Multi-Decadal Surface Water Dynamics in North American Tundra
"> Figure 1
<p>Study area in North American Arctic region, north central Nunavut territory Canada. The study area is located primarily in the Southern Arctic ecoregion and is characterized by low topography and numerous small to moderate sized water bodies. The Queen Maud Gulf Bird sanctuary is indicated with the red polygon.</p> "> Figure 2
<p>Algorithm flow for the generation of annual water maps from the individual dates of DSWE (reproduced from [<a href="#B28-remotesensing-09-00497" class="html-bibr">28</a>]). In Panel (<b>a</b>) (left most panel), individual scenes are converted from four classes to two (land and water) then summed to get total observations of land and total observations of water for the period. Panel (<b>b</b>) shows the “total water” for an individual path/row. Panel (<b>c</b>) shows the mosaicked non-overlapping path/rows which are then summed. Panel (<b>d</b>) shows the final “total water” for the full region of interest.</p> "> Figure 3
<p>Distribution of WorldView-2 (WV2) scenes used in the accuracy assessment of the annual water maps. Footprints of WV2 scenes are shown as dark grey rectangles distributed throughout the image.</p> "> Figure 4
<p>In the images above water is shown in black and land is shown in light grey. The first five images show a lake complex (small unnamed lake in northern Nunavut) in five individual years. The final image shows the master map which is the maximum extent in the whole 31-year record. Through time you see the lake shrinks and splits into several components. The master map allows all of these components to be related to the same water body even when they split off into individual pieces. The years shown here are chosen as representative examples of the 31-year record.</p> "> Figure 5
<p>Total annual area of surface water between 1985 and 2015. Red circles denote local temporal maxima and the minimum in the record.</p> "> Figure 6
<p>Difference in extent for several lakes in the study region. The lighter colors indicate that water was present in early years of the study but not present in later years.</p> "> Figure 7
<p>Variability of river extent and flow from 1985–2015. Lighter colors indicate that water was present in some years but not in all years. This is particularly noticeable in the edges of the river and in the islands in the middle of the channel.</p> "> Figure 8
<p>Spatial distribution of water bodies with a significant (<span class="html-italic">p</span> < 0.05) trend in surface water area (ha/year) over the 31-year time period of the study. Water bodies that are increasing in size are shown in green while the ones that are decreasing in size are shown in red.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Annual Product Generation
- 0
- Not water
- 1
- High confidence water
- 2
- Low confidence water
- 3
- Partial water
3.2. Annual Product Accuracy Assessment
3.3. Identifying Unique Water Bodies
4. Results
4.1. Accuracy Assessment Results
4.2. Long Term Water Dynamics
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Carroll, M.L.; Townshend, J.R.G.; DiMiceli, C.M.; Loboda, T.; Sohlberg, R.A. Shrinking lakes of the Arctic: Spatial relationships and trajectory of change. Geophys. Res. Lett. 2011, 38, L20406. [Google Scholar] [CrossRef]
- Downing, J.A.; Prairie, Y.T.; Cole, J.J.; Duarte, C.M.; Tranvik, L.J.; Striegl, R.G.; McDowell, W.H.; Kortelainen, P.; Caraco, N.F.; Melack, J.M.; et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 2006, 51, 2388–2397. [Google Scholar] [CrossRef]
- Billings, W.D.; Luken, J.O.; Mortensen, D.A.; Peterson, K.M. Arctic Tundra—A Source or Sink for Atmospheric Carbon-Dioxide in a Changing Environment. Oecologia 1982, 53, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Post, W.M.; Peng, T.H.; Emanuel, W.R.; King, A.W.; Dale, V.H.; Deangelis, D.L. The Global Carbon-Cycle. Am. Sci. 1990, 78, 310–326. [Google Scholar]
- Chapin, F.S., 3rd; Sturm, M.; Serreze, M.C.; McFadden, J.P.; Key, J.R.; Lloyd, A.H.; McGuire, A.D.; Rupp, T.S.; Lynch, A.H.; Schimel, J.P.; et al. Role of land-surface changes in arctic summer warming. Science 2005, 310, 657–660. [Google Scholar] [CrossRef] [PubMed]
- McGuire, A.D.; Chapin, F.S.; Walsh, J.E.; Wirth, C. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system. Annu. Rev. Environ. Res. 2006, 31, 61–91. [Google Scholar] [CrossRef]
- Francis, J.A.; White, D.M.; Cassano, J.J.; Gutowski, W.J.; Hinzman, L.D.; Holland, M.M.; Steele, M.A.; Vörösmarty, C.J. An arctic hydrologic system in transition: Feedbacks and impacts on terrestrial, marine, and human life. J. Geophys. Res. 2009, 114, G04019. [Google Scholar] [CrossRef]
- Slater, A.G.; Bohn, T.J.; McCreight, J.L.; Serreze, M.C.; Lettenmaier, D.P. A multimodel simulation of pan-Arctic hydrology. J. Geophys. Res. 2007, 112, G04S45. [Google Scholar] [CrossRef]
- Subin, Z.M.; Riley, W.J.; Mironov, D. An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J. Adv. Model. Earth Syst. 2012, 4, 27. [Google Scholar] [CrossRef]
- Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Griffith, B.; Hollister, R.D.; Hope, A.; Huntington, H.P.; et al. Evidence and implications of recent climate change in northern Alaska and other arctic regions. Clim. Chang. 2005, 72, 251–298. [Google Scholar] [CrossRef]
- Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houstond, S.; Racinef, C.; Sturmg, M.; Tapeh, K. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens. Environ. 2004, 89, 281–308. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barrett, A.P.; Stroeve, J.C.; Kindig, D.N.; Holland, M.M. The emergence of surface-based Arctic amplification. Cryosphere 2009, 3, 11–19. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Serreze, M.C.; Francis, J.A. The arctic amplification debate. Clim. Chang. 2006, 76, 241–264. [Google Scholar] [CrossRef]
- Prigent, C.; Papa, F.; Aires, F.; Jimenez, C.; Rossow, W.B.; Matthews, E. Changes in land surface water dynamics since the 1990s and relation to population pressure. Geophys. Res. Lett. 2012, 39, L08403. [Google Scholar] [CrossRef]
- Muster, S.; Heim, B.; Abnizova, A.; Boike, J. Water Body Distributions Across Scales: A Remote Sensing Based Comparison of Three Arctic TundraWetlands. Remote Sens. 2013, 5, 1498–1523. [Google Scholar] [CrossRef]
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 2007, 10, 171–184. [Google Scholar] [CrossRef]
- Kortelainen, P.; Pajunen, H.; Rantakari, M.; Saarnisto, M. A large carbon pool and small sink in boreal Holocene lake sediments. Glob. Chang. Biol. 2004, 10, 1648–1653. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Treat, C.C.; Waldrop, M.P.; Waddington, J.M.; Harden, J.W.; McGuire, A.D. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. J. Geophys. Res. 2008, 113, G00A10. [Google Scholar] [CrossRef]
- Stokstad, E. Defrosting the carbon freezer of the north. Science 2004, 304, 1618–1620. [Google Scholar] [CrossRef] [PubMed]
- Walter, K.M.; Zimov, S.A.; Chanton, J.P.; Verbyla, D.; Chapin, F.S., 3rd. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 2006, 443, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Carroll, M.L.; Townshend, J.R.; DiMiceli, C.M.; Noojipady, P.; Sohlberg, R.A. A new global raster water mask at 250 m resolution. Int. J. Digit. Earth 2009, 2, 291–308. [Google Scholar] [CrossRef]
- Lehner, B.; Doll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Salomon, J.; Hodges, J.; Friedl, M.; Schaaf, C.; Strahler, A.; Gao, F.; Schneider, A.; Zhang, X.; El Saleous, N.; Wolfe, R.E. (Eds.) Global Land-Water Mask Derived from MODIS Nadir BRDF-Adjusted Reflectances (NBAR) and the MODIS Land Cover Algorithm. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004. [Google Scholar]
- Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. A global, high-resolution (30-m) inland water body dataset for 2000: First results of a topographic–spectral classification algorithm. Int. J. Digit. Earth 2015, 9, 1–21. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Carroll, M.; Wooten, M.; DiMiceli, C.; Sohlberg, R.; Kelly, M. Quantifying Surface Water Dynamics at 30 Meter Spatial Resolution in the North American High Northern Latitudes 1991–2011. Remote Sens. 2016, 8, 622. [Google Scholar] [CrossRef]
- Carroll, M.L.; Wooten, M.R.; Dimiceli, C.M.; Sohlberg, R.A.; Townshend, J.R.G. ABoVE: Surface Water Extent, Boreal and Tundra Regions, North America, 1991–2011; ORNL DAAC: Oak Ridge, TN, USA, 2016. [Google Scholar]
- Briggs, M.A.; Walvoord, M.A.; McKenzie, J.M.; Voss, C.I.; Day-Lewis, F.D.; Lane, J.W. New permafrost is forming around shrinking Arctic lakes, but will it last? Geophys. Res. Lett. 2014, 41, 1585–1592. [Google Scholar] [CrossRef]
- Smith, L.C.; Sheng, Y.; MacDonald, G.M.; Hinzman, L.D. Disappearing Arctic lakes. Science 2005, 308, 1429. [Google Scholar] [CrossRef] [PubMed]
- Downing, J.A. Emerging global role of small lakes and ponds: Little things mean a lot. Limnetica 2010, 29, 9–23. [Google Scholar]
- Bonan, G.B. Sensitivity of a GCM Simulation to Inclusion of Inland Water Surfaces. J. Clim. 1995, 8, 2691–2704. [Google Scholar] [CrossRef]
- McGuire, A.D.; Walsh, J.E.; Kimball, J.S.; Clein, J.S.; Euskirchen, S.E.; Drobot, S.; Herzfeld, U.C.; Maslanik, J.; Lammers, R.B.; Rawlins, M.A.; et al. The western Arctic Linkage Experiment (WALE): Overview and synthesis. Earth Interact. 2008, 12, 1–13. [Google Scholar] [CrossRef]
- Tang, Q.H.; Gao, H.L.; Yeh, P.; Oki, T.; Su, F.G.; Lettenmaier, D.P. Dynamics of Terrestrial Water Storage Change from Satellite and Surface Observations and Modeling. J. Hydrometeorol. 2010, 11, 156–170. [Google Scholar] [CrossRef]
- Rawlins, M.A.; Steele, M.; Holland, M.M.; Adam, J.C.; Cherry, J.E.; Francis, J.A.; Groisman, P.Y.; Hinzman, L.D.; Huntington, T.G.; Kane, D.L.; et al. Analysis of the Arctic System for Freshwater Cycle Intensification: Observations and Expectations. J. Clim. 2010, 23, 5715–5737. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Brown, J.; Ferrians, O.J.J.; Heginbottom, J.A.; Melnikov, E.S. Circum-arctic map of permafrost and ground ice conditions. In Center NSaID; Boulder, C.O., Ed.; National Snow and Ice Data Center: Boulder, CO, USA, 1998. [Google Scholar]
- Tarnocai, C.; Kimble, J.M.; Swanson, D.; Goryachkin, S.; Naumov, Y.M.; Stolbovoi, V.; Jakobsen, B.; Broll, G.; Montanarella, L.; Arnoldussen, A.; et al. Northern Circumpolar Soils. 1:10,000,000 scale map. In Research Branch AaA-FC; Canada National Snow and Ice Data Center: Boulder, CO, USA, 2002. [Google Scholar]
- National Research Canada (NRCC). Principal mineral areas of Canada. In Minerals and Metals Sector NRC; Natural Resources Council: Ottawa, ON, Canada, 2015. [Google Scholar]
- United States Geological Survey (USGS). Landsat Surface Reflectance High Level Data Products. Available online: http://landsat.usgs.gov/CDR_LSR.php (accessed on 20 July 2016).
- Jones, J.W. Efficient wetland surface water detection and monitoring via Landsat: Comparison with in situ data from the Everglades Depth Estimation Network (EDEN). Remote Sens. 2015, 7, 12503–12538. [Google Scholar] [CrossRef]
- Goward, S.; Arvidson, T.; Williams, D.; Faundeen, J.; Irons, J.; Franks, S. Historical Record of Landsat Global Coverage. Photogramm. Eng. Remote Sens. 2006, 72, 1155–1169. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A. The Landsat observation record of Canada: 1972–2012. Can. J. Remote Sens. 2014, 39, 455–467. [Google Scholar] [CrossRef]
- Storey, J.; Choate, M.; Lee, K. Landsat 8 Operational Land Imager On-Orbit Geometric Calibration and Performance. Remote Sens. 2014, 6, 11127–11152. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Neigh, C.S.R.; Masek, J.G.; Nickeson, J.E. High-Resolution Satellite Data Open for Government Research. Eos Trans. Am. Geophys. Union 2013, 94, 121–123. [Google Scholar] [CrossRef]
- Globe, D. World View 2 Multi-Spectral Data; Globe D: Worthington, MN, USA, 2016. [Google Scholar]
- Moratto, Z.M.; Broxton, M.J.; Beyer, R.A.; Lundy, M.; Husmann, K. Ames Stereo Pipeline, NASA’s open source automated stereogrammetry software. Proccedings of the 41th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 1–5 March 2010. [Google Scholar]
- Jorgenson, M.T.; Romanovsky, V.; Harden, J.; Shur, Y.; O’Donnell, J.; Schuur, E.A.G.; Kanevskiy, M.; Marchenko, S. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 2010, 40, 1219–1236. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Slater, A.G.; Tomas, R.A.; Holland, M.M.; Deser, C. Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys. Res. Lett. 2008, 35, L11506. [Google Scholar] [CrossRef]
- Bouchard, F.; Turner, K.W.; MacDonald, L.A.; Deakin, C.; White, H.; Farquharson, N.; Medeiros, A.S.; Wolfe, B.B.; Hall, R.I.; Pienitz, R.; et al. Vulnerability of shallow subarctic lakes to evaporate and desiccate when snowmelt runoff is low. Geophys. Res. Lett. 2013, 40, 6112–6117. [Google Scholar] [CrossRef]
- Brown, L.; Young, K.L. Assessment of three mapping techniques to delineate lakes and ponds in a Canadian High Arctic wetland complex. Arctic 2006, 59, 283–293. [Google Scholar] [CrossRef]
- Chen, M.; Rowland, J.C.; Wilson, C.J.; Altmann, G.L.; Brumby, S.P. The Importance of Natural Variability in Lake Areas on the Detection of Permafrost Degradation: A Case Study in the Yukon Flats, Alaska. Permafr. Periglac. Process. 2013, 24, 224–240. [Google Scholar] [CrossRef]
- Hinkel, K.M.; Jones, B.M.; Eisner, W.R.; Cuomo, C.J.; Beck, R.A.; Frohn, R. Methods to assess natural and anthropogenic thaw lake drainage on the western Arctic coastal plain of northern Alaska. J. Geophys. Res. Earth 2007, 112, F02S16. [Google Scholar] [CrossRef]
- Watts, J.D.; Kimball, J.S.; Jones, L.A.; Schroeder, R.; McDonald, K.C. Satellite Microwave remote sensing of contrasting surface water inundation changes within the Arctic–Boreal Region. Remote Sens. Environ. 2012, 127, 223–236. [Google Scholar] [CrossRef]
Reference (from VHR) | |||||
---|---|---|---|---|---|
Land | Water | Total | User’s Accuracy | ||
Predicted (annual map 2010) | Land | 486 | 19 | 505 | 96% |
Water | 13 | 125 | 138 | 91% | |
Total | 499 | 144 | 643 | ||
Producer’s accuracy | 98% | 87% | |||
Overall Accuracy | 95% |
Size in ha | <0.1 | 0.1 to 1 | 1 to 10 | 10 to 100 | 100 to 1000 | 1000 to 10,000 | 10,000 to 100,000 | >100,000 |
---|---|---|---|---|---|---|---|---|
Count | 251,884 | 202,412 | 167,450 | 48,495 | 4836 | 257 | 29 | 9 |
Percent of total water bodies | 37.296% | 29.970% | 24.794% | 7.180% | 0.716% | 0.038% | 0.004% | 0.001% |
Study Area Analysis | Decreasing Size | Increasing Size | No Change | Total Number of Water Bodies |
---|---|---|---|---|
Count of water bodies | 282,904 | 304,204 | 88,264 | 675,372 |
Count of water bodies with trend in surface water area with p < 0.05 | 75,988 | 92,059 | 168,047 | |
Count of water bodies with trend in surface water area with p < 0.01 | 30,194 | 42,528 | 72,722 |
Size in ha | <0.1 | 0.1 to 1 | 1 to 10 | 10 to 100 | 100 to 1000 | 1000 to 10,000 | 10,000 to 100,000 | >100,000 |
---|---|---|---|---|---|---|---|---|
Count of water bodies with trend in surface water area at p < 0.05 | 52,475 | 55,081 | 45,724 | 13,330 | 1369 | 62 | 4 | 2 |
Fraction of total water bodies by size | 21% | 27% | 27% | 27% | 28% | 24% | 14% | 22% |
Count of water bodies decreasing in size | 31,810 | 21,438 | 17,216 | 4960 | 527 | 32 | 3 | 2 |
Count of water bodies increasing in size | 20,665 | 33,643 | 28,508 | 8370 | 842 | 30 | 1 | 0 |
Fraction of water bodies decreasing | 61% | 39% | 38% | 37% | 38% | 52% | 75% | 100% |
Fraction of water bodies increasing | 39% | 61% | 62% | 63% | 62% | 48% | 25% | 0% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carroll, M.L.; Loboda, T.V. Multi-Decadal Surface Water Dynamics in North American Tundra. Remote Sens. 2017, 9, 497. https://doi.org/10.3390/rs9050497
Carroll ML, Loboda TV. Multi-Decadal Surface Water Dynamics in North American Tundra. Remote Sensing. 2017; 9(5):497. https://doi.org/10.3390/rs9050497
Chicago/Turabian StyleCarroll, Mark L., and Tatiana V. Loboda. 2017. "Multi-Decadal Surface Water Dynamics in North American Tundra" Remote Sensing 9, no. 5: 497. https://doi.org/10.3390/rs9050497
APA StyleCarroll, M. L., & Loboda, T. V. (2017). Multi-Decadal Surface Water Dynamics in North American Tundra. Remote Sensing, 9(5), 497. https://doi.org/10.3390/rs9050497