Applications of spectral band adjustment factors (sbaf) for cross-calibration. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1267–1281. [Google Scholar] [CrossRef]
- Duan, Q.; Gupta, V.K.; Sorooshian, S. Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 1993, 76, 501–521. [Google Scholar] [CrossRef]
- Jeon, J.-H.; Park, C.-G.; Engel, B.A. Comparison of performance between genetic algorithm and sce-ua for calibration of scs-cn surface runoff simulation. Water 2014, 6, 3433–3456. [Google Scholar] [CrossRef]
- Chen, Y.; Mei, X.; Liu, J. Geoinformatics cotton growth monitoring and yield estimation based on assimilation of remote sensing data and crop growth model. In Proceedings of the IEEE 2015 23rd International Conference on Geoinformatics, Wuhan, China, 19–21 June 2015; pp. 1–4. [Google Scholar]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the sce-ua global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Chander, G.; Helder, D.L.; Aaron, D.; Mishra, N.; Shrestha, A.K. Assessment of spectral, misregistration, and spatial uncertainties inherent in the cross-calibration study. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1282–1296. [Google Scholar] [CrossRef]
- Teillet, P.; Fedosejevs, G.; Thome, K.; Barker, J.L. Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain. Remote Sens. Environ. 2007, 110, 393–409. [Google Scholar] [CrossRef]
- Gao, H.-l.; Gu, X.; Yu, T.; Li, X.-y.; Cheng, T.-h.; Gong, H.; Li, J.-g. Radiometric calibration for hj-1a hyper-spectrum imager and uncertainty analysis. Acta Photonica Sin. 2009, 38, 2826–2833. [Google Scholar]
Parameters | GF-4 PMS | Landsat-8 OLI | ||
---|---|---|---|---|
Band | Blue | Spectral Range (μm) | 0.44–0.53 | 0.45–0.51 |
Solar Irradiance (W/m2/μm) | 1932.4 | 1973.1 | ||
Center Wavelength (μm) | 0.5190 | 0.4826 | ||
Green | Spectral Range (μm) | 0.51–0.61 | 0.53–0.59 | |
Solar Irradiance (W/m2/μm) | 1831.6 | 1842.3 | ||
Center Wavelength (μm) | 0.5500 | 0.5613 | ||
Red | Spectral Range (μm) | 0.61–0.70 | 0.64–0.67 | |
Solar Irradiance (W/m2/μm) | 1570.8 | 1564.9 | ||
Center Wavelength (μm) | 0.6280 | 0.6546 | ||
NIR | Spectral Range (μm) | 0.74–0.91 | 0.85–0.88 | |
Solar Irradiance (W/m2/μm) | 1107.8 | 967.1 | ||
Center Wavelength (μm) | 0.7700 | 0.8646 | ||
The range of the view zenith angle | −65–70° | ±7° | ||
Spectral Resolution (m) | 50 × 50 | 30 × 30 | ||
Quantization (bits) | 10 | 12 | ||
Swath (km) | 500 | 180 |
Parameter | PMS | OLI |
---|---|---|
Date | 14 June 2016 | 14 June 2016 |
Time(UTC) | 04:57:31 | 04:25:55 |
Solar Azimuth() | 145.661 | 129.2686 |
Solar Zenith() | 21.3436 | 23.9807 |
Sensor Azimuth() | 161.0893 | 98.5 |
Sensor Zenith() | 49.7657 | 0 |
Atmosphere Model | Mid-Latitude Summer | Mid-Latitude Summer |
Aerosol Model | Desert Model | Desert Model |
Visibility(km) | 39.8386 | 39.8386 |
Water Column(gm/cm2) | 1.6336 | 1.6336 |
Ground Altitude(km) | 1.160 | 1.160 |
Sensor Altitude(km) | 36000 | 705 |
Band | Type | Gain | Offset | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | CV | Min | Max | Mean | CV | ||
Blue | Gypsum | 0.1557 | 0.1977 | 0.1848 | 3.63% | −7.7429 | 8.0653 | 2.0397 | 140.08% |
Desert | 0.1606 | 0.1988 | 0.1848 | 3.08% | −6.4067 | 9.9609 | 2.2222 | 138.75% | |
Water | 0.1721 | 0.1983 | 0.1900 | 2.62% | −6.2856 | 8.5738 | 2.4515 | 76.14% | |
Total | 0.1557 | 0.1988 | 0.1857 | 3.33% | −7.7429 | 9.9609 | 2.2734 | 124.85% | |
Green | Gypsum | 0.1419 | 0.1993 | 0.1742 | 6.71% | −5.6159 | 9.7364 | 0.9451 | 157.20% |
Desert | 0.1476 | 0.2086 | 0.1796 | 5.26% | −8.5436 | 9.4332 | 0.6668 | 130.85% | |
Water | 0.1636 | 0.2061 | 0.1882 | 5.39% | −7.2039 | 7.9025 | 0.8945 | 179.77% | |
Total | 0.1419 | 0.2086 | 0.1794 | 5.01% | −8.5436 | 9.7364 | 0.7127 | 138.25% | |
Red | Gypsum | 0.1113 | 0.1604 | 0.1379 | 7.96% | −5.3937 | 6.7319 | 2.0111 | 207.35% |
Desert | 0.1159 | 0.1765 | 0.1412 | 6.31% | −6.7027 | 9.5933 | 2.0542 | 240.70% | |
Water | 0.1307 | 0.1582 | 0.1443 | 5.08% | −2.4281 | 7.4442 | 2.0516 | 224.50% | |
Total | 0.1113 | 0.1765 | 0.1411 | 6.43% | −6.7027 | 9.5933 | 2.0426 | 229.24% | |
NIR | Gypsum | 0.0820 | 0.1134 | 0.0991 | 5.68% | −6.2269 | 6.8087 | 0.8760 | 72.95% |
Desert | 0.0714 | 0.1241 | 0.0953 | 4.04% | −9.4036 | 8.9156 | 0.7390 | 63.22% | |
Water | 0.0646 | 0.1128 | 0.0979 | 5.60% | −6.0845 | 4.2738 | 0.7938 | 35.15% | |
Total | 0.0646 | 0.1241 | 0.0960 | 4.15% | −9.4036 | 8.9156 | 0.7514 | 62.17% |
Band | Gain | Offset | Gain Differences (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SM | RTM-BRDF | RTM-DA | Official | SM | RTM-BRDF | RTM-DA | D 1 | D 2 | D 3 | D 4 | |
Blue | 0.2255 | 0.1988 | 0.1859 | 0.1784 | −25.5310 | −1.2218 | 2.7841 | 17.56 | 6.49 | 11.43 | 4.02 |
Green | 0.2121 | 0.1869 | 0.1799 | 0.1878 | −22.335 | −4.6956 | 1.0837 | 15.18 | 3.75 | 0.48 | 4.21 |
Red | 0.1604 | 0.1427 | 0.1409 | 0.1515 | −9.3643 | 0.0530 | 3.5454 | 12.16 | 1.26 | 5.81 | 7.00 |
NIR | 0.1439 | 0.1225 | 0.0959 | 0.1080 | −21.287 | −16.323 | 0.7961 | 33.36 | 21.71 | 13.43 | 11.20 |
Blue | Green | Red | NIR | ||
---|---|---|---|---|---|
SBAF increasing by 0.1 | New gain coefficients | 0.1867 | 0.1805 | 0.1422 | 0.0962 |
Relative difference | 0.43% | 0.33% | 0.92% | 0.31% | |
SBAF decreasing by 0.1 | New gain coefficients | 0.1792 | 0.1743 | 0.1351 | 0.0933 |
Relative difference | −3.60% | −3.11% | −4.12% | −2.71% |
Blue | Green | Red | NIR | |
---|---|---|---|---|
New gain coefficients | 0.1866 | 0.1802 | 0.1413 | 0.0964 |
Relative difference | 0.38% | 0.17% | 0.28% | 0.52% |
Blue | Green | Red | NIR | ||
---|---|---|---|---|---|
Visibility increasing by 10 km | New gain coefficients | 0.1796 | 0.1752 | 0.1365 | 0.0913 |
Relative difference | −3.39% | −2.61% | −3.12% | −4.79% | |
Visibility decreasing by 10 km | New gain coefficients | 0.1900 | 0.1823 | 0.1447 | 0.1004 |
Relative difference | 2.21% | 1.33% | 2.70% | 4.69% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Sun, K.; Li, D.; Bai, T.; Huang, C. Radiometric Cross-Calibration of GF-4 PMS Sensor Based on Assimilation of Landsat-8 OLI Images. Remote Sens. 2017, 9, 811. https://doi.org/10.3390/rs9080811
Chen Y, Sun K, Li D, Bai T, Huang C. Radiometric Cross-Calibration of GF-4 PMS Sensor Based on Assimilation of Landsat-8 OLI Images. Remote Sensing. 2017; 9(8):811. https://doi.org/10.3390/rs9080811
Chicago/Turabian StyleChen, Yepei, Kaimin Sun, Deren Li, Ting Bai, and Chengquan Huang. 2017. "Radiometric Cross-Calibration of GF-4 PMS Sensor Based on Assimilation of Landsat-8 OLI Images" Remote Sensing 9, no. 8: 811. https://doi.org/10.3390/rs9080811
APA StyleChen, Y., Sun, K., Li, D., Bai, T., & Huang, C. (2017). Radiometric Cross-Calibration of GF-4 PMS Sensor Based on Assimilation of Landsat-8 OLI Images. Remote Sensing, 9(8), 811. https://doi.org/10.3390/rs9080811