A Generalized Image Scene Decomposition-Based System for Supervised Classification of Very High Resolution Remote Sensing Imagery
"> Figure 1
<p>A demonstration to show the relationship between image content and its classified region using SVM, with an increase of candidate image spatial scale. From (<b>a</b>) to (<b>f</b>), the image size is <math display="inline"> <semantics> <mrow> <mn>9</mn> <mo>×</mo> <mn>9</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mn>18</mn> <mo>×</mo> <mn>18</mn> <mo>,</mo> <mtext> </mtext> <mn>29</mn> <mo>×</mo> <mn>29</mn> <mo>,</mo> <mtext> </mtext> <mn>37</mn> <mo>×</mo> <mn>38</mn> <mo>,</mo> <mtext> </mtext> <mn>46</mn> <mo>×</mo> <mn>47</mn> <mo>,</mo> <mtext> </mtext> <mn>67</mn> <mo>×</mo> <mn>68</mn> <mtext> </mtext> <mi>pixels</mi> </mrow> </semantics> </math>, respectively.</p> "> Figure 2
<p>Flowchart of the proposed system based on OSSD coupled with image filter.</p> "> Figure 3
<p>Definition of observational scene scale.</p> "> Figure 4
<p>Example of each band of a sub-image block (<span class="html-italic">S</span><sub>1</sub>) filtered using a median filter.</p> "> Figure 5
<p>First study area: (<b>a</b>) aerial data; (<b>b</b>) ground reference data.</p> "> Figure 6
<p>Second study area: (<b>a</b>) scene of Pavia University acquired by ROSIS-03; (<b>b</b>) ground reference of Pavia University.</p> "> Figure 7
<p>Classification results (aerial image); <b>The first column</b>, <b>the second column</b>, <b>the third column</b> and <b>the fourth column</b> are the classification maps for KNN, MLC, NBC, and SVM, respectively. Original test: image without any processing; MedF Test: the image is processed only with the median filter, <span class="html-italic">r</span> = 3 × 3; OSSD-based test: the image is decomposed with <span class="html-italic">O</span> = 90; OSSD + MedF Test: the image is classified by the proposed system, with parameters <span class="html-italic">O</span> = 90 and <span class="html-italic">r</span> = 3 × 3. The value of OA is given in percentage.</p> "> Figure 8
<p>Classification results (Pavia University false color image); <b>The first column</b>, <b>the second column</b>, <b>the third column</b> and <b>the fourth column</b> are the classification maps of KNN, MLC, NBC, and SVM, respectively. Original test: image without any processing; MedF test: the image processed with a median filter, <span class="html-italic">r</span> = 3 × 3; OSSD-Based Test, the original image is decomposed with <span class="html-italic">O</span> = 70; OSSD + MedF test: the image is classified by the proposed system, with the parameters <span class="html-italic">O</span> = 70 and <span class="html-italic">r</span> = 3 × 3. The value of OA is given in percentage.</p> "> Figure 9
<p>Aerial image accuracy comparisons of OA (%) based on different classification methods and supervised classifiers.</p> "> Figure 10
<p>Pavia University image accuracy comparisons of OA (%) based on different classification methods and supervised classifiers.</p> "> Figure 11
<p>The relationship between OA and object size (<span class="html-italic">O</span>).</p> "> Figure 12
<p>The relationship between OA and filter window size (<span class="html-italic">r</span>).</p> "> Figure 13
<p>Classification maps based on the proposed system using MLC classifier. The fixed object size of OSSD-based processing is 90, and the value of window size for median filter (<b>a</b>–<b>e</b>) varies from 1 to 9.</p> ">
Abstract
:1. Introduction
2. The Proposed OSSD-Based Classification Method
2.1. Scene Decomposition Using Chessboard Segmentation
2.2. Sub-Image Block Processing with Image Filter or Feature Extraction
2.3. Sub-Image Block Classification Using a Supervised Classifier
3. Experimental Section
3.1. Datasets
3.2. Experimental Setup and Parameter Settings
3.3. Experimental Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Moser, G.; Serpico, S.B.; Atli, J. Land-cover mapping by Markov modeling of spatial–contextual information in very-high-resolution remote sensing images. Proc. IEEE 2013, 101, 631–651. [Google Scholar] [CrossRef]
- Longbotham, N.; Chaapel, C.; Bleiler, L.; Padwick, C.; Emery, W.J.; Pacifici, F. Very high resolution multiangle urban classification analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1155–1170. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ. 2012, 123, 258–270. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2013, 51, 257–272. [Google Scholar] [CrossRef]
- Wilkinson, G.G. Results and implications of a study of fifteen years of satellite image classification experiments. IEEE Trans. Geosci. Remote Sens. 2005, 43, 433–440. [Google Scholar] [CrossRef]
- Gianinetto, M.; Rusmini, M.; Candiani, G.; Dalla Via, G.; Frassy, F.; Maianti, P.; Marchesi, A.; Nodari, F.R.; Dini, L. Hierarchical classification of complex landscape with VHR pan-sharpened satellite data and OBIA techniques. Eur. J. Remote Sens. 2014, 47, 229–250. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, X.; Huang, B.; Li, P. A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2950–2961. [Google Scholar] [CrossRef]
- Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804–3814. [Google Scholar] [CrossRef]
- Lv, Z.Y.; Zhang, P.; Benediktsson, J.A.; Shi, W.Z. Morphological profiles based on differently shaped structuring elements for classification of images with very high spatial resolution. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4644–4652. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Tao, D.; Huang, X. On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 879–893. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Feitosa, R.Q.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic object-based image analysis–towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Baatz, M.; Schäpe, A. Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. Angew. Geogr. Informationsverarbeitung XII 2000, 58, 12–23. [Google Scholar]
- Tang, Y.; Zhang, L.; Huang, X. Object-oriented change detection based on the Kolmogorov–Smirnov test using high-resolution multispectral imagery. Int. J. Remote Sens. 2011, 32, 5719–5740. [Google Scholar] [CrossRef]
- Han, N.; Du, H.; Zhou, G.; Sun, X.; Ge, H.; Xu, X. Object-based classification using SPOT-5 imagery for Moso bamboo forest mapping. Int. J. Remote Sens. 2014, 35, 1126–1142. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Y.; Zhang, D.; Zhao, N. Application and evaluation of object-oriented technology in high-resolution remote sensing image classification. In Proceedings of the International Conference on Control, Automation and Systems Engineering, Singapore, 30–31 July 2011; pp. 1–4.
- Malinverni, E.S.; Tassetti, A.N.; Mancini, A.; Zingaretti, P.; Frontoni, E.; Bernardini, A. Hybrid object-based approach for land use/land cover mapping using high spatial resolution imagery. Int. J. Geogr. Inf. Sci. 2011, 25, 1025–1043. [Google Scholar] [CrossRef]
- De Pinho, C.M.D.; Fonseca, L.M.G.; Korting, T.S.; De Almeida, C.M.; Kux, H.J.H. Land-cover classification of an intra-urban environment using high-resolution images and object-based image analysis. Int. J. Remote Sens. 2012, 33, 5973–5995. [Google Scholar] [CrossRef]
- Rasi, R.; Beuchle, R.; Bodart, C.; Vollmar, M.; Seliger, R.; Achard, F. Automatic updating of an object-based tropical forest cover classification and change assessment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 66–73. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhao, J.; Zhang, L. A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7023–7037. [Google Scholar] [CrossRef]
- Zhang, P.; Lv, Z.; Shi, W. Object-based spatial feature for classification of very high resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1572–1576. [Google Scholar] [CrossRef]
- Chen, X.; Fang, T.; Huo, H.; Li, D. Graph-based feature selection for object-oriented classification in VHR airborne imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 353–365. [Google Scholar] [CrossRef]
- Yi, W.; Tang, H.; Chen, Y. An object-oriented semantic clustering algorithm for high-resolution remote sensing images using the aspect model. IEEE Geosci. Remote Sens. Lett. 2011, 8, 522–526. [Google Scholar] [CrossRef]
- Hamedianfar, A.; Shafri, H.Z.M. Development of fuzzy rule-based parameters for urban object-oriented classification using very high resolution imagery. Geocarto Int. 2014, 29, 268–292. [Google Scholar] [CrossRef]
- Robertson, D.L.; King, D.J. Comparison of pixel-and object-based classification in land cover change mapping. Int.J. Remote Sens. 2011, 32, 1505–1529. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebuv, M.N. A comparative assessment between object and pixel-based classification approaches for land use/land cover mapping using SPOT 5 imagery. Geocarto Int. 2014, 29, 351–369. [Google Scholar] [CrossRef]
- Drăguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Drăguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Montaghi, A.; Larsen, R.; Greve, M.H. Accuracy assessment measures for image segmentation goodness of the Land Parcel Identification System (LPIS) in Denmark. Remote Sens. Lett. 2013, 4, 946–955. [Google Scholar] [CrossRef]
- Weng, Q.; Hofmann, P. Defining robustness measures for OBIA framework: A case study for detecting informal settlements. In Global Urban Monitoring and Assessment through Earth Observation; Weng, Q., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 303–324. [Google Scholar]
- Liu, D.; Xia, F. Assessing object-based classification: Advantages and limitations. Remote Sens. Lett. 2010, 1, 187–194. [Google Scholar] [CrossRef]
- Arvor, D.; Durieux, L.; Andrés, S.; Laporte, M.-A. Advances in geographic object-based image analysis with ontologies: A review of main contributions and limitations from a remote sensing perspective. ISPRS J. Photogramm. Remote Sens. 2013, 82, 125–137. [Google Scholar] [CrossRef]
- Bruzzone, L.; Carlin, L. A multilevel context-based system for classification of very high spatial resolution images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2587–2600. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L.; Li, P. A multiscale feature fusion approach for classification of very high resolution satellite imagery based on wavelet transform. Int. J. Remote Sens. 2008, 29, 5923–5941. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L. A multilevel decision fusion approach for urban mapping using very high-resolution multi/hyperspectral imagery. Int. J. Remote Sens. 2012, 33, 3354–3372. [Google Scholar] [CrossRef]
- Johnson, B.A. High-resolution urban land-cover classification using a competitive multi-scale object-based approach. Remote Sens. Lett. 2013, 4, 131–140. [Google Scholar] [CrossRef]
- Quattrochi, D.A.; Goodchild, M.F. Scale in Remote Sensing and GIS; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Huang, X.; Guan, X.; Benediktsson, J.A.; Zhang, L.; Li, J.; Plaza, A.; Dalla Mura, M. Multiple Morphological Profiles From Multicomponent-Base Images for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4653–4669. [Google Scholar] [CrossRef]
- Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 2012, 70, 78–87. [Google Scholar] [CrossRef]
- Huang, X.; Han, X.; Zhang, L.; Gong, J.; Liao, W.; Benediktsson, J.A. Generalized Differential Morphological Profiles for Remote Sensing Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1736–1751. [Google Scholar] [CrossRef]
- Yıldırım, I.; Ersoy, O.K.; Yazgan, B. Improvement of classification accuracy in remote sensing using morphological filter. Adv. Space Res. 2005, 36, 1003–1006. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Zhang, M.L.; Peña, J.M.; Robles, V. Feature selection for multi-label naive Bayes classification. Inf. Sci. 2009, 179, 3218–3229. [Google Scholar] [CrossRef]
- Strahler, A.H. The use of prior probabilities in maximum likelihood classification of remotely sensed data. Remote Sens. Environ. 1980, 10, 135–163. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machine. 2012. Available online: http://www.csie.ntu.edu.tw/~cjlin/libsvm (accessed on 25 September 2016).
Class | Training Pixels | Test Pixels |
---|---|---|
Water | 84 | 15,543 |
Shade | 33 | 2930 |
Grass | 100 | 8094 |
Road | 102 | 16,879 |
Building | 91 | 17,441 |
Class | Training Sample | Test Pixels |
---|---|---|
Asphalt | 96 | 6631 |
Meadows | 100 | 18,649 |
Gravel | 45 | 2099 |
Trees | 46 | 3064 |
Painted metal | 46 | 1345 |
Bare soil | 97 | 5029 |
Bitumen | 24 | 1330 |
Self-blocking bricks | 51 | 3682 |
Shadows | 36 | 847 |
Class | Original Test | MedF | OSSD | OSSD + MedF |
---|---|---|---|---|
Water | 76.1 | 80.1 | 93.9 | 97.8 |
Shade | 80.6 | 81.0 | 73.3 | 74.5 |
Grass | 74.7 | 75.7 | 88.6 | 90.4 |
Road | 84.3 | 87.1 | 95.2 | 96.3 |
Building | 95.8 | 96.1 | 95.4 | 95.7 |
OA | 84.1 | 84.0 | 93.8 | 94.7 |
AA | 82.3 | 86.1 | 89.9 | 91.0 |
Ka | 0.79 | 0.82 | 0.92 | 0.93 |
Class | MP | OSSD + MP |
---|---|---|
Water | 45.1 | 97.4 |
Shade | 76.7 | 30.9 |
Grass | 87.6 | 95.8 |
Road | 98.1 | 98.1 |
Building | 96.0 | 94.2 |
OA | 81.6 | 93.3 |
AA | 80.7 | 83.3 |
Ka | 0.764 | 0.91 |
Class | Original | MedF | OSSD | MedF + OSSD |
---|---|---|---|---|
Asphalt | 61.38 | 61.7 | 77.1 | 81.38 |
Meadows | 59.69 | 57.8 | 55.9 | 57.13 |
Gravel | 30.3 | 28.9 | 68.5 | 77.32 |
Trees | 62.89 | 63.71 | 59.6 | 61.22 |
Painted metal sheets | 99.1 | 99.63 | 99.6 | 99.78 |
Bare soil | 37.1 | 38.06 | 47.2 | 49.35 |
Bitumen | 1.2 | 0.9 | 69.5 | 75.04 |
Self-blocking bricks | 0.16 | 0.02 | 52.6 | 51.68 |
Shadows | 58.08 | 59.56 | 59.2 | 63.46 |
OA | 50.3 | 49.7 | 60.6 | 62.8 |
AA | 45.5 | 45.6 | 65.5 | 68.5 |
Ka | 0.356 | 0.35 | 0.50 | 0.53 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Z.; He, H.; Benediktsson, J.A.; Huang, H. A Generalized Image Scene Decomposition-Based System for Supervised Classification of Very High Resolution Remote Sensing Imagery. Remote Sens. 2016, 8, 814. https://doi.org/10.3390/rs8100814
Lv Z, He H, Benediktsson JA, Huang H. A Generalized Image Scene Decomposition-Based System for Supervised Classification of Very High Resolution Remote Sensing Imagery. Remote Sensing. 2016; 8(10):814. https://doi.org/10.3390/rs8100814
Chicago/Turabian StyleLv, ZhiYong, Haiqing He, Jón Atli Benediktsson, and Hong Huang. 2016. "A Generalized Image Scene Decomposition-Based System for Supervised Classification of Very High Resolution Remote Sensing Imagery" Remote Sensing 8, no. 10: 814. https://doi.org/10.3390/rs8100814
APA StyleLv, Z., He, H., Benediktsson, J. A., & Huang, H. (2016). A Generalized Image Scene Decomposition-Based System for Supervised Classification of Very High Resolution Remote Sensing Imagery. Remote Sensing, 8(10), 814. https://doi.org/10.3390/rs8100814