LACO-Wiki: A New Online Land Cover Validation Tool Demonstrated Using GlobeLand30 for Kenya
"> Figure 1
<p>The LACO-Wiki system architecture. The client/user accesses the LACO-Wiki portal, which can make use of multiple storage servers to distribute the data and the processing tasks.</p> "> Figure 2
<p>The components of the LACO-Wiki workflow.</p> "> Figure 3
<p>The LACO-Wiki interface (<a href="http://www.laco-wiki.net" target="_blank">http://www.laco-wiki.net</a>) showing the four components of the validation workflow as menu items at the top of the screen.</p> "> Figure 4
<p>Uploading a land cover map in Step 1 of the LACO-Wiki validation workflow.</p> "> Figure 5
<p>Details of a data set in LACO-Wiki including options to share and preview the data set and to generate a sample.</p> "> Figure 6
<p>Details about a sample in LACO-Wiki. This sample can be shared, downloaded or used to create a validation session.</p> "> Figure 7
<p>Creating a validation session in LACO-Wiki based on an existing sample. This involves providing a name, a description, choosing the type of validation (blind, plausibility, enhanced plausibility), whether this is for an online or mobile session, the validation settings, which include additional fields such as a comment box or whether the user should judge the positional accuracy, and what base layers should appear in the validation session, e.g., Google Maps, Bing Maps, etc.</p> "> Figure 8
<p>Example of visual interpretation in LACO-Wiki, showing the final pixel in Sample 2 (see <a href="#sec3dot3-remotesensing-09-00754" class="html-sec">Section 3.3</a>). The imagery can be changed to Bing or the pixel can be viewed directly in Google Earth by pressing the “Download sample (kmz)” button.</p> "> Figure 9
<p>Distribution of the difference in years between the reference year for GlobeLand30 (2010) and the available high resolution imagery in: (<b>a</b>) Sample 1 (<span class="html-italic">n</span> = 147); and (<b>b</b>) Sample 2 (<span class="html-italic">n</span> = 411).</p> "> Figure 10
<p>The agreement of interpreters and the relative importance of very high resolution imagery by class in GlobeLand30.</p> "> Figure 11
<p>Comparison of the mapped area of GlobeLand30 compared to the adjusted areas based on Sample 2 (allowing for choices 1 or 2) showing 95% confidence intervals.</p> "> Figure 12
<p>Agreement between interpreters showing adjusted medians and 95% confidence intervals (<span class="html-italic">n</span> = 679).</p> "> Figure 13
<p>Imagery from: (<b>a</b>) Google Maps in LACO-Wiki for 2017; (<b>b</b>) Bing in LACO-Wiki for 2012; and (<b>c</b>) Google Earth for 2010.</p> ">
Abstract
:1. Introduction
2. The LACO-Wiki Tool
2.1. The Validation Workflow
2.1.1. Create and Manage Data
2.1.2. Generate a Sample
2.1.3. Generate a Validation Session and Then Interpret the Sample Using Imagery
2.1.4. Generate a Report with the Accuracy Assessment
2.2. Additional Features in LACO-Wiki
2.3. Use Cases for LACO-Wiki
2.3.1. Scientific Research
2.3.2. Education
2.3.3. Map Production
2.3.4. Accuracy Assessment
3. Application of the LACO-Wiki Tool to the Accuracy Assessment of GlobeLand30 for Kenya
3.1. GlobeLand30
3.2. Using LACO-Wiki with an External Sample Uploaded to the System: Sample 1
3.3. Using LACO-Wiki for the Complete Validation Workflow: Sample 2
3.4. Models to Examine Drivers of Agreement between Interpreters
4. Results
4.1. Temporal and Spatial Resolution of the Imagery Used in the Interpretation
4.2. Accuracy Assessment of GlobeLand30 for Kenya
4.3. Drivers of Agreement
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AMI | Average Mutual Information |
CEOS-CVWG | CEOS Calibration/Validation Working Group |
DLR | German Aerospace Agency |
EEA | European Environment Agency |
EO | Earth Observation |
FROM-GLC | Finer Resolution Mapping of Global Land Cover |
GEO | Group on Earth Observations |
GEO QA4EO | GEO’s Quality Assurance Framework for Earth Observation |
GOFC-GOLD | Global Observation for Forest Cover and Land Dynamics |
KML | Keyhole Markup Language |
NGCC | National Geomatics Center of China |
NDVI | Normalized Difference Vegetation Index |
OATH2 | Open Authentication |
OSM | OpenStreetMap |
QA4EO | GEO’s Quality Assurance Framework for Earth Observation |
SDGs | Sustainable Development Goals |
WMS | Web Map Service |
References
- Hollmann, R.; Merchant, C.J.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.; Defourny, P.; de Leeuw, G.; Forsberg, R.; et al. The ESA Climate Change Initiative: Satellite data records for Essential Climate Variables. Bull. Am. Meteorol. Soc. 2013, 94, 1541–1552. [Google Scholar] [CrossRef]
- Poulter, B.; MacBean, N.; Hartley, A.; Khlystova, I.; Arino, O.; Betts, R.; Bontemps, S.; Boettcher, M.; Brockmann, C.; Defourny, P.; et al. Plant functional type classification for earth system models: Results from the European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 2015, 8, 2315–2328. [Google Scholar] [CrossRef]
- United Nations Statistical Commission (Ed.) System of Environmental-Economic Eccounting 2012: Central Framework; United Nations Statistical Commission: New York, NY, USA, 2014; ISBN 978-92-79-35797-8. [Google Scholar]
- Becker-Reshef, I.; Justice, C.; Sullivan, M.; Vermote, E.; Tucker, C.; Anyamba, A.; Small, J.; Pak, E.; Masuoka, E.; Schmaltz, J.; et al. Monitoring global croplands with coarse resolution Earth Observations: The Global Agriculture Monitoring (GLAM) project. Remote Sens. 2010, 2, 1589–1609. [Google Scholar] [CrossRef]
- Smith, P.; Gregory, P.J.; van Vuuren, D.; Obersteiner, M.; Havlik, P.; Rounsevell, M.; Woods, J.; Stehfest, E.; Bellarby, J. Competition for land. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2941–2957. [Google Scholar] [CrossRef] [PubMed]
- Nel, J.L.; Le Maitre, D.C.; Nel, D.C.; Reyers, B.; Archibald, S.; van Wilgen, B.W.; Forsyth, G.G.; Theron, A.K.; O’Farrell, P.J.; Kahinda, J.-M.M.; et al. Natural hazards in a changing world: A case for ecosystem-based management. PLoS ONE 2014, 9, e95942. [Google Scholar] [CrossRef] [PubMed]
- Hackman, K.O. A method for assessing land-use impacts on biodiversity in a landscape. Glob. Ecol. Conserv. 2015, 3, 83–89. [Google Scholar] [CrossRef]
- De Fries, R.; Hansen, M.; Townshend, J.; Sohlberg, R. Global land cover classifications at 8 km spatial resolution: The use of training data derived from landsat imagery in decision tree classifiers. Int. J. Remote Sens. 1998, 19, 3141–3168. [Google Scholar] [CrossRef]
- Mayaux, P.; Eva, H.; Gallego, J.; Strahler, A.H.; Herold, M.; Agrawal, S.; Naumov, S.; De Miranda, E.E.; Di Bella, C.M.; Ordoyne, C.; et al. Validation of the global land cover 2000 map. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1728–1737. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Defourny, P.; Vancustem, C.; Bicheron, P.; Brockmann, C.; Nino, F.; Schouten, L.; Leroy, M. GLOBCOVER: A 300 m global land cover product for 2005 using ENVISAT MERIS time series. In Proceedings of the ISPRS Commission VII Mid-Term Symposium: Remote Sensing: From Pixels to Processes, Enschede, NL, USA, 8–11 May 2006. [Google Scholar]
- Yu, L.; Wang, J.; Li, X.; Li, C.; Zhao, Y.; Gong, P. A multi-resolution global land cover dataset through multisource data aggregation. Sci. China Earth Sci. 2014, 57, 2317–2329. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C. Satellites: Make Earth observations open access. Nature 2014, 513, 30–31. [Google Scholar] [CrossRef] [PubMed]
- Herold, M.; See, L.; Tsendbazar, N.-E.; Fritz, S. Towards an integrated global land cover monitoring and mapping system. Remote Sens. 2016, 8, 1036. [Google Scholar] [CrossRef]
- Marconcini, M. Mapping urban areas globally by jointly exploiting optical and radar imagery—The GUF+ layer. In Proceedings of the World Cover 2017, ESA-ESRIN, Frascati, Italy, 14–16 March 2017. [Google Scholar]
- Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. The Importance of Land-Cover Change in Simulating Future Climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. Climate Change 2014, Mitigation of Climate Change; Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Group on Earth Observations (GEO). Earth Observations in Support of the 2030 Agenda for Sustainable Development. Japan Aerospace Exploration Agency: Tokyo, Japan, 2017; p. 19. Available online: http://earthobservations.org/documents/publications/201703_geo_eo_for_2030_agenda.pdf (accessed on 22 April 2017).
- Defourny, P.; Brockmann, C.; Bontemps, S.; Achard, F.; Boettcher, M.; Maet, T.D.; Gamba, P.; Hagemann, S.; Hartley, A.; Hoffman, L.; et al. A consistent 300 m global land cover and land cover change time series from 1992 to 2015 derived from multi-mission reprocessed archives. In Proceedings of the GOFC-GOLD Land Cover Meeting, The Hague, The Netherlands, 4 November 2016. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Pesaresi, M.; Huadong, G.; Blaes, X.; Ehrlich, D.; Ferri, S.; Gueguen, L.; Halkia, M.; Kauffmann, M.; Kemper, T.; Lu, L.; et al. A Global Human Settlement Layer from optical HR/VHR RS data: Concept and first results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2102–2131. [Google Scholar] [CrossRef]
- Stehman, S.V.; Czaplewski, R.L. Design and analysis for thematic map accuracy assessment: Fundamental principles. Remote Sens. Environ. 1998, 64, 331–344. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Walters, B.F. Statistical inference for remote sensing-based estimates of net deforestation. Remote Sens. Environ. 2012, 124, 394–401. [Google Scholar] [CrossRef]
- Strahler, A.H.; Boschetti, L.; Foody, G.M.; Friedl, M.A.; Hansen, M.C.; Herold, M.; Mayaux, P.; Morisette, J.T.; Stehman, S.V.; Woodcock, C.E. Globlal Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps. 2006. Available online: http://landval.gsfc.nasa.gov/pdf/GlobalLandCoverValidation.pdf (accessed on 22 April 2017).
- Stehman, S.V. Estimating area from an accuracy assessment error matrix. Remote Sens. Environ. 2013, 132, 202–211. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Foody, G.M.; Boyd, D.S. Using volunteered data in land cover map validation: Mapping West African forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1305–1312. [Google Scholar] [CrossRef]
- Bastin, L.; Buchanan, G.; Beresford, A.; Pekel, J.-F.; Dubois, G. Open-source mapping and services for Web-based land-cover validation. Ecol. Inform. 2013, 14, 9–16. [Google Scholar] [CrossRef]
- Brice, M.; Tsendbazar, N.-E.; Herold, M.; Arino, O. Global land cover mapping: Current status and future trends. In Land Use and Land Cover Mapping in Europe; Manakos, I., Braun, M., Eds.; Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands, 2014; Volume 18, pp. 11–30. ISBN 978-94-007-7968-6. [Google Scholar]
- Leutner, B.; Horning, T. RStoolbox: Tools for Remote Sensing Data Analysis in R. Available online: https://bleutner.github.io/RStoolbox/ (accessed on 22 April 2017).
- Kopeinig, R.; Equihua, J.; Gebhardt, S. QGIS Python Plugins Repository: Validation Tool. Available online: https://plugins.qgis.org/plugins/vTool/ (accessed on 22 April 2017).
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Geographic Resources Analysis Support System (GRASS). Development Team Geographic Resources Analysis Support System (GRASS) Software, Version 7.2. Open Source Geospatial Foundation, 2017. Available online: http://grass.osgeo.org (accessed on 31 October 2016).
- International Institute for Geo-Information Science and Earth Observation (ITC). 52North ILWIS, the Free User-Friendly Raster and Vector GIS. 1984. Available online: http://www.ilwis.org/ (accessed on 22 April 2017).
- GISGeography. 13 Open Source Remote Sensing Software Packages. 2017. Available online: http://gisgeography.com/open-source-remote-sensing-software-packages/ (accessed on 22 April 2017).
- QA4EO Secretariat QA4EO. Available online: http://qa4eo.org/ (accessed on 22 April 2017).
- Bicheron, P.; Defourny, P.; Brockmann, C.; Schouten, L.; Vancutsem, C.; Huc, M.; Bontemps, S.; Leroy, M.; Achard, F.; Herold, M.; et al. Globcover: Products Description and Validation Report; MEDIAS-France: Saint Ouen, France, 2008; p. 47. [Google Scholar]
- GOFC-GOLD. GOFC-GOLD Reference Data Portal. 2015. Available online: http://www.gofcgold.wur.nl/sites/gofcgold_refdataportal.php (accessed on 22 April 2017).
- United States Geological Survey (USGS). Global Land Cover Validation Reference Dataset. Available online: https://landcover.usgs.gov/glc/SitesDescriptionAndDownloads.php (accessed on 22 April 2017).
- Pengra, B.; Long, J.; Dahal, D.; Stehman, S.V.; Loveland, T.R. A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data. Remote Sens. Environ. 2015, 165, 234–248. [Google Scholar] [CrossRef]
- Olofsson, P.; Stehman, S.V.; Woodcock, C.E.; Sulla-Menashe, D.; Sibley, A.M.; Newell, J.D.; Friedl, M.A.; Herold, M. A global land-cover validation data set, part I: Fundamental design principles. Int. J. Remote Sens. 2012, 33, 5768–5788. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, P.; Yu, L.; Hu, L.; Li, X.; Li, C.; Zhang, H.; Zheng, Y.; Wang, J.; Zhao, Y.; et al. Towards a common validation sample set for global land-cover mapping. Int. J. Remote Sens. 2014, 35, 4795–4814. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Perger, C.; McCallum, I.; Schill, C.; Schepaschenko, D.; Duerauer, M.; Karner, M.; Dresel, C.; Laso Bayas, J.C.; et al. A global dataset of crowdsourced land cover and land use reference data. Sci. Data 2017, 4, 170075. [Google Scholar] [CrossRef] [PubMed]
- Tsendbazar, N.E.; de Bruin, S.; Herold, M. Assessing global land cover reference datasets for different user communities. ISPRS J. Photogramm. Remote Sens. 2015, 103, 93–114. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; Lewis Publishers: Boca Raton, FL, USA, 1999. [Google Scholar]
- Finn, J.T. Use of the average mutual information index in evaluating classification error and consistency. Int. J. Geogr. Inf. Syst. 1993, 58, 349–366. [Google Scholar] [CrossRef]
- Comber, A.; Fisher, P.; Brunsdon, C.; Khmag, A. Spatial analysis of remote sensing image classification accuracy. Remote Sens. Environ. 2012, 127, 237–246. [Google Scholar] [CrossRef]
- Yu, L.; Liang, L.; Wang, J.; Zhao, Y.; Cheng, Q.; Hu, L.; Liu, S.; Yu, L.; Wang, X.; Zhu, P.; et al. Meta-discoveries from a synthesis of satellite-based land-cover mapping research. Int. J. Remote Sens. 2014, 35, 4573–4588. [Google Scholar] [CrossRef]
- Büttner, G.; Kosztra, B.; Maucha, G.; Pataki, R. Implementation and Achievements of CLC2006; European Environment Agency: Copenhagen, Denmark, 2012. [Google Scholar]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Fonte, C.; Minghini, M.; Patriarca, J.; Antoniou, V.; See, L.; Skopeliti, A. Generating up-to-date and detailed land use and land cover maps ssing OpenStreetMap and GlobeLand30. ISPRS Int. J. Geo-Inf. 2017, 6, 125. [Google Scholar] [CrossRef]
- Brovelli, M.A.; Molinari, M.E.; Hussein, E.; Chen, J.; Li, R. The first comprehensive accuracy assessment of GlobeLand30 at a national level: Methodology and results. Remote Sens. 2015, 7, 4191–4212. [Google Scholar] [CrossRef] [Green Version]
- Arsanjani, J.J.; See, L.; Tayyebi, A. Assessing the suitability of GlobeLand30 for mapping land cover in Germany. Int. J. Digit. Earth 2016, 9, 873–891. [Google Scholar] [CrossRef] [Green Version]
- Arsanjani, J.J.; Tayyebi, A.; Vaz, E. GlobeLand30 as an alternative fine-scale global land cover map: Challenges, possibilities, and implications for developing countries. Habitat Int. 2016, 55, 25–31. [Google Scholar] [CrossRef]
- Ban, Y.; See, L.; Haas, J.; Jacob, A.; Fritz, S. Validation of the water layers of global land cover products using Geo-Wiki and national land cover maps. In Proceedings of the 35th EARSel Symposium, Stockholm, Sweden, 15–18 June 2015. [Google Scholar]
- Chen, J.; Tong, X.; Li, S.; Perger, C.; Leinenkugle, P.; Wakhayanga, J.A.; Chen, L.; Liu, C.; Wang, Z.; Han, G.; et al. Technical Specification for the International Validation of Global Land Cover Products; NGCC: Beijing, China, 2016. [Google Scholar]
- Maus, V. dtwSAT R Package, v.0.2.2. Time-Weighted Dynamic Time Warping for Satellite Image Time Series Analysis. 2017. Available online: https://github.com/vwmaus/dtwSat (accessed on 1 May 2017).
- Laso Bayas, J.-C.; Fritz, S.; See, L.; Perger, C.; Dresel, C.; Hofer, M.; Weichselbaum, J.; McCallum, I.; Moorthy, I.; Kraxner, F.; et al. Extending the LACO-Wiki tool for land cover validation to crop area estimation. In Proceedings of the International Conference on Agricultural Statistics VII (ICAS), FAO, Rome, Italy, 26–28 October 2016. [Google Scholar]
Code | Class Name | Class Description |
---|---|---|
10 | Cultivated land | Arable land (cropland): dry land, paddy field, land for greenhouses, vegetable fields, artificial tame pastures, economic cropland in which shrub crops or herbaceous crops are planted, and land abandoned with the reclamation of arable land |
20 | Forest | Broadleaved deciduous forest, evergreen broad-leaf forest, deciduous coniferous forest, evergreen coniferous forest, mixed broadleaf-conifer forest |
30 | Grassland | Typical grassland, meadow grassland, alpine grassland, desert grassland, grass |
40 | Shrubland | Desert scrub, mountain scrub, deciduous and evergreen shrubs |
50 | Wetland | Lake swamp, river flooding wetlands, seamarsh, shrub/forest wetlands, mangrove forest, tidal flats/salt marshes |
60 | Water bodies | Open water, i.e., lakes, reservoirs/fishponds, rivers |
70 | Tundra | Brush tundra, poaceae tundra, wet tundra, bare tundra, mixed tundra |
80 | Artificial surfaces | Settlement place, industrial and mining area, traffic facilities |
90 | Bareland | Saline-alkali land, sand, gravel, rock, microbiotic crust |
100 | Permanent snow/ice | Permanent snow, ice sheet and glaciers |
Class | Proportion in Map (%) | Allocated Samples | Redistributed Samples |
---|---|---|---|
Grassland | 52.8729 | 264 | 205 |
Shrubland | 17.1389 | 86 | 72 |
Cultivated land | 14.3653 | 72 | 65 |
Forest | 9.1390 | 46 | 35 |
Bareland | 3.8734 | 19 | 30 |
Water bodies | 2.0173 | 10 | 30 |
Wetland | 0.3907 | 2 | 30 |
Artificial surfaces | 0.2023 | 1 | 30 |
Permanent snow and ice | 0.0001 | 0 | 3 |
Interpreters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Artificial Surfaces | Bareland | Cult. Land | Forest | Grassland | Shrubland | Water Bodies | Wetland | User. Acc. | ± CI | ||
GlobeLand30 | Artificial surfaces | 6 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0.75 | 0.32 |
Bareland | 0 | 16 | 0 | 1 | 4 | 2 | 0 | 0 | 0.70 | 0.19 | |
Cult. land | 0 | 0 | 13 | 4 | 5 | 1 | 0 | 0 | 0.57 | 0.21 | |
Forest | 0 | 0 | 1 | 22 | 1 | 1 | 0 | 0 | 0.88 | 0.13 | |
Grassland | 0 | 3 | 0 | 10 | 20 | 9 | 0 | 0 | 0.48 | 0.15 | |
Shrubland | 0 | 5 | 0 | 8 | 3 | 25 | 0 | 0 | 0.61 | 0.15 | |
Water bodies | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 1.00 | 0.00 | |
Wetland | 0 | 3 | 0 | 5 | 0 | 0 | 0 | 2 | 0.20 | 0.26 | |
Prod Acc. | 1.00 | 0.31 | 0.96 | 0.30 | 0.82 | 0.45 | 1.00 | 1.00 | |||
± CI | 0.00 | 0.17 | 0.08 | 0.09 | 0.09 | 0.15 | 0.00 | 0.00 |
Interpreters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Artificial Surfaces | Bareland | Cult. Land | Forest | Grassland | Shrubland | Water Bodies | Wetland | User. Acc. | ± CI | ||
GlobeLand30 | Artificial surfaces | 6 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0.75 | 0.32 |
Bareland | 0 | 16 | 0 | 1 | 4 | 2 | 0 | 0 | 0.70 | 0.19 | |
Cult. land | 0 | 0 | 13 | 4 | 5 | 1 | 0 | 0 | 0.57 | 0.21 | |
Forest | 0 | 0 | 1 | 22 | 1 | 1 | 0 | 0 | 0.88 | 0.13 | |
Grassland | 0 | 3 | 0 | 9 | 23 | 7 | 0 | 0 | 0.55 | 0.15 | |
Shrubland | 0 | 5 | 0 | 8 | 3 | 25 | 0 | 0 | 0.61 | 0.15 | |
Water bodies | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 1.00 | 0.00 | |
Wetland | 0 | 3 | 0 | 4 | 0 | 0 | 0 | 3 | 0.30 | 0.30 | |
Prod Acc. | 1.00 | 0.31 | 0.96 | 0.32 | 0.84 | 0.51 | 1.00 | 1.00 | |||
± CI | 0.00 | 0.17 | 0.08 | 0.10 | 0.08 | 0.17 | 0.00 | 0.00 |
Interpreters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Artificial Surfaces | Bareland | Cult. Land | Forest | Grassland | Shrubland | Water Bodies | Wetland | User. Acc. | ± CI | ||
GlobeLand30 | Artificial surfaces | 5 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0.63 | 0.36 |
Bareland | 0 | 16 | 0 | 0 | 4 | 3 | 0 | 0 | 0.70 | 0.19 | |
Cult. land | 0 | 0 | 15 | 3 | 5 | 0 | 0 | 0 | 0.65 | 0.20 | |
Forest | 0 | 0 | 1 | 22 | 1 | 1 | 0 | 0 | 0.88 | 0.13 | |
Grassland | 0 | 3 | 0 | 10 | 16 | 13 | 0 | 0 | 0.38 | 0.15 | |
Shrubland | 0 | 4 | 0 | 5 | 8 | 24 | 0 | 0 | 0.59 | 0.15 | |
Water bodies | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 1.00 | 0.00 | |
Wetland | 0 | 3 | 0 | 4 | 0 | 1 | 0 | 2 | 0.20 | 0.26 | |
Prod Acc. | 1.00 | 0.33 | 0.96 | 0.33 | 0.73 | 0.37 | 1.00 | 1.00 | |||
± CI | 0.00 | 0.19 | 0.07 | 0.10 | 0.12 | 0.12 | 0.00 | 0.00 |
Interpreters | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Artificial Surfaces | Bareland | Cult. Land | Forest | Grassland | P. Snow and Ice | Shrubland | Water Bodies | Wetland | User Acc. | ± CI | ||
GlobeLand30 | Artificial surfaces | 22 | 0 | 1 | 1 | 5 | 0 | 1 | 0 | 0 | 0.73 | 0.16 |
Bareland | 0 | 26 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0.87 | 0.12 | |
Cult. land | 2 | 0 | 45 | 3 | 9 | 0 | 5 | 1 | 0 | 0.69 | 0.11 | |
Forest | 0 | 0 | 0 | 30 | 3 | 0 | 1 | 0 | 1 | 0.86 | 0.12 | |
Grassland | 0 | 6 | 1 | 37 | 99 | 0 | 60 | 0 | 2 | 0.48 | 0.07 | |
P. snow and ice | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0.67 | 0.65 | |
Shrubland | 0 | 6 | 0 | 4 | 20 | 0 | 42 | 0 | 0 | 0.58 | 0.11 | |
Water bodies | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 | 0 | 1.00 | 0.00 | |
Wetland | 0 | 0 | 0 | 7 | 1 | 0 | 0 | 4 | 18 | 0.60 | 0.18 | |
Prod. Acc. | 0.25 | 0.52 | 0.97 | 0.41 | 0.76 | 1.00 | 0.37 | 0.88 | 0.24 | |||
± CI | 0.26 | 0.14 | 0.05 | 0.07 | 0.06 | 0.00 | 0.07 | 0.17 | 0.21 |
Interpreters | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Artificial Surfaces | Bareland | Cult. Land | Forest | Grassland | P. Snow and Ice | Shrubland | Water Bodies | Wetland | User Acc. | ± CI | ||
GlobeLand30 | Artificial surfaces | 22 | 0 | 1 | 1 | 5 | 0 | 1 | 0 | 0 | 0.73 | 0.16 |
Bareland | 0 | 26 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0.87 | 0.12 | |
Cult. land | 2 | 0 | 45 | 3 | 9 | 0 | 5 | 1 | 0 | 0.69 | 0.11 | |
Forest | 0 | 0 | 0 | 30 | 3 | 0 | 1 | 0 | 1 | 0.86 | 0.12 | |
Grassland | 0 | 6 | 1 | 37 | 105 | 0 | 54 | 0 | 2 | 0.51 | 0.07 | |
P. snow and ice | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0.67 | 0.65 | |
Shrubland | 0 | 6 | 0 | 4 | 20 | 0 | 42 | 0 | 0 | 0.58 | 0.11 | |
Water bodies | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 | 0 | 1.00 | 0.00 | |
Wetland | 0 | 0 | 0 | 6 | 1 | 0 | 0 | 4 | 19 | 0.63 | 0.18 | |
Prod Acc. | 0.25 | 0.52 | 0.97 | 0.41 | 0.77 | 1.00 | 0.40 | 0.88 | 0.25 | |||
± CI | 0.26 | 0.14 | 0.05 | 0.07 | 0.06 | 0.00 | 0.07 | 0.17 | 0.22 |
Interpreters | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Artificial Surfaces | Bareland | Cult. Land | Forest | Grassland | P. Snow and Ice | Shrubland | Water Bodies | Wetland | User Acc. | ± CI | ||
GlobeLand30 | Artificial surfaces | 20 | 0 | 1 | 2 | 6 | 0 | 1 | 0 | 0 | 0.67 | 0.17 |
Bareland | 0 | 24 | 0 | 0 | 2 | 0 | 4 | 0 | 0 | 0.80 | 0.15 | |
Cult. land | 0 | 0 | 44 | 2 | 12 | 0 | 6 | 1 | 0 | 0.68 | 0.11 | |
Forest | 0 | 0 | 0 | 30 | 3 | 0 | 1 | 0 | 1 | 0.86 | 0.12 | |
Grassland | 0 | 8 | 2 | 36 | 89 | 0 | 68 | 0 | 2 | 0.43 | 0.07 | |
P. snow and ice | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0.33 | 0.65 | |
Shrubland | 0 | 5 | 0 | 5 | 20 | 0 | 42 | 0 | 0 | 0.58 | 0.11 | |
Water bodies | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 | 0 | 1.00 | 0.00 | |
Wetland | 0 | 0 | 0 | 6 | 1 | 0 | 1 | 3 | 19 | 0.63 | 0.18 | |
Prod Acc. | 1.00 | 0.47 | 0.95 | 0.42 | 0.73 | 1.00 | 0.34 | 0.88 | 0.25 | |||
± CI | 0.00 | 0.14 | 0.07 | 0.07 | 0.06 | 0.00 | 0.06 | 0.17 | 0.22 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
See, L.; Laso Bayas, J.C.; Schepaschenko, D.; Perger, C.; Dresel, C.; Maus, V.; Salk, C.; Weichselbaum, J.; Lesiv, M.; McCallum, I.; et al. LACO-Wiki: A New Online Land Cover Validation Tool Demonstrated Using GlobeLand30 for Kenya. Remote Sens. 2017, 9, 754. https://doi.org/10.3390/rs9070754
See L, Laso Bayas JC, Schepaschenko D, Perger C, Dresel C, Maus V, Salk C, Weichselbaum J, Lesiv M, McCallum I, et al. LACO-Wiki: A New Online Land Cover Validation Tool Demonstrated Using GlobeLand30 for Kenya. Remote Sensing. 2017; 9(7):754. https://doi.org/10.3390/rs9070754
Chicago/Turabian StyleSee, Linda, Juan Carlos Laso Bayas, Dmitry Schepaschenko, Christoph Perger, Christopher Dresel, Victor Maus, Carl Salk, Juergen Weichselbaum, Myroslava Lesiv, Ian McCallum, and et al. 2017. "LACO-Wiki: A New Online Land Cover Validation Tool Demonstrated Using GlobeLand30 for Kenya" Remote Sensing 9, no. 7: 754. https://doi.org/10.3390/rs9070754
APA StyleSee, L., Laso Bayas, J. C., Schepaschenko, D., Perger, C., Dresel, C., Maus, V., Salk, C., Weichselbaum, J., Lesiv, M., McCallum, I., Moorthy, I., & Fritz, S. (2017). LACO-Wiki: A New Online Land Cover Validation Tool Demonstrated Using GlobeLand30 for Kenya. Remote Sensing, 9(7), 754. https://doi.org/10.3390/rs9070754