Tracking Ecosystem Water Use Efficiency of Cropland by Exclusive Use of MODIS EVI Data
"> Figure 1
<p>Overview of the research approach. R<sub>g</sub>, T<sub>a</sub>, VPD and P are observed at the flux tower sites. EVI are derived from the MODIS data. WUE<sub>EC</sub>, WUE<sub>RS</sub>, and WUE<sub>GR</sub> refer to ecosystem water use efficiency from flux tower measurements, the indirect estimates from NTSG MODIS products and the direct estimates based on MODIS EVI data, respectively. In addition, the data from US-Bo1 are used for calibration and another US-Ro1 site is used for independent validation of the developed model.</p> "> Figure 2
<p>Seasonal and interannual variations of solar radiation (R<sub>g</sub>), air temperature (T<sub>a</sub>), vapor pressure deficit (VPD), precipitation (P) and enhanced vegetation index (EVI) observed at the annual corn/soybean rotation field (US-Bo1) during 2001–2006, with the growing season highlighted.</p> "> Figure 3
<p>Seasonal variations of ecosystem water use efficiency from flux tower measurements (WUE<sub>EC</sub>) and estimates from MODIS products (WUE<sub>RS</sub>) at the flux tower site US-Bo1 during 2001–2006 (corn in the odd years and soybean in the even years).</p> "> Figure 4
<p>Comparison of seasonal dynamics in gross primary production and evapotranspiration between flux tower measurements (GPP<sub>EC</sub>, ET<sub>EC</sub>) and MODIS estimates (GPP<sub>RS</sub>, ET<sub>RS</sub>) at the flux tower site US-Bo1 during 2001–2006.</p> "> Figure 5
<p>Seasonal dynamics in ecosystem water use efficiency from flux tower measurements (WUE<sub>EC</sub>) and estimates based on MODIS EVI data (WUE<sub>GR</sub>) at the flux tower site US-Bo1 during 2005 (corn) and 2006 (soybean), with the growing seasons displayed in gray.</p> "> Figure 6
<p>A scatterplot comparison between ecosystem WUE from flux tower measurements (WUE<sub>EC</sub>) and estimates based on MODIS EVI data (WUE<sub>GR</sub>) at the flux tower site US-Bo1 during the growing season of 2005 (corn) and 2006 (soybean).</p> "> Figure 7
<p>Seasonal dynamics in ecosystem WUE from flux tower measurements (WUE<sub>EC</sub>), predicted from MODIS products (WUE<sub>RS</sub>), and estimates based on MODIS EVI data (WUE<sub>GR</sub>) at the flux tower site US-Ro1 during 2005 (corn) and 2006 (soybean).</p> "> Figure 8
<p>A linear comparison between ecosystem WUE from flux tower measurements (WUE<sub>EC</sub>) with predictions from MODIS products (WUE<sub>RS</sub>) and estimates based on MODIS EVI data (WUE<sub>GR</sub>), respectively at the flux tower site US-Ro1 during the growing season of 2005 (corn).</p> "> Figure 9
<p>A linear comparison between ecosystem WUE from tower measurements (WUE<sub>EC</sub>) with predictions from MODIS products (WUE<sub>RS</sub>) and estimates based on MODIS EVI data (WUE<sub>GR</sub>), respectively at the flux tower site US-Ro1 during the growing season of 2006 (soybean).</p> ">
Abstract
:1. Introduction
- (1)
- How do environmental factors control the changes in WUE from flux measurements in corn/soybean rotation systems?
- (2)
- How well do the MODIS-derived WUE estimates from GPP and ET perform in capturing the seasonal dynamics in WUE of croplands? What are the possible sources of error?
- (3)
- Can we develop an alternative method that is based directly on the remotely-sensed data to improve the accuracy in WUE estimates of corn and soybean?
2. Materials and Methods
2.1. Site Descriptions
2.2. Satellite-Derived MODIS Products and Processing
2.3. Site-Specific Climate and Flux Data
2.4. Statistical Analysis
3. Results and discussion
3.1. Seasonal Variations in Crop WUE with Environmental and Biological Controls
Crop Type | - | GPP (g·C·m−2·d−1) | ET (mm·d−1) | Rg (MJ·m−2·d−1) | Ta (°C) | VPD (h·Pa) | P (mm·d−1) | EVI |
---|---|---|---|---|---|---|---|---|
Corn | WUE | 0.982 ** | 0.818 ** | 0.740 ** | 0.673 ** | 0.503 ** | 0.147 | 0.906 ** |
EVI | 0.906 ** | 0.911 ** | 0.857 ** | 0.738 ** | 0.545 ** | 0.094 | – | |
Soybean | WUE | 0.978 ** | 0.732 ** | 0.533 ** | 0.577 ** | 0.248 ** | −0.029 | 0.950 ** |
EVI | 0.931 ** | 0.784 ** | 0.604 ** | 0.686 ** | 0.385 ** | −0.021 | – |
3.2. Comparisons of Tower-Based WUE and the MODIS Estimates from GPP and ET
3.3. An Alternative Method to Estimate WUE Using MODIS EVI Data
3.4. Independent Validation of the Proposed Models
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sinclair, T.R.; Tanner, C.B.; Bennett, J.M. Water-use efficiency in crop production. Bioscience 1984, 34, 36–40. [Google Scholar] [CrossRef]
- Niu, S.L.; Xing, X.R.; Zhang, Z.; Xia, J.Y.; Zhou, X.H.; Song, B.; Li, L.H.; Wan, S.Q. Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe. Glob. Chang. Biol. 2011, 17, 1073–1082. [Google Scholar] [CrossRef]
- Berry, J.A.; Beerling, D.J.; Franks, P.J. Stomata: Key players in the earth system, past and present. Curr. Opin. Plant Biol. 2010, 13, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, G.D.; Sharkey, T.D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Phys. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Zhou, S.; Yu, B.F.; Huang, Y.F.; Wang, G.Q. The effect of vapor pressure deficit on water use efficiency at the subdaily time scale. Geophys. Res. Lett. 2014, 41, 5005–5013. [Google Scholar] [CrossRef]
- Tong, X.J.; Li, J.; Yu, Q.; Qin, Z. Ecosystem water use efficiency in an irrigated cropland in the North China Plain. J. Hydrol. 2009, 374, 329–337. [Google Scholar] [CrossRef]
- Ito, A.; Inatomi, M. Water-use efficiency of the terrestrial biosphere: A model analysis focusing on interactions between the global carbon and water cycles. J. Hydrometeorol. 2012, 13, 681–694. [Google Scholar] [CrossRef]
- Solomon, S.; Plattner, G.K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free-air CO2 enrichment (face)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytol. 2005, 165, 351–371. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.M.; Griffis, T.J. Examining strategies to improve the carbon balance of corn/soybean agriculture using eddy covariance and mass balance techniques. Agr. Forest Meteorol. 2005, 128, 163–177. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Thenkabail, P.S.; Hanjra, M.A.; Dheeravath, V.; Gumma, M. A holistic view of global croplands and their water use for ensuring global food security in the 21st century through advanced remote sensing and non-remote sensing approaches. Remote Sens. 2010, 2, 211–261. [Google Scholar] [CrossRef] [Green Version]
- Baldocchi, D.; Falge, E.; Gu, L.H.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R.; et al. Fluxnet: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Reichstein, M.; Papale, D.; Valentini, R.; Aubinet, M.; Bernhofer, C.; Knohl, A.; Laurila, T.; Lindroth, A.; Moors, E.; Pilegaard, K.; et al. Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophys. Res. Lett. 2007. [Google Scholar] [CrossRef]
- Williams, C.A.; Reichstein, M.; Buchmann, N.; Baldocchi, D.; Beer, C.; Schwalm, C.; Wohlfahrt, G.; Hasler, N.; Bernhofer, C.; Foken, T.; et al. Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers. Water Resour. Res. 2012. [Google Scholar] [CrossRef]
- Zhao, M.S.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Lu, X.L.; Zhuang, Q.L. Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data. Remote Sens. Environ. 2010, 114, 1924–1939. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.Q.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Sjostrom, M.; Ardo, J.; Arneth, A.; Boulain, N.; Cappelaere, B.; Eklundh, L.; de Grandcourt, A.; Kutsch, W.L.; Merbold, L.; Nouvellon, Y.; et al. Exploring the potential of MODIS EVI for modeling gross primary production across African ecosystems. Remote Sens. Environ. 2011, 115, 1081–1089. [Google Scholar] [CrossRef]
- Jarvis, P.G. Scaling processes and problems. Plant Cell Environ. 1995, 18, 1079–1089. [Google Scholar] [CrossRef]
- Zhang, J.H.; Hu, Y.L.; Xiao, X.M.; Chen, P.S.; Han, S.J.; Song, G.Z.; Yu, G.R. Satellite-based estimation of evapotranspiration of an old-growth temperate mixed forest. Agr. Forest Meteorol. 2009, 149, 976–984. [Google Scholar] [CrossRef]
- Yang, Y.T.; Long, D.; Shang, S.H. Remote estimation of terrestrial evapotranspiration without using meteorological data. Geophys. Res. Lett. 2013, 40, 3026–3030. [Google Scholar] [CrossRef]
- Reichstein, M.; Bahn, M.; Mahecha, M.D.; Kattge, J.; Baldocchi, D.D. Linking plant and ecosystem functional biogeography. Proc. Natl. Acad. Sci. USA 2014, 111, 13697–13702. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.G.; Li, H.P.; Desai, A.R.; Nagy, Z.; Luo, J.H.; Kolb, T.E.; Olioso, A.; Xu, X.B.; Yao, L.; Kutsch, W.; et al. How is water-use efficiency of terrestrial ecosystems distributed and changing on earth? Sci. Rep-UK 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindroth, A.; Verwijst, T.; Halldin, S. Water-use efficiency of willow: Variation with season, humidity and biomass allocation. J. Hydrol. 1994, 156, 1–19. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Sauer, T.J.; Prueger, J.H. Managing soils to achieve greater water use efficiency: A review. Agron. J. 2001, 93, 271–280. [Google Scholar] [CrossRef]
- Monzon, J.P.; Sadras, V.O.; Andrade, F.H. Modelled yield and water use efficiency of maize in response to crop management and southern oscillation index in a soil-climate transect in Argentina. Field Crop Res. 2012, 130, 8–18. [Google Scholar] [CrossRef]
- Lawford, R.G. A midterm report on the GEWEX Continental-Scale International Project (GCIP). J. Geophys. Res. Atmos. 1999, 104, 19279–19292. [Google Scholar] [CrossRef]
- Meyers, T.P.; Hollinger, S.E. An assessment of storage terms in the surface energy balance of maize and soybean. Agr. Forest Meteorol. 2004, 125, 105–115. [Google Scholar] [CrossRef]
- Bernacchi, C.J.; Hollinger, S.E.; Meyers, T. The conversion of the corn/soybean ecosystem to no-till agriculture may result in a carbon sink. Global Chang. Biol. 2005, 11, 1867–1872. [Google Scholar] [CrossRef]
- Kalfas, J.L.; Xiao, X.M.; Vanegas, D.X.; Verma, S.B.; Suyker, A.E. Modeling gross primary production of irrigated and rain-fed maize using MODIS imagery and CO2 flux tower data. Agr. Forest Meteorol. 2011, 151, 1514–1528. [Google Scholar] [CrossRef]
- Mu, Q.Z.; Zhao, M.S.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Numerical terradynamic simulation group. Available online: http://www.ntsg.umt.edu/project (accessed on 28 July 2015).
- MODIS land product subsets. Available online: http://daac.ornl.gov/MODIS/ (accessed on 28 July 2015).
- Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Bolstad, P.V.; Flanagan, L.B.; Goldstein, A.H.; Hollinger, D.Y.; Misson, L.; et al. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens. Environ. 2008, 112, 1633–1646. [Google Scholar] [CrossRef]
- Tang, X.G.; Wang, X.; Wang, Z.M.; Liu, D.W.; Jia, M.M.; Dong, Z.Y.; Xie, J.; Ding, Z.; Wang, H.R.; Liu, X.P. Influence of vegetation phenology on modelling carbon fluxes in temperate deciduous forest by exclusive use of MODIS time-series data. Int. J. Remote Sens. 2013, 34, 8373–8392. [Google Scholar] [CrossRef]
- Wagle, P.; Xiao, X.M.; Suyker, A.E. Estimation and analysis of gross primary production of soybean under various management practices and drought conditions. ISPRS J. Photogramm. Remote Sens. 2015, 99, 70–83. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- AmeriFlux site and data exploration system. Available online: http://ameriflux.ornl.gov/ (accessed on 28 July 2015).
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Papale, D.; Valentini, A. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob. Chang. Biol. 2003, 9, 525–535. [Google Scholar] [CrossRef]
- Moffat, A.M.; Papale, D.; Reichstein, M.; Hollinger, D.Y.; Richardson, A.D.; Barr, A.G.; Beckstein, C.; Braswell, B.H.; Churkina, G.; Desai, A.R.; et al. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agr. Forest Meteorol. 2007, 147, 209–232. [Google Scholar] [CrossRef]
- Beer, C.; Ciais, P.; Reichstein, M.; Baldocchi, D.; Law, B.E.; Papale, D.; Soussana, J.F.; Ammann, C.; Buchmann, N.; Frank, D.; et al. Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Glob. Biogeochem. Cycles 2009. [Google Scholar] [CrossRef]
- Desai, A.R.; Noormets, A.; Bolstad, P.V.; Chen, J.Q.; Cook, B.D.; Davis, K.J.; Euskirchen, E.S.; Gough, C.M.; Martin, J.G.; Ricciuto, D.M.; et al. Influence of vegetation and seasonal forcing on carbon dioxide fluxes across the Upper Midwest, USA: Implications for regional scaling. Agr. Forest Meteorol. 2008, 148, 288–308. [Google Scholar] [CrossRef]
- Hu, Z.M.; Yu, G.R.; Fu, Y.L.; Sun, X.M.; Li, Y.N.; Shi, P.L.; Wangw, Y.F.; Zheng, Z.M. Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China. Glob. Chang. Biol. 2008, 14, 1609–1619. [Google Scholar] [CrossRef]
- Pita, G.; Gielen, B.; Zona, D.; Rodrigues, A.; Rambal, S.; Janssens, I.A.; Ceulemans, R. Carbon and water vapor fluxes over four forests in two contrasting climatic zones. Agr. Forest Meteorol. 2013, 180, 211–224. [Google Scholar] [CrossRef]
- Zhu, X.J.; Yu, G.R.; Wang, Q.F.; Hu, Z.M.; Han, S.J.; Yan, J.H.; Wang, Y.F.; Zhao, L. Seasonal dynamics of water use efficiency of typical forest and grassland ecosystems in China. J. Forest Res. 2014, 19, 70–76. [Google Scholar] [CrossRef]
- Shu, G.P.; Pontieri, V.; Dengler, N.G.; Mets, L.J. Light induction of cell type differentiation and cell-type-specific gene expression in cotyledons of a C-4 plant, Flaveria trinervia. Plant Physiol. 1999, 121, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Vina, A.; Verma, S.B.; Rundquist, D.C.; Arkebauer, T.J.; Keydan, G.; Leavitt, B.; Ciganda, V.; Burba, G.G.; Suyker, A.E. Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity. J. Geophys. Res. Atmos. 2006. [Google Scholar] [CrossRef]
- Uedan, K.; Sugiyama, T. Purification and characterization of phosphoenolpyruvate carboxylase from maize leaves. Plant Physiol. 1976, 57, 906–910. [Google Scholar] [CrossRef] [PubMed]
- Still, C.J.; Berry, J.A.; Collatz, G.J.; DeFries, R.S. Global distribution of C-3 and C-4 vegetation: Carbon cycle implications. Glob. Biogeochem. Cycles 2003. [Google Scholar] [CrossRef]
- Morison, J.I.L.; Gifford, R.M. Stomatal sensitivity to carbon-dioxide and humidity: A comparison of 2 C-3 and 2 C-4 grass species. Plant Physiol. 1983, 71, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Flexas, J.; Niinemets, U.; Galle, A.; Barbour, M.M.; Centritto, M.; Diaz-Espejo, A.; Douthe, C.; Galmes, J.; Ribas-Carbo, M.; Rodriguez, P.; et al. Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth. Res. 2013, 117, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Cano, F.J.; Lopez, R.; Warren, C.R. Implications of the mesophyll conductance to CO2 for photosynthesis and water-use efficiency during long-term water stress and recovery in two contrasting eucalyptus species. Plant Cell Environ. 2014, 37, 2470–2490. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Gitelson, A.A. Remote estimation of gross primary productivity in soybean and maize based on total crop chlorophyll content. Remote Sens. Environ. 2012, 117, 440–448. [Google Scholar] [CrossRef]
- Manzoni, S.; Vico, G.; Katul, G.; Fay, P.A.; Polley, W.; Palmroth, S.; Porporato, A. Optimizing stomatal conductance for maximum carbon gain under water stress: A meta-analysis across plant functional types and climates. Funct. Ecol. 2011, 25, 456–467. [Google Scholar] [CrossRef]
- Traore, A.K.; Ciais, P.; Vuichard, N.; MacBean, N.; Dardel, C.; Poulter, B.; Piao, S.L.; Fisher, J.B.; Viovy, N.; Jung, M.; et al. 1982–2010 trends of light use efficiency and inherent water use efficiency in African vegetation: Sensitivity to climate and atmospheric CO2 concentrations. Remote Sens. 2014, 6, 8923–8944. [Google Scholar] [CrossRef]
- Pan, Y.Z.; Li, L.; Zhang, J.S.; Liang, S.L.; Zhu, X.F.; Sulla-Menashe, D. Winter wheat area estimation from MODIS-EVI time series data using the crop proportion phenology index. Remote Sens. Environ. 2012, 119, 232–242. [Google Scholar] [CrossRef]
- Walker, J.J.; de Beurs, K.M.; Wynne, R.H. Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data. Remote Sens. Environ. 2014, 144, 85–97. [Google Scholar] [CrossRef]
- Chen, M.; Griffis, T.J.; Baker, J.; Wood, J.D.; Xiao, K. Simulating crop phenology in the community land model and its impact on energy and carbon fluxes. J. Geophys. Res. Biogeosci. 2015, 120, 310–325. [Google Scholar] [CrossRef]
- Buchmann, N.; Schulze, E.D. Net CO2 and H2O fluxes of terrestrial ecosystems. Glob. Biogeochem. Cycles 1999, 13, 751–760. [Google Scholar] [CrossRef]
- Sur, C.; Choi, M. Evaluating ecohydrological impacts of vegetation activities on climatological perspectives using MODIS gross primary productivity and evapotranspiration products at Korean regional flux network site. Remote Sens. 2013, 5, 2534–2553. [Google Scholar] [CrossRef]
- Medrano, H.; Escalona, J.M.; Bota, J.; Gulias, J.; Flexas, J. Regulation of photosynthesis of C-3 plants in response to progressive drought: Stomatal conductance as a reference parameter. Ann. Bot-Lond. 2002, 89, 895–905. [Google Scholar] [CrossRef]
- Dong, J.W.; Xiao, X.M.; Wagle, P.; Zhang, G.L.; Zhou, Y.T.; Jin, C.; Torn, M.S.; Meyers, T.P.; Suyker, A.E.; Wang, J.B.; et al. Comparison of four EVI-based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought. Remote Sens. Environ. 2015, 162, 154–168. [Google Scholar] [CrossRef]
- Yuan, W.P.; Cai, W.W.; Nguy-Robertson, A.L.; Fang, H.J.; Suyker, A.E.; Chen, Y.; Dong, W.J.; Liu, S.G.; Zhang, H.C. Uncertainty in simulating gross primary production of cropland ecosystem from satellite-based models. Agr. Forest Meteorol. 2015, 207, 48–57. [Google Scholar] [CrossRef]
- Wu, C.Y.; Gonsamo, A.; Zhang, F.M.; Chen, J.M. The potential of the greenness and radiation (GR) model to interpret 8-day gross primary production of vegetation. ISPRS J. Photogramm. Remote Sens. 2014, 88, 69–79. [Google Scholar] [CrossRef]
- Xiao, X.M.; Zhang, Q.Y.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Berrien, M.; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Xiao, X.M.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.Y.; Moore, B. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534. [Google Scholar] [CrossRef]
- Wu, C.Y.; Chen, J.M.; Huang, N. Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: Evaluation and calibration. Remote Sens. Environ. 2011, 115, 3424–3435. [Google Scholar] [CrossRef]
- Peng, Y.; Gitelson, A.A.; Sakamoto, T. Remote estimation of gross primary productivity in crops using MODIS 250 m data. Remote Sens. Environ. 2013, 128, 186–196. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Li, H.; Griffis, T.J.; Xu, X.; Ding, Z.; Liu, G. Tracking Ecosystem Water Use Efficiency of Cropland by Exclusive Use of MODIS EVI Data. Remote Sens. 2015, 7, 11016-11035. https://doi.org/10.3390/rs70911016
Tang X, Li H, Griffis TJ, Xu X, Ding Z, Liu G. Tracking Ecosystem Water Use Efficiency of Cropland by Exclusive Use of MODIS EVI Data. Remote Sensing. 2015; 7(9):11016-11035. https://doi.org/10.3390/rs70911016
Chicago/Turabian StyleTang, Xuguang, Hengpeng Li, Tim J. Griffis, Xibao Xu, Zhi Ding, and Guihua Liu. 2015. "Tracking Ecosystem Water Use Efficiency of Cropland by Exclusive Use of MODIS EVI Data" Remote Sensing 7, no. 9: 11016-11035. https://doi.org/10.3390/rs70911016