A Statistical Algorithm for Estimating Chlorophyll Concentration in the New Caledonian Lagoon
"> Figure 1
<p>(<b>a</b>) SeaBASS [chl-<span class="html-italic">a</span>] histogram (from the SeaBASS website): green line for <span class="html-italic">in situ</span> measurements and blue line for MODIS Aqua assessments; (<b>b</b>) NCDataBase [chl-<span class="html-italic">a</span>] histogram: green line for <span class="html-italic">in situ</span> measurements, cyan line for “OC3-Closest pixel” assessment and blue line for “OC3-Weight Mean” assessment.</p> "> Figure 2
<p>Visited stations in New Caledonia.</p> "> Figure 3
<p>Visited stations in the south-west lagoon.</p> "> Figure 4
<p>Error densities between <span class="html-italic">in situ</span> measurements and satellite assessments for R<sub>rs</sub>(443) at the same day (D0), and from a 1-day temporal (D1) window to a 5-day temporal window (D5). Closest neighbor method.</p> "> Figure 5
<p>Error densities between <span class="html-italic">in situ</span> measurements and satellite assessments for R<sub>rs</sub>(443) at the same day (D0), and from a 1-day temporal window (D1) to a 5-day temporal window (D5). Weighted mean method.</p> "> Figure 6
<p>Comparisons of different algorithms on a test sample including data from SeaBASS and data from NCDataBase (left column) and on NCDataBase (right column) (<b>a</b>) “AFLC + OC3”; (<b>b</b>) <span class="html-italic">idem</span> on full NCDataBase; with 3 bathymetry groups (<b>c</b>) “AFLC + SVM”; (<b>d</b>) <span class="html-italic">idem</span> on full NCDataBase; (<b>e</b>) Result of OC3; (<b>f</b>) <span class="html-italic">Idem</span> on full NCDataBase; RMSE, R<sup>2</sup><sub>ajusted</sub> and the linear regression line between <math display="inline"> <semantics> <mrow> <mi>log</mi> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mi>h</mi> <mi>l</mi> <mo>−</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mi>n</mi> <mo> </mo> <mi>s</mi> <mi>i</mi> <mi>t</mi> <mi>u</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi>log</mi> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mi>h</mi> <mi>l</mi> <mo>−</mo> <msub> <mi>a</mi> <mrow> <mi>a</mi> <mi>l</mi> <mi>g</mi> <mi>o</mi> <mi>r</mi> <mi>i</mi> <mi>t</mi> <mi>h</mi> <mi>m</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math>. The line <span class="html-italic">y = x</span> is red and the regression line is green.</p> "> Figure 7
<p>Log[chl-<span class="html-italic">a</span>] error densities for two test samples. (<b>a</b>) Test sample from Full DataBase; (<b>b</b>) Test sample uniquely from NCDataBase.</p> "> Figure 8
<p>Complete algorithm with a continuous connection applied on a test sample (<b>a</b>) with a linear; (<b>b</b>) a quadratic; (<b>c</b>) a square root and (<b>d</b>) an arc-tangential connection. Comments are similar to comments on <a href="#remotesensing-08-00045-f006" class="html-fig">Figure 6</a>.</p> "> Figure 9
<p>(<b>a</b>) Coral reefs and [chl-<span class="html-italic">a</span>] assessment (µg·L<sup>−1</sup>) with OC3 in the North-East lagoon of New Caledonia on 20 July 2008; (<b>b</b>) Coral reefs and [chl-<span class="html-italic">a</span>] assessment (µg·L<sup>−1</sup>) with OC3 in the South lagoon of New Caledonia on 20 July 2008.</p> "> Figure 10
<p>(<b>a</b>) Coral reefs and [chl-<span class="html-italic">a</span>] assessment (µg·L<sup>−1</sup>) with “AFLC + OC3 linearly connected” in the North-East lagoon of New Caledonia on 20 July 2008; (<b>b</b>) Coral reefs and [chl-<span class="html-italic">a</span>] assessment (µg·L<sup>−1</sup>) with “AFLC + OC3 linearly connected” in the South lagoon of New Caledonia on 20th July 2008.</p> "> Figure 11
<p>Densities of [chl-<span class="html-italic">a</span>] assessments in the lagoon of New Caledonia on 20 July, 2008. The red line is the OC3 assessment density and the blue line is the “AFLC + OC3 linearly connected” assessment.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Data
Sea Campaign | Dates | Study Area |
---|---|---|
Camelia and Camecal (1–9) | 21 Oct. 1997 to 27 Jun. 2003 | South-West lagoon |
Diapalis (1–9) | 13 Oct. 2001 to 15 Oct. 2003 | Loyalty Channel/Ouinné lagoon |
Topaze 1–29 | 26 Apr.2001 to 26 Jan. 2004 | South-West lagoon |
Transects 1 | 1 Apr. 2003 to 10 Apr. 2003 | South-West lagoon |
Timeseries | 12 Dec. 2001 to 22 Apr. 2003 | South-West lagoon |
Transects 2 | 4 May 2002 to 29 Feb. 2004 | South-West lagoon |
Southern and Northern 1 transect | 21 Jun. 2003 to 7 Aug. 2003 | South-West lagoon |
Southern and Northern 2 transect | 9 Nov. 2004 to 9 Dec. 2004 | South-West lagoon |
Bissecote | 1 Feb. 2006 to 14 Feb. 2006 | South-West lagoon |
Echolag | 14 Feb. 2007 to 5 Mar. 2007 | Great South Lagoon |
Zonalis | 2 Mar. 2008 to 14 Mar. 2008 | South of New Caledonia |
Valhybio | 22 Mar. 2008 to 8 Apr. 2008 | LSO and GLS, offshore stations |
ValhybioSM | 27 Apr. 2008 to 21 Jul. 2010 | Lagoon and offshore OC1 station |
[chl-a] (µg·L−1) | |||||
---|---|---|---|---|---|
Data base | N | Min | Max | ≤3 (%) | >3 (%) |
FDB (NCDataBase + SeaBASS) | 1378 | 0.03 | 38.07 | 81.28 | 18.72 |
NCDataBase (<20 m) | 300 | 0.08 | 2.71 | 100 | 0 |
NCDataBase (20 m ≤ bathy ≤ 70 m) | 352 | 0.11 | 3.70 | 99.53 | 0.47 |
NCDataBase (>70 m) | 159 | 0.08 | 1.05 | 100 | 0 |
NCDataBase (total) | 811 | 0.08 | 3.70 | 99.75 | 0.25 |
SeaBASS (<20 m) | 262 | 0.37 | 38.07 | 13.36 | 86.54 |
SeaBASS (20 m ≤ bathy ≤ 70 m) | 20 | 0.22 | 6.26 | 75.00 | 25.00 |
SeaBASS (>70 m) | 285 | 0.03 | 13.18 | 91.58 | 8.42 |
SeaBASS (total) | 567 | 0.03 | 38.07 | 54.85 | 45.15 |
2.2. Match-Up
Methods | n | Min | Max | Mean | Median | VC | NMB | MNB | RMSE |
---|---|---|---|---|---|---|---|---|---|
0-day CL | 397 | 0.0000 | 0.0281 | 0.0062 | 0.0057 | 0.4298 | −0.2700 | −0.1633 | 0.0047 |
0-day WMM | 397 | 0.0003 | 0.0213 | 0.0062 | 0.0058 | 0.3584 | −0.2660 | −0.1705 | 0.0044 |
1-day CL | 752 | 0.0000 | 0.0281 | 0.0063 | 0.0059 | 0.3990 | −0.2495 | −0.1592 | 0.0047 |
1-day WMM | 752 | 0.0003 | 0.0213 | 0.0065 | 0.0062 | 0.3452 | −0.2311 | −0.1454 | 0.0044 |
5-day CL | 986 | 0.0000 | 0.0281 | 0.0062 | 0.0058 | 0.4096 | −0.2289 | −0.1274 | 0.0045 |
5-day WMM | 986 | 0.0003 | 0.0213 | 0.0064 | 0.0061 | 0.3550 | −0.2044 | −0.1036 | 0.0042 |
2.3. Algorithm Steps
2.4. Statistical Tests
3. Results
3.1. Algorithm Specifics
- : 97% of the pixels have a low [chl-a] and 3% have a high [chl-a];
- : 12% of the pixels have a low [chl-a] and 88% have a high [chl-a].
3.2. Algorithm Performance
Product Name | Database | Mean of RMSE (µg·L−1) | Variance of RMSE (µg·L−1)2 | RMSE Range (µg·L−1) |
---|---|---|---|---|
OC3 | FDB | 2.832 | 0.179 | 2.013–3.706 |
SVMg | FDB | 2.766 | 0.245 | 1.868–3.774 |
AFLC + SVM | FDB | 2.811 | 0.217 | 1.859–3.799 |
AFLC + OC3 | FDB | 2.871 | 0.202 | 1.993–3.798 |
OC3 | NCDataBase (shallow) | 1.130 | 0.063 | 0.700–1.709 |
SVMg | NCDataBase (shallow) | 0.940 | 0.061 | 0.584–1.560 |
AFLC + SVM | NCDataBase (shallow) | 0.923 | 0.222 | 0.234–1.829 |
AFLC + OC3 | NCDataBase (shallow) | 0.713 | 0.113 | 0.234–1.463 |
OC3 | NCDataBase (deep) | 0.363 | 0.011 | 0.228–0.558 |
SVMg | NCDataBase (deep) | 0.412 | 0.011 | 0.294–0.816 |
AFLC + SVM | NCDataBase (deep) | 0.364 | 0.052 | 0.149–0.802 |
AFLC + OC3 | NCDataBase (deep) | 0.280 | 0.012 | 0.149–0.481 |
OC3 | NCDataBase (ocean) | 0.208 | 0.001 | 0.164–0.256 |
SVMg | NCDataBase (ocean) | 0.406 | 0.125 | 0.215–2.767 |
AFLC + SVM | NCDataBase (ocean) | 0.163 | 0.001 | 0.108–0.217 |
AFLC + OC3 | NCDataBase (ocean) | 0.163 | 0.001 | 0.108–0.217 |
OC3 | NCDataBase (total) | 0.669 | 0.017 | 0.426–0.969 |
SVMg | NCDataBase (total) | 0.667 | 0.023 | 0.442–1.075 |
AFLC + SVM | NCDataBase (total) | 0.589 | 0.060 | 0.205–1.108 |
AFLC + OC3 | NCDataBase (total) | 0.449 | 0.027 | 0.205–0.829 |
3.3. Continuous Connection between Low and High [chl-a]
Algorithms without and with Connections | RMSE on NCDataBase | RMSE on SeaBASS | RMSE on a Test Sample |
---|---|---|---|
OC3 | 0.640 | 2.850 | 2.018 |
AFLC | 0.267 | 3.016 | 3.105 |
No continuous connection (AFLC + OC3) | 0.496 | 2.976 | 2.000 |
Linear weight function | 0.448 | 2.799 | 2.050 |
Square root weight function | 0.366 | 2.874 | 2.161 |
Quadratic weight function | 0.515 | 2.766 | 2.011 |
Logarithmic weight function | 0.415 | 2.845 | 2.087 |
Exponential weight function | 0.469 | 2.773 | 2.033 |
Arc-tangential weight function | 0.476 | 2.910 | 2.021 |
3.4. Application to MODIS Imagery
Quantile | OC3 | AFLC + OC3 Linearly Connected |
---|---|---|
0 | 0 | 0.04 |
0.25 | 0.26 | 0.28 |
0.5 | 0.49 | 0.41 |
0.75 | 0.94 | 0.64 |
1 | 1913 | 58.26 |
4. Discussion
4.1. Comparison with Other Algorithms
RMSE (µg·L−1) | MNB | |||
---|---|---|---|---|
OC3 | AFLC + OC3 | OC3 | AFLC + OC3 | |
FDB (bathy < 20 m) | 4.59 | 4.66 | 0.69 | 0.42 |
FDB (20 m ≤ bathy ≤ 70 m) | 0.42 | 0.39 | 0.24 | 0.14 |
FDB (bathy > 70 m) | 1.26 | 1.33 | 0.10 | 0.03 |
SeaBASS (bathy < 20 m) | 6.23 | 6.37 | 0.41 | 0.35 |
SeaBASS (20 m ≤ bathy ≤ 70 m) | 1.12 | 1.14 | 1.29 | 0.32 |
SeaBASS ocean | 1.56 | 1.65 | 0.38 | 0.05 |
NCDataBase (bathy < 20 m) | 1.08 | 0.82 | 1.01 | 0.49 |
NCDataBase (20 m ≤ bathy ≤ 70 m) | 0.34 | 0.30 | 0.18 | 0.13 |
NCDataBase (bathy > 70 m) | 0.21 | 0.16 | −0.40 | −0.01 |
4.2. Functional Form of the Algorithm
4.3. Adding Other Variables Than Reflectance in the Area of New Caledonia
4.4. Temporal Window for Match-Ups
Methods | n | Min | Max | Mean | Median | VC | NMB | MNB | RMSE |
---|---|---|---|---|---|---|---|---|---|
0-day OC3 | 330 | 0.019 | 7.912 | 0.598 | 0.382 | 1.847 | 0.280 | 0.270 | 0.682 |
0-day AFLC | 330 | 0.098 | 1.488 | 0.444 | 0.387 | 0.508 | −0.051 | 0.177 | 0.296 |
0-day no continuous connection | 330 | 0.098 | 7.912 | 0.514 | 0.387 | 1.573 | 0.099 | 0.223 | 0.588 |
0-day linear connection | 330 | 0.098 | 7.023 | 0.508 | 0.387 | 1.358 | 0.088 | 0.226 | 0.493 |
0-day quadratic connection | 330 | 0.098 | 7.789 | 0.529 | 0.387 | 1.574 | 0.132 | 0.246 | 0.580 |
0-day arc-tangential connection | 330 | 0.098 | 7.657 | 0.512 | 0.387 | 1.476 | 0.094 | 0.225 | 0.542 |
1-day OC3 | 614 | 0.019 | 8.053 | 0.577 | 0.386 | 1.812 | 0.315 | 0.314 | 0.667 |
1-day AFLC | 614 | 0.098 | 1.893 | 0.437 | 0.389 | 0.528 | −0.003 | 0.192 | 0.263 |
1-day no continuous connection | 614 | 0.098 | 8.053 | 0.485 | 0.389 | 1.452 | 0.105 | 0.242 | 0.547 |
1-day linear connection | 614 | 0.098 | 7.249 | 0.489 | 0.389 | 1.307 | 0.114 | 0.250 | 0.483 |
1-day quadratic connection | 614 | 0.098 | 7.948 | 0.506 | 0.389 | 1.505 | 0.153 | 0.269 | 0.558 |
1-day arc-tangential connection | 614 | 0.098 | 7.825 | 0.488 | 0.389 | 1.395 | 0.113 | 0.246 | 0.519 |
5-day OC3 | 811 | 0.019 | 8.053 | 0.565 | 0.385 | 1.688 | 0.287 | 0.307 | 0.640 |
5-day AFLC | 811 | 0.098 | 1.893 | 1.436 | 0.391 | 0.518 | −0.007 | 0.172 | 0.267 |
5-day no continuous connection | 811 | 0.098 | 8.053 | 0.472 | 0.391 | 1.286 | 0.075 | 0.209 | 0.496 |
5-day linear connection | 811 | 0.098 | 7.249 | 0.478 | 0.391 | 1.178 | 0.089 | 0.222 | 0.448 |
5-day quadratic connection | 811 | 0.098 | 7.948 | 0.493 | 0.391 | 1.357 | 0.124 | 0.241 | 0.515 |
5-day arc-tangential connection | 811 | 0.098 | 7.825 | 0.476 | 0.391 | 1.246 | 0.085 | 0.217 | 0.476 |
4.5. Behavior of the Algorithm in New Caledonian Waters
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Labrosse, P.; Fichez, R.; Farman, R.; Adams, T. Regional Chapters: The Indian Ocean to the Pacific. In Seas at the Millenium: An Environmental Evaluation: 2; Sheppard, C.R.C., Ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. 723–736. [Google Scholar]
- Lagoons of New Caledonia: Reef Diversity and Associated Ecosystems—UNESCO World Heritage Centre. Available online: http://whc.unesco.org/en/list/1115 (accessed on 24 July 2015).
- USGS. Mineral Commodity Summaries 2011. Available online: http://minerals.usgs.gov/minerals/pubs/mcs/2011/mcs2011.pdf (accessed on 24 July 2015).
- Sarramegna, S.; EMR. Expertise Environnementale Des Conséquences des Fortes Précipitations Observées les 02 et 03 juillet 2013 sur les Communautés Récifo-Lagonaires Des Baies Kué et Port-Boisé. Available online: http://www.oeil.nc/cdrn/index.php/resource/bibliographie/view/5618 (accessed on 24 July 2015).
- De’ath, G.; Fabricius, K.; Sweatman, H.; Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA 2012, 109, 17995–17999. [Google Scholar] [CrossRef] [PubMed]
- Thomas, Y.; Courties, C.; El Helwe, Y.; Herbland, A.; Lemonnier, H. Spatial and temporal extension of eutrophication associated with shrimp farm wastewater discharges in the New Caledonia lagoon. Mar. Pollut. Bull. 2010, 61, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Torréton, J.-P.; Rochelle-Newall, E.J.; Jouon, A.; Faure, V.; Jacquet, S.; Douillet, P. Correspondence between the distribution of hydrodynamic time parameters and the distribution of biological and chemical variables in a semi-enclosed coral reef lagoon. Estuar. Coast. Shelf Sci. 2007, 74, 766–776. [Google Scholar] [CrossRef]
- Houk, P.; Raubani, J. Acanthaster planci outbreaks in Vanuatu coincide with oceanically-derived chlorophyll blooms, furthering consistencies throughout the Pacific. J. Oceanogr. 2010, 66, 435–438. [Google Scholar] [CrossRef]
- Tenorio, M.M.B.; le Borgne, R.; Rodier, M.; Neveux, J. The impact of terrigeneous inputs on the Bay of Ouinne (New Caledonia) phytoplankton communities: A spectrofluorometric and microscopic approach. Estuar. Coast. Shelf Sci. 2005, 64, 531–545. [Google Scholar] [CrossRef]
- Dupouy, C.; Frouin, R.; Röttgers, R.; Neveux, J.; Gallois, F.; Panché, J.Y.; Gérard, P.; Fontana, C.; Pinazo, C.; Ouillon, S.; et al. Ocean color response to an episode of heavy rainfall in the lagoon of New Caledonia. Proc. SPIE 2009, 7459. [Google Scholar] [CrossRef]
- Ganachaud, A.; Vega, A.; Rodier, M.; Dupouy, C.; Maes, C.; Marchesiello, P.; Eldin, G.; Ridgway, K.; le Borgne, R. Observed impact of upwelling on water properties and biological activity off the southwest coast of New Caledonia. Mar. Pollut. Bull. 2010, 61, 449–464. [Google Scholar] [CrossRef] [PubMed]
- Neveux, J.; Lefebvre, J.-P.; le Gendre, R.; Dupouy, C.; Gallois, F.; Courties, C.; Gérard, P.; Ouillon, S.; Fernandez, J.M. Phytoplankton dynamics in New-Caledonian lagoon during a southeast trade winds event. J. Mar. Syst. 2010, 82, 230–244. [Google Scholar] [CrossRef]
- Fuchs, R.; Dupouy, C.; Douillet, P.; Dumas, F.; Caillaud, M.; Mangin, A.; Pinazo, C. Modelling the impact of a La Niña event on a South West Pacific Lagoon. Mar. Pollut. Bull. 2012, 64, 1596–1613. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, R.; Pinazo, C.; Douillet, P.; Fraysse, M.; Grenz, C.; Mangin, A.; Dupouy, C. Modeling the ocean-lagoon interaction via upwelling processes on the South West of New Caledonia. Estuar. Coast. Shelf Sci. 2013, 135, 5–17. [Google Scholar] [CrossRef]
- Berkelmans, R.; de’ath, G.; Kininmonth, S.; Skirving, W.J. A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: Spatial correlation, patterns, and predictions. Coral Reefs 2004, 23, 74–83. [Google Scholar] [CrossRef]
- Baird, A.H.; Marshall, P.A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 2002, 237, 133–141. [Google Scholar] [CrossRef]
- International Ocean-Color Coordinating Group. Minimum Requirements for an Operational, Ocean-Color Sensor for the Open Ocean, Reports of the International Ocean-Color Coordinating Group; IOCCG Report Number 1; International Ocean-Color Coordinating Group: Dartmouth, NH, Canada, 1998. [Google Scholar]
- O’reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Gerver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. 1998, 2013, 24937–24953. [Google Scholar] [CrossRef]
- Morel, A.; Prieur, L. Analysis of variations in ocean color. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. 2012, 117, C01011. [Google Scholar] [CrossRef]
- International Ocean-Color Coordinating Group. Remote Sensing of Ocean Colour Coastal, and Other Optically-Complex, Waters, Reports of the International Ocean-Color Coordinating Group; IOCCG Report Number 3; International Ocean-Color Coordinating Group: Dartmouth, NH, Canada, 2000. [Google Scholar]
- Cannizzaro, J.P.; Carder, K.L. Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters. Remote Sens. Environ. 2006, 101, 13–24. [Google Scholar] [CrossRef]
- Nechad, B.; Ruddick, K.; Schroeder, T.; Oubelkheir, K.; Blondeau-Patissier, D.; Cherukuru, N.; Brando, V.; Dekker, A.; Clementson, L.; Banks, A.C.; et al. CoastColour Round Robin datasets: A database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters. Earth Syst. Sci. Data (ESSD) 2015, 8, 173–258. [Google Scholar] [CrossRef]
- Ha, N.T.T.; Koike, K.; Nhuan, M.T. Improved accuracy of chlorophyll-a concentration estimates from MODIS imagery using a two-band ratio algorithm and geostatistics: As applied to the monitoring of eutrophication processes over Tien Yen Bay (Northern Vietnam). Remote Sens. 2014, 6, 421–442. [Google Scholar] [CrossRef]
- Samli, R.; Sivri, N.; Sevgen, S.; Kiremitci, V.Z. Applying artificial neural networks for the estimation of chlorophyll-a concentrations along the Istanbul coast. Pol. J. Environ. Stud. 2014, 23, 1281–1287. [Google Scholar]
- Zhan, H. Application of support vector machines in inverse problems in ocean color remote sensing. Stud. Fuzziness Soft Comput. 2005, 177, 387–398. [Google Scholar]
- Camps-Valls, G.; Bruzzone, L.; Rojo-Alvarez, J.L.; Melgeni, F. Robust Support Vector Regression for biophysical variable estimation from remotely sensed images. IEEE Geosci. Remote Sens. Lett. 2006, 3, 1–5. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Gómez-Chova, L.; Muñoz-Marí, J.; Vila-Francés, J.; Amorós-López, J.; Calpe-Maravilla, J. Retrieval of oceanic chlorophyll concentration with relevance vector machines. Remote Sens. Environ. 2006, 105, 23–33. [Google Scholar] [CrossRef]
- Dupouy, C.; Neveux, J.; Ouillon, S.; Frouin, R.; Murakami, H.; Hochard, S.; Dirberg, G. Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open waters of New Caledonia. Mar. Pollut. Bull. 2010, 61, 503–518. [Google Scholar] [CrossRef] [PubMed]
- Dupouy, C.; Wattelez, G.; Fuchs, R.; Lefèvre, J.; Mangeas, M.; Murakami, H.; Frouin, R. The Colour of the Coral Sea. In The Future of the Coral Sea Reefs and Sea Mounts, Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9–13 July 2012.
- Ouillon, S.; Douillet, P.; Petrenko, A.; Neveux, J.; Dupouy, C.; Froidefond, J.M.; Andrefouet, S.; Muñoz-Caravaca, A. Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters. Sensors 2008, 8, 4165–4185. [Google Scholar] [CrossRef]
- Dekker, A.G.; Phinn, S.R.; Anstee, J.; Bissett, P.; Brando, V.E.; Casey, B.; Fearns, P.; Hedley, J.; Klonowski, W.; Lee, Z.P.; et al. Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnol. Oceanogr. Methods 2011, 9, 396–425. [Google Scholar] [CrossRef]
- Murakami, H.; Dupouy, C. Atmospheric correction and inherent optical property estimation in the southwest New Caledonia lagoon using AVNIR-2 high-resolution data. Appl. Opt. 2013, 52, 182–198. [Google Scholar] [CrossRef] [PubMed]
- Minghelli-Roman, A.; Dupouy, C. Influence of water column chlorophyll concentration on bathymetric estimations in the lagoon of New Caledonia, using several MERIS images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 739–745. [Google Scholar] [CrossRef] [Green Version]
- Minghelli-Roman, A.; Dupouy, C. Correction of the Water Column Attenuation: Application to the Seabed Mapping of the lagoon of New Caledonia using MERIS images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2617–2629. [Google Scholar] [CrossRef]
- Gohin, F.; Druhon, J.N.; Lampert, L. A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. Int. J. Remote Sens. 2002, 23, 1639–1661. [Google Scholar] [CrossRef]
- Katlane, R.; Dupouy, C.; Zargouni, F. Chlorophyll and turbidity concentrations as an index of water quality of the Gulf of Gabes from MODIS in 2009. Teledetection 2012, 11, 265–273. [Google Scholar]
- Dupouy, C.; Savranski, T.; Lefèvre, J.; Despinoy, M.; Mangeas, M.; Fuchs, R.; Faure, V.; Ouillon, S.; Petit, M. Monitoring optical properties of the Southwest Tropical Pacific. In Proceedings of the Remote Sensing of the Coastal Ocean, Land, and Atmosphere Environment, Incheon, Korea, 4 November 2010; Frouin, R.J., RhyongYoo, H., Won, J.-S., Feng, A., Eds.; Volume 7858. [CrossRef]
- Wattelez, G.; Dupouy, C.; Mangeas, M.; Lefèvre, J.; Touraivane, T.; Frouin, R.J. A statistical algorithm for estimating chlorophyll concentration from MODIS data. In Proceedings of the Ocean Remote Sensing and Monitoring from Space, Beijing, China, 13–17 October 2014; Frouin, R.J., Pan, D., Murakami, H., Son, Y.B., Eds.; Volume 9261. [CrossRef]
- SeaBASS. Available online: http://seabass.gsfc.nasa.gov/ (accessed on 20 December 2015).
- Bailey, S.W.; Werdell, P.J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- Lefèvre, J. The VALHYSAT Project: MODIS-DB Database: Description Guide of the Database; Valhysat Report 1; IRD Internal Report: Noumea, New Caledonia, 2010. [Google Scholar]
- Savranski, T. Télédétection de la chlorophylle de surface dans un système lagonaire tropical: Validation de données MODIS couleur de l'eau du lagon Sud-Ouest de Nouvelle-Calédonie, Rapport de stage Master 2 Professionnel: Surveillance et Gestion de l'Environnement (direction de C. Dupouy); Msc Report: University of Toulouse, Toulouse, France, 2010. [Google Scholar]
- Matarrese, R.; Chiaradia, M.T.; Tijani, K.; Morea, A.; Carlucci, R. Chlorophyll a multi-temporal analysis in coastal waters with MODIS data. Ital. J. Remote Sens. 2011, 43, 39–48. [Google Scholar]
- Kahru, M.; Kudela, R.M.; Anderson, C.R.; Manzano-Sarabia, M.; Mitchell, B.G. Evaluation of Satellite Retrievals of Ocean Chlorophyll-a in the California Current. Remote Sens. 2014, 6, 8524–8540. [Google Scholar] [CrossRef]
- Ouillon, S.; Douillet, P.; Lefebvre, J.P.; le Gendre, R.; Jouon, A.; Bonneton, P.; Fernandez, J.M.; Chevillon, C.; Magand, O.; Lefèvre, J.; et al. Circulation and suspended sediment transport in a coral reef lagoon: The south-west lagoon of New Caledonia. Mar. Pollut. Bull. 2010, 61, 269–296. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wattelez, G.; Dupouy, C.; Mangeas, M.; Lefèvre, J.; Touraivane; Frouin, R. A Statistical Algorithm for Estimating Chlorophyll Concentration in the New Caledonian Lagoon. Remote Sens. 2016, 8, 45. https://doi.org/10.3390/rs8010045
Wattelez G, Dupouy C, Mangeas M, Lefèvre J, Touraivane, Frouin R. A Statistical Algorithm for Estimating Chlorophyll Concentration in the New Caledonian Lagoon. Remote Sensing. 2016; 8(1):45. https://doi.org/10.3390/rs8010045
Chicago/Turabian StyleWattelez, Guillaume, Cécile Dupouy, Morgan Mangeas, Jérôme Lefèvre, Touraivane, and Robert Frouin. 2016. "A Statistical Algorithm for Estimating Chlorophyll Concentration in the New Caledonian Lagoon" Remote Sensing 8, no. 1: 45. https://doi.org/10.3390/rs8010045
APA StyleWattelez, G., Dupouy, C., Mangeas, M., Lefèvre, J., Touraivane, & Frouin, R. (2016). A Statistical Algorithm for Estimating Chlorophyll Concentration in the New Caledonian Lagoon. Remote Sensing, 8(1), 45. https://doi.org/10.3390/rs8010045