Proximal Sensing and Digital Terrain Models Applied to Digital Soil Mapping and Modeling of Brazilian Latosols (Oxisols)
"> Figure 1
<p>Location of the study area and sampling design for the classification of soils and the collection of samples for laboratory analyses.</p> "> Figure 2
<p>Boxplots of the variables used for distinguishing the four soil classes of the study area. 1, LA; 2, LVm; 3, LVg; 4, LVA.</p> "> Figure 3
<p>Maps of the variables used for distinguishing soil classes in the study area.</p> "> Figure 4
<p>X-ray diffractograms of the concentrated Fe clay fraction of the B horizon of soils derived from gabbro (LVg) and gneiss (LVA). Gt, goethite; Hm, hematite; Mh, maghemite.</p> "> Figure 5
<p>Predicted soil map of the study area and location of the validation points.</p> "> Figure 6
<p>Scatterplots considering only the explanatory variables of predictive models for clay and sand contents. In (<b>a</b>–<b>c</b>), models for clay, and in (<b>d</b>–<b>g</b>), models for sand. (<b>a</b>,<b>d</b>) Using parent material (PM), proximal sensors (PS) and digital terrain models (DTM) as explanatory variables; (<b>b</b>,<b>f</b>) using only PS; (<b>c</b>,<b>g</b>) using only PS and DTM; and (<b>e</b>) using PS and PM. The model for clay using PS and P.M. resulted in the same model as using PS, PM, and DTM. MS = magnetic susceptibility.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Laboratory Analyses
2.2. Soil Classes Mapping
2.3. Soil Particle Size Distribution Predictive Models
3. Results
3.1. Digital Soil Mapping
3.2. Soil Particle Size Distribution Predictive Models
4. Discussion
4.1. Soil Classes Mapping
4.2. Soil Particle Size Distribution Prediction Models
5. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Dos Santos, W.J.R.; Curi, N.; Silva, S.H.G.; da Fonseca, S.; da Silva, E.; Marques, J.J. Detailed soil survey of an experimental watershed representative of the Brazilian Coastal Plains and its practical application. Ciênc. Agrotecnol. 2014, 38, 50–60. [Google Scholar] [CrossRef]
- SBCS Brazilian Soil Science Society Bulletin. Available online: http://www.sbcs.org.br/wp-content/uploads/2016/01/boletim_v41_n3.pdf (accessed on 2 March 2016).
- Da Silva, E.; Curi, N.; Ferreira, M.M.; Volpato, M.M.L.; dos Santos, W.J.R.; Silva, S.H.G. Pedotransfer functions for water retention in the main soils from the Brazilian Coastal Plains. Ciênc. Agrotecnol. 2015, 39, 331–338. [Google Scholar] [CrossRef]
- Grunwald, S. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma 2009, 152, 195–207. [Google Scholar] [CrossRef]
- Hengl, T.; MacMillan, R.A.; Nikolic, M. Mapping efficiency and information content. Int. J. Appl. Earth Obs. Geoinf. 2013, 22, 127–138. [Google Scholar] [CrossRef]
- Samuel-Rosa, A.; Heuvelink, G.B.M.; Vasques, G.M.; Anjos, L.H.C. Do more detailed environmental covariates deliver more accurate soil maps? Geoderma 2015, 243–244, 214–227. [Google Scholar] [CrossRef]
- Curi, N.; Lima, J.M.; Andrade, H.; Gualberto, V. Geomorfologia, física, química e mineralogia dos principais solos da região de lavras (MG). Ciênc. Prát. 1990, 14, 297–307. [Google Scholar]
- Marques Júnior, J.; Curi, N.; Lima, J.M. Evolução diferenciada de latossolo vermelho-amarelo e latossolo vermelho-escuro em função da litologia gnáissica na região de lavras (MG). Rev. Bras. Ciênc. Solo 1992, 16, 235–240. [Google Scholar]
- McBratney, A.B.; Mendonça-Santos, M.L.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Adhikari, K.; Kheir, R.B.; Greve, M.B.; Bøcher, P.K.; Malone, B.P.; Minasny, B.; McBratney, A.B.; Greve, M.H. High-resolution 3-D mapping of soil texture in Denmark. Soil Sci. Soc. Am. J. 2013, 77, 860–876. [Google Scholar] [CrossRef]
- Scull, P.; Franklin, J.; Chadwick, O.A.; McArthur, D. Predictive soil mapping: A review. Prog. Phys. Geogr. 2003, 27, 171–197. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.M.; Rossiter, D.G. About regression-kriging: From equations to case studies. Comput. Geosci. 2007, 33, 1301–1315. [Google Scholar] [CrossRef]
- De Menezes, M.D.; Silva, S.H.G.; de Mello, C.R.; Owens, P.R.; Curi, N. Spatial prediction of soil properties in two contrasting physiographic regions in Brazil. Sci. Agric. 2016, 73, 274–285. [Google Scholar] [CrossRef]
- Jenny, H. Factors of Soil Formation a System of Quantitative Pedology; McGraw-Hill Book Co., Inc.: New York, NY, USA, 1941. [Google Scholar]
- McKenzie, N.J.; Gessler, P.E.; Ryan, P.J.; O’Connell, D. The role of terrain analysis in soil mapping. In Terrain Analysis: Principles and Applications; Wilson, J., Gallant, J., Eds.; John Wiley & Sons Ltd.: New York, NY, USA, 2000; pp. 245–265. [Google Scholar]
- McBratney, A.B.; Minasny, B.; Whelan, B. Defining proximal soil sensing. In Proceedings of the The Second Global Workshop on Proximal Soil Sensing, Montreal, PQ, Canada, 15–18 May 2011.
- Horta, A.; Malone, B.; Stockmann, U.; Minasny, B.; Bishop, T.F.A.; McBratney, A.B.; Pallasser, R.; Pozza, L. Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review. Geoderma 2015, 241–242, 180–209. [Google Scholar] [CrossRef]
- Liu, D.; Ma, J.; Sun, Y.; Li, Y. Spatial distribution of soil magnetic susceptibility and correlation with heavy metal pollution in Kaifeng, China. Catena 2016, 139, 53–60. [Google Scholar] [CrossRef]
- Wang, X.S. Assessment of heavy metal pollution in Xuzhou urban topsoils by magnetic susceptibility measurements. J. Appl. Geophys. 2013, 92, 76–83. [Google Scholar] [CrossRef]
- Karimi, R.; Ayoubi, S.; Jalalian, A.; Sheikh-Hosseini, A.R.; Afyuni, M. Relationships between magnetic susceptibility and heavy metals in urban topsoils in the arid region of Isfahan, central Iran. J. Appl. Geophys. 2011, 74, 1–7. [Google Scholar] [CrossRef]
- Schmidt, A.; Yarnold, R.; Hill, M.; Ashmore, M. Magnetic susceptibility as proxy for heavy metal pollution: A site study. J. Geochem. Explor. 2005, 85, 109–117. [Google Scholar] [CrossRef]
- Guzmán, G.; Barrón, V.; Gómez, J.A. Evaluation of magnetic iron oxides as sediment tracers in water erosion experiments. Catena 2010, 82, 126–133. [Google Scholar] [CrossRef]
- Jordanova, D.; Jordanova, N.; Petrov, P. Pattern of cumulative soil erosion and redistribution pinpointed through magnetic signature of chernozem soils. Catena 2014, 120, 46–56. [Google Scholar] [CrossRef]
- De Jong, E.; Pennock, D.J.; Nestor, P.A. Magnetic susceptibility of soils in different slope positions in Saskatchewan, Canada. Catena 2000, 40, 291–305. [Google Scholar] [CrossRef]
- Maher, B.A. Characterisation of soils by mineral magnetic measurements. Phys. Earth Planet. Inter. 1986, 42, 76–92. [Google Scholar] [CrossRef]
- Siqueira, D.S.; Marques, J.; Pereira, G.T.; Teixeira, D.B.; Vasconcelos, V.; Carvalho Júnior, O.A.; Martins, E.S. Detailed mapping unit design based on soil-landscape relation and spatial variability of magnetic susceptibility and soil color. Catena 2015, 135, 149–162. [Google Scholar] [CrossRef]
- Hanesch, M.; Scholger, R. The influence of soil type on the magnetic susceptibility measured throughout soil profiles. Geophys. J. Int. 2005, 161, 50–56. [Google Scholar] [CrossRef]
- Hanesch, M.; Rantitsch, G.; Hemetsberger, S.; Scholger, R. Lithological and pedological influences on the magnetic susceptibility of soil: Their consideration in magnetic pollution mapping. Sci. Total Environ. 2007, 382, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.G.; Xue, Q.F.; Zhu, L.; Yu, J.Y. Mineral magnetic properties of a weathering sequence of soils derived from basalt in Eastern China. Catena 2008, 73, 23–33. [Google Scholar] [CrossRef]
- Mullins, C.E. Magnetic susceptibility of the soil and its significance in soil science—A review. J. Soil Sci. 1977, 28, 223–246. [Google Scholar] [CrossRef]
- Hseu, Z.; Chen, Z.; Tsai, C.; Jien, S. Portable X-ray fluorescence (pXRF) for determining Cr and Ni contents of serpentine soils in the field Zeng-Yei. In Digital Soil Morphometrics; Hartemink, A.E., Minasny, B., Eds.; Progress in Soil Science; Springer International Publishing: Cham, Switzerland, 2016; pp. 37–50. [Google Scholar]
- Stockmann, U.; Cattle, S.R.; Minasny, B.; McBratney, A.B. Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis. Catena 2016, 139, 220–231. [Google Scholar] [CrossRef]
- Zhu, Y.; Weindorf, D.C.; Zhang, W. Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture. Geoderma 2011, 167–168, 167–177. [Google Scholar] [CrossRef]
- VanCott, R.J.; McDonald, B.J.; Seelos, A.G. Standard soil sample preparation error and comparison of portable XRF to laboratory AA analytical results. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1999, 422, 801–804. [Google Scholar] [CrossRef]
- Weindorf, D.C.; Sarkar, R.; Dia, M.; Wang, H.; Chang, Q.; Haggard, B.; McWhirt, A.; Wooten, A. Correlation of X-ray fluorescence spectrometry and inductively coupledplasma atomic emission spectroscopy for elemental determination in compostedproducts. Compost Sci. Util. 2008, 16, 79–82. [Google Scholar] [CrossRef]
- Sparks, D.L. Environmental Soil Chemistry, 2nd ed.; Elsevier: San Diego, CA, USA, 2003. [Google Scholar]
- Hartemink, A.E.; Minasny, B. Towards digital soil morphometrics. Geoderma 2014, 230–231, 305–317. [Google Scholar] [CrossRef]
- Walter, C.; Lagacherie, P.; Follain, S. Integrating pedological knowledge into digital soil mapping. In Digital Soil Mapping: An Introductory Perspective; Lagacherie, P., McBratney, A.B., Voltz, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 281–300. [Google Scholar]
- Camargo, L.A.; Marques Júnior, J.; Pereira, G.T.; Bahia, A.S.R.D.S. Clay mineralogy and magnetic susceptibility of oxisols in geomorphic surfaces. Sci. Agric. 2014, 71, 244–256. [Google Scholar] [CrossRef]
- Gomide, P.H.O.; Silva, M.L.N.; Soares, C.R.F.S. Atributos físicos, químicos e biológicos do solo em ambientes de voçorocas no município de lavras—MG. Rev. Bras. Cienc. Solo 2011, 35, 567–577. [Google Scholar] [CrossRef]
- Embrapa. Sistema Brasileiro de Classificação de Solos, 3rd ed.; Embrapa: Brasília, Brazil, 2013. [Google Scholar]
- Baver, L.D.; Gardner, W.H.; Gardner, W.R. Soil Physics, 5th ed.; John Wiley & Sons: New York, NY, USA, 1972. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 383–412. [Google Scholar]
- Mclean, E.O.; Hedleson, M.R.; Bartlett, R.J.; Holowaychuk, D. Aluminium in soils: I. Extraction methods and magnitud clays in Ohio soils. Soil Sci. Soc. Am. Proc. 1958, 22, 382–387. [Google Scholar] [CrossRef]
- Mehlich, A. Determination of P, Ca, Mg, K, Na and NH4. In North Carolina Soil Testing Division; University of North Carolina: Raleigh, NC, USA, 1953; p. 195. [Google Scholar]
- Shoemaker, H.E.; McLean, E.O.; Pratt, P.F. Buffer methods for determining the lime requirement of soils with appreciable amounts of extractable aluminum. Soil Sci. Soc. Am. Proc. 1961, 25, 274–277. [Google Scholar] [CrossRef]
- Embrapa. Manual de Análises Químicas de Solos, Plantas e Fertilizantes, 1st ed.; Embrapa Solos: Rio de Janeiro, Brazil, 1999. [Google Scholar]
- Araujo, M.A.; Pedroso, A.V.; Amaral, D.C.; Zinn, Y.L. Paragênese mineral de solos desenvolvidos de diferentes litologias na região sul de Minas Gerais. Rev. Bras. Cienc. Solo 2014, 38, 11–25. [Google Scholar] [CrossRef]
- Kämpf, N.; Schwertmann, U. The 5 M NaOH concentration treatment for iron oxides in solis. Clays Clay Miner. 1982, 40, 401–408. [Google Scholar] [CrossRef]
- Moore, I.D.; Gessler, P.E.; Nielsen, G.A.; Peterson, G.A. Soil attribute prediction using terrain analysis. Soil Sci. Soc. Am. J. 1993, 57, 443–452. [Google Scholar] [CrossRef]
- Behrens, T.; Zhu, A.-X.; Schmidt, K.; Scholten, T. Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma 2010, 155, 175–185. [Google Scholar] [CrossRef]
- Brown, R.A.; McDaniel, P.; Gessler, P.E. Terrain attribute modeling of volcanic ash distributions in Northern Idaho. Soil Sci. Soc. Am. J. 2012, 76, 179–187. [Google Scholar] [CrossRef]
- Cavazzi, S.; Corstanje, R.; Mayr, T.; Hannam, J.; Fealy, R. Are fine resolution digital elevation models always the best choice in digital soil mapping? Geoderma 2013, 195–196, 111–121. [Google Scholar] [CrossRef]
- Adhikari, K.; Minasny, B.; Greve, M.B.; Greve, M.H. Constructing a soil class map of Denmark based on the FAO legend using digital techniques. Geoderma 2014, 214–215, 101–113. [Google Scholar] [CrossRef]
- Mosleh, Z.; Salehi, M.H.; Jafari, A.; Borujeni, I.E.; Mehnatkesh, A. The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environ. Monit. Assess. 2016, 188, 195. [Google Scholar] [CrossRef] [PubMed]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Jasiewicz, J.; Stepinski, T.F. Geomorphons—A pattern recognition approach to classification and mapping of landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Cambule, A.H.; Rossiter, D.G.; Stoorvogel, J.J. A methodology for digital soil mapping in poorly-accessible areas. Geoderma 2013, 192, 341–353. [Google Scholar] [CrossRef]
- Silva, S.H.G.; de Menezes, M.D.; Owens, P.R.; Curi, N. Retrieving pedologist’s mental model from existing soil map and comparing data mining tools for refining a larger area map under similar environmental conditions in Southeastern Brazil. Geoderma 2016, 267, 65–77. [Google Scholar] [CrossRef]
- Teske, R.; Giasson, E.; Bagatini, T. Comparação do uso de modelos digitais de elevação em mapeamento digital de solos em Dois Irmãos, RS, Brasil. Rev. Bras. Ciênc. Solo 2014, 38, 1367–1376. [Google Scholar] [CrossRef]
- Ashtekar, J.M.; Owens, P.R. Remembering knowledge: An expert knowledge based approach to digital soil mapping. Soil Horiz. 2013, 54, 1–6. [Google Scholar] [CrossRef]
- Ashtekar, J.M.; Owens, P.R.; Brown, R.A.; Winzeler, H.E.; Dorantes, M.; Libohova, Z.; Dasilva, M.; Castro, A. Digital mapping of soil properties and associated uncertainties in the Llanos Orientales, South America. In GlobalSoilMap; Arrouays, D., McKenzie, N., Hempel, J., Forges, A.R., McBratney, A.B., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 367–372. [Google Scholar]
- De Menezes, M.D.; Silva, S.H.G.; de Mello, C.R.; Owens, P.R.; Curi, N. Solum depth spatial prediction comparing conventional with knowledge-based digital soil mapping approaches. Sci. Agric. 2014, 71, 316–323. [Google Scholar] [CrossRef]
- Shi, X.; Long, R.; Dekett, R.; Philippe, J. Integrating different types of knowledge for digital soil mapping. Soil Sci. Soc. Am. J. 2009, 73, 1682–1692. [Google Scholar] [CrossRef]
- Zhu, A.X.; Hudson, B.; Burt, J.; Lubich, K.; Simonson, D. Soil mapping using GIS, expert knowledge, and fuzzy logic. Soil Sci. Soc. Am. J. 2001, 65, 1463. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; He, Y.; Jones, B.T. Recent advances in portable X-ray fluorescence spectrometry. Appl. Spectrosc. Rev. 2004, 39, 1–25. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Pierangeli, M.A.P.; Guilherme, L.R.G.; Curi, N.; Silva, M.L.N.; Oliveira, L.R.; Lima, J.M. Teor total e capacidade máxima de adsorção de chumbo em Latossolos Brasileiros. Rev. Bras. Ciênc. Solo 2001, 25, 279–288. [Google Scholar] [CrossRef]
- Triantafilis, J.; Lesch, S.M. Mapping clay content variation using electromagnetic induction techniques. Comput. Electron. Agric. 2005, 46, 203–237. [Google Scholar] [CrossRef]
- Waiser, T.H.; Morgan, C.L.S.; Brown, D.J.; Hallmark, C.T. In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy. Soil Sci. Soc. Am. J. 2007. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Cattle, S.R.; Ortega, A.; Fouad, Y. In situ measurements of soil colour, mineral composition and clay content by vis-NIR spectroscopy. Geoderma 2009, 150, 253–266. [Google Scholar] [CrossRef]
- Curi, N.; Franzmeier, D.P. Effect of parent rocks on chemical and mineralogical properties of some Oxisols in Brazil. Soil Sci. Soc. Am. J. 1987, 51, 153–158. [Google Scholar] [CrossRef]
- Silva, A.R.; Souza Junior, I.G.; da Costa, A.C.S. Suscetibilidade magnética do horizonte b de solos do estado do Paraná. Rev. Bras. Cienc. Solo 2010, 34, 329–337. [Google Scholar] [CrossRef]
- Schwertmann, U.; Taylor, R.M. Iron oxides. In Minerals in Soil Environments; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society America: Madison, WI, USA, 1989; pp. 379–438. [Google Scholar]
- Dos Reis Barrios, M.; Marques Junior, J.; Panosso, A.R.; Siqueira, D.S.; la Scala Junior, N. Magnetic susceptibility to identify landscape segments on a detailed scale in th eRegion of Jaboticabal, Sao Paulo, Brazil. Braz. J. Soil Sci. 2012, 36, 1073–1082. [Google Scholar]
- Da Costa, A.C.S.; Bigham, J.M.; Rhoton, F.E.; Traina, S.J. Quanitfication and characterizatin of maghemite in soils derived from volcanic rocks in Southern Brazil. Clays Clay Miner. 1999, 47, 466–473. [Google Scholar] [CrossRef]
- Dearing, J. Environmental Magnetic Susceptibility, 2nd ed.; Chi Publishing: Kenilworth, UK, 1999. [Google Scholar]
- UFV-CETEC-UFLA-FEAM. Mapa de Solos do Estado de Minas Gerais: Legenda Expandida; FEAM: Belo Horizonte, Brazil, 2010. [Google Scholar]
- Silva, B.M.; Santos, W.J.R.; Marques, J.J. Levantamento Detalhado dos Solos da Fazenda Muquém/UFLA, Lavras —MG.; Editora UFLA: Lavras, Brazil, 2014. [Google Scholar]
- Minasny, B.; McBratney, A.B. Incorporating taxonomic distance into spatial prediction and digital mapping of soil classes. Geoderma 2007, 142, 285–293. [Google Scholar] [CrossRef]
- Trangmar, B.B.; Yost, R.S.; Uehara, G. Application of geostatistics to spatial of soil properties. Adv. Agron. 1985, 38, 45–94. [Google Scholar]
- IBGE. Manual Técnico de Pedologia, 3rd ed.; IBGE: Rio de Janeiro, Brazil, 2015. [Google Scholar]
- Brevik, E.C.; Miller, B.A. The use of soil surveys to aid in geologic mapping with an emphasis on the eastern and midwestern united states. Soil Horiz. 2015. [Google Scholar] [CrossRef]
- Curi, N.; Franzmeier, D.P. Toposequence of oxisols from the central Plateau of Brazil1. Soil Sci. Soc. Am. J. 1984, 48, 341–346. [Google Scholar] [CrossRef]
- Resende, M.; Curi, N.; Rezende, S.B.; Corrêa, G.F.; Ker, J.C. Pedologia: Base Para Distinção de Ambientes, 6th ed.; Editora UFLA: Lavras, Brazil, 2014. [Google Scholar]
- Schaetzl, R.J.; Anderson, S. Soil: Genesis and Geomorphology, 1st ed.; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; Taylor and Francis Group: Boca Raton, FL, USA, 2010. [Google Scholar]
- Heuvelink, G.B.M.; Webster, R. Modelling soil variation: Past, present, and future. Geoderma 2001, 100, 269–301. [Google Scholar] [CrossRef]
- Arrouays, D.; Grundy, M.G.; Hartemink, A.E.; Hempel, J.W.; Heuvelink, G.B.M.; Hong, S.Y.; Lagacherie, P.; Lelyk, G.; McBratney, A.B.; McKenzie, N.J.; et al. GlobalSoilMap: Toward a fine-resolution global grid of soil properties. Adv. Agron. 2014, 125, 93–134. [Google Scholar]
- Hengl, T.; Heuvelink, G.B.M.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; Mendes de Jesus, J.; Tamene, L.; et al. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE 2015, 10, e0125814. [Google Scholar] [CrossRef] [PubMed]
- Hengl, T.; de Jesus, J.M.; MacMillan, R.A.; Batjes, N.H.; Heuvelink, G.B.M.; Ribeiro, E.; Samuel-Rosa, A.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; et al. SoilGrids1km—Global soil information based on automated mapping. PLoS ONE 2014, 9, e105992. [Google Scholar] [CrossRef] [PubMed]
Soil Properties | LA 1 (2) | LVA 1 (10) | LVm 1 (16) | LVg 1 (11) | ||||
---|---|---|---|---|---|---|---|---|
Horizons | ||||||||
A | B | A | B | A | B | A | B | |
pH | 5.6 | 5.7 | 5.5 | 5.1 | 5.9 | 5.4 | 6.0 | 5.1 |
K (mg·dm−3) | 122.0 | 15.0 | 153.0 | 19.6 | 176.9 | 30.6 | 166.4 | 30.2 |
P (mg·dm−3) | 7.6 | 0.4 | 5.2 | 0.6 | 8.7 | 1.2 | 20.8 | 1.0 |
Ca2+ (mg·dm−3) | 3.2 | 1.6 | 3.0 | 1.1 | 5.1 | 2.2 | 4.3 | 0.9 |
Mg2+ (mg·dm−3) | 1.5 | 0.3 | 1.0 | 0.3 | 2.0 | 0.4 | 1.8 | 0.2 |
Al3+ (cmolc·dm−3) | 0.0 | 0.1 | 0.3 | 0.4 | 0.1 | 0.2 | 0.2 | 0.3 |
H+ + Al3+ (cmolc·dm−3) | 2.1 | 1.7 | 4.5 | 3.5 | 3.3 | 3.8 | 3.7 | 4.5 |
SB 2 (cmolc·dm−3) | 5.0 | 1.8 | 4.4 | 1.4 | 7.6 | 2.7 | 6.5 | 1.2 |
t 3 (cmolc·dm−3) | 5.0 | 1.9 | 4.6 | 1.7 | 7.6 | 2.8 | 6.7 | 1.5 |
T 4 (cmolc·dm−3) | 7.1 | 3.5 | 8.9 | 4.9 | 10.9 | 6.5 | 10.2 | 5.7 |
V 5 (%) | 70.3 | 52.0 | 56.4 | 34.7 | 67.3 | 43.3 | 64.1 | 23.4 |
m 6 (%) | 0.0 | 3.1 | 6.2 | 24.4 | 1.4 | 11.4 | 4.8 | 19.1 |
SOM 7 (%) | 3.7 | 1.1 | 5.6 | 1.5 | 6.5 | 2.1 | 6.6 | 2.8 |
P-Rem (mg·dm−3) | 26.6 | 9.8 | 23.1 | 7.3 | 20.2 | 7.2 | 15.6 | 3.1 |
Clay (g·kg−1) | 470.0 | 540.0 | 451.0 | 566.0 | 501.0 | 595.0 | 535.0 | 659.0 |
Silt (g·kg−1) | 140.0 | 85.0 | 18.2 | 119.0 | 230.0 | 158.0 | 312.0 | 186.0 |
Sand (g·kg−1) | 390.0 | 375.0 | 367.0 | 315.0 | 269.0 | 247.0 | 153.0 | 155.0 |
Variable | LA | LVA | LVm | LVg |
---|---|---|---|---|
MS 1 (10−7 m3·kg-1) | 4.8 | 15.7 | 43 | 194 |
SM SD | 0.26 | 16.9 | 27 | 97 |
MgO (ppm) | 23,545 | - | - | - |
MgO SD | 20,543 | - | - | - |
SiO2 (ppm) | 19,568 | 17,265 | 16,946 | 16,289 |
SiO2 SD | 1870 | 1858 | 1961 | 2033.7 |
Cl (ppm) | 1461 | 1160 | 1113 | 984.9 |
Cl SD | 36 | 40 | 48.6 | 60.8 |
K2O (ppm) | 1432 | 1397 | 1324 | 945 |
K2O SD | 146 | 150 | 159.2 | 157.9 |
Ti (ppm) | 5900 | 6799 | 8379 | 9221 |
Ti SD | 155 | 165 | 186.2 | 196.7 |
Fe (ppm) | 31,880 | 46,103 | 66,450 | 96,410 |
Fe SD | 304 | 358 | 439.6 | 531 |
Zn (ppm) | 18 | 23 | 35.3 | 32.2 |
Zn SD | 8 | 9 | 9.8 | 10.7 |
Zr (ppm) | 170 | 187 | 182 | 167.6 |
Zr SD | 9 | 10 | 10.8 | 11.6 |
Mn (ppm) | 91 | 152 | 372 | - |
Mn SD | 53 | 62 | 79.3 | - |
Cr (ppm) | - | - | 454 | 1103 |
Cr SD | - | - | 55.9 | 68.3 |
Ni (ppm) | - | - | 121 | 105.7 |
Ni SD | - | - | 23.5 | 28.1 |
Cu (ppm) | - | - | 29 | 36.8 |
Cu SD | - | - | 9.6 | 11.3 |
Ce (ppm) | 1538 | - | - | - |
Ce SD | 468 | - | - | - |
Similarity 1 | LA | LVA | LVm | LVg 2 | |
---|---|---|---|---|---|
50% | 31,610 | 23,100 | 48,450 | 70,410 | |
Fe | 100% | 31,880 | 46,100 | 66,450 | 96,410 |
50% | 32,150 | 69,100 | 84,450 | - | |
50% | 18,840 | 14,970 | 14,750 | - | |
SiO2 | 100% | 19,570 | 17,270 | 16,950 | - |
50% | 20,300 | 19,570 | 19,150 | - | |
50% | 4.54 | - | 16 | 97 | |
SM | 100% | 4.80 | - | 43 | 194 |
50% | 5.06 | - | 70 | - | |
50% | 2.9 | - | - | - | |
SWI | 100% | 3.0 | - | - | - |
50% | 3.1 | - | - | - |
LVg | LVm | LVA | LA | Omission Error | Producer’s Accuracy | Commission Error | User’s Accuracy | |
---|---|---|---|---|---|---|---|---|
LVg | 4 | 0 | 1 | 0 | 0 | 100 | 20 | 80 |
LVm | 0 | 2 | 2 | 0 | 0 | 100 | 50 | 50 |
LVA | 0 | 0 | 5 | 0 | 37.5 | 32.5 | 0 | 100 |
LA | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 100 |
Explanatory Variable | Clay (PS + PM) and Clay (DTM + PS + PM) | Clay (PS) | Clay (DTM + PS) | ||||||
---|---|---|---|---|---|---|---|---|---|
Coefficient | VIF 1 | Variable Significance (%) | Coefficient | VIF | Variable Significance (%) | Coefficient | VIF | Variable Significance (%) | |
Intercept | 72.177 | 92,361 | 79,406 | ||||||
MS 2 | - | 67.75 | 0.028 * | 1.980 | 76.77 | 0.035 ** | 1.347 | 79.95 | |
SiO2 | - | 6.85 | - | - | 10.10 | - | - | 8.09 | |
Cl | - | 100.00 | −0.012 ** | 1.311 | 100.00 | - | - | 100.00 | |
K2O | −0.013 ** | 1.334 | 100.00 | −0.010 ** | 1.313 | 100.00 | −0.009 ** | 1.363 | 100.00 |
Ti | −0.001 * | 1.750 | 4.84 | - | - | 0.00 | - | - | 6.12 |
Fe | - | 9.58 | −0.00005 ** | 1.803 | 3.03 | - | - | 11.90 | |
Zn | −0.196 ** | 1.213 | 77.43 | −0.164 ** | 1.146 | 87.88 | −0.165 ** | 1.101 | 70.29 |
Zr | 0.038 * | 1.310 | 11.54 | - | - | 8.08 | - | - | 11.35 |
Geomorphons | - | 4.84 | - | - | - | - | - | 0.27 | |
DEM 3 | - | 9.58 | - | - | - | - | - | 8.97 | |
SWI 4 | - | 13.81 | - | - | - | - | - | 12.85 | |
WI 5 | - | 5.62 | - | - | - | - | - | 4.89 | |
Slope | - | 70.17 | - | - | - | −0.372 * | 1.173 | 64.65 | |
AACHN 6 | - | 4.84 | - | - | - | - | - | 2.31 | |
Valley depth | - | 9.58 | - | - | - | - | - | 5.30 | |
Parent material | 4.527 ** | 1.740 | 67.75 | - | - | - | - | - | - |
R2 | 0.66 | 0.71 | 0.67 | ||||||
Adjusted R2 | 0.61 | 0.67 | 0.64 |
Explanatory Variable | Sand (PS + PM) | Sand (DTM + PS + PM) | Sand (PS) | Sand (DTM + PS) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient | VIF 1 | Variable Significance (%) | Coefficient | VIF | Variable Significance (%) | Coefficient | VIF | Variable Significance (%) | Coefficient | VIF | Variable Significance (%) | |
Intercept | −1.726 | 0.487648 | −30,497 | 9.134 | ||||||||
MS 2 | - | 47.85 | - | 72.13 | - | - | 78.79 | −0.036 ** | 1.708 | 92.11 | ||
SiO2 | 0.001 * | 1.278 | 78.53 | 0.001 * | 1.337 | 61.88 | 0.001 ** | 1.218 | 85.86 | 0.001 ** | 1.103 | 63.83 |
Cl | 0.013 ** | 1.322 | 100.00 | 0.012 ** | 1.334 | 99.95 | 0.017 ** | 1.202 | 100.00 | - | - | 99.93 |
K2O | - | 27.61 | - | 39.98 | - | - | 34.34 | - | - | 49.22 | ||
Ti | - | 6.13 | - | 13.70 | −0.001 * | 1.157 | 10.10 | - | - | 17.61 | ||
Fe | - | 59.51 | - | 78.52 | - | - | 90.91 | −0.0001 ** | 1.825 | 94.09 | ||
Zn | - | 1.23 | - | 5.00 | - | - | 2.02 | - | - | 6.59 | ||
Zr | 0.050 * | 1.121 | 16.56 | 0.046 * | 1.130 | 24.32 | 0.101 ** | 1.173 | 22.22 | - | - | 28.96 |
Geomorphons | - | - | - | 3.45 | - | - | - | - | - | 4.42 | ||
DEM 3 | - | - | - | 47.45 | - | - | - | - | - | 50.44 | ||
SWI 4 | - | - | - | 11.03 | - | - | - | - | - | 10.67 | ||
WI 5 | - | - | - | 7.52 | - | - | - | - | - | 9.11 | ||
Slope | - | - | 0.270 * | 1.076 | 47.45 | - | - | - | 0.432 ** | 1.122 | 32.29 | |
AACHN 6 | - | - | - | 5.20 | - | - | - | - | - | 6.12 | ||
Valley depth | - | - | - | 5.36 | - | - | - | - | - | 6.80 | ||
Parent material | −5.154 ** | 1.333 | 100.00 | −5.560 ** | 1.380 | 99.64 | - | - | - | - | - | - |
R2 | 0.73 | 0.77 | 0.63 | 0.69 | ||||||||
Adjusted R2 | 0.70 | 0.73 | 0.58 | 0.66 |
Model | ME | RMSE | R2 |
---|---|---|---|
Clay (PS 1 + PM 2) and (DTM 3 + PS + PM) | 13.56 | 3.68 | 0.52 |
Clay (PS) | 2.21 | 6.26 | 0.39 |
Clay (DTM + PS) | −4.32 | 12.37 | 0.37 |
Sand (PS + PM) | 25.84 | 5.08 | 0.69 |
Sand (DTM + PS + PM) | 24.11 | 4.91 | 0.67 |
Sand (PS) | 48 | 136.47 | 0.72 |
Sand (DTM + PS) | −10.81 | 30.41 | 0.87 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, S.H.G.; Poggere, G.C.; Menezes, M.D.d.; Carvalho, G.S.; Guilherme, L.R.G.; Curi, N. Proximal Sensing and Digital Terrain Models Applied to Digital Soil Mapping and Modeling of Brazilian Latosols (Oxisols). Remote Sens. 2016, 8, 614. https://doi.org/10.3390/rs8080614
Silva SHG, Poggere GC, Menezes MDd, Carvalho GS, Guilherme LRG, Curi N. Proximal Sensing and Digital Terrain Models Applied to Digital Soil Mapping and Modeling of Brazilian Latosols (Oxisols). Remote Sensing. 2016; 8(8):614. https://doi.org/10.3390/rs8080614
Chicago/Turabian StyleSilva, Sérgio Henrique Godinho, Giovana Clarice Poggere, Michele Duarte de Menezes, Geila Santos Carvalho, Luiz Roberto Guimarães Guilherme, and Nilton Curi. 2016. "Proximal Sensing and Digital Terrain Models Applied to Digital Soil Mapping and Modeling of Brazilian Latosols (Oxisols)" Remote Sensing 8, no. 8: 614. https://doi.org/10.3390/rs8080614
APA StyleSilva, S. H. G., Poggere, G. C., Menezes, M. D. d., Carvalho, G. S., Guilherme, L. R. G., & Curi, N. (2016). Proximal Sensing and Digital Terrain Models Applied to Digital Soil Mapping and Modeling of Brazilian Latosols (Oxisols). Remote Sensing, 8(8), 614. https://doi.org/10.3390/rs8080614