National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China
"> Figure 1
<p>Seven forest zones in China: Red boxes are the field sample sites. (I = cold temperate zone; II = temperate zone; III = warm temperate zone; IV = subtropical zone; V = tropical zone; VI = Neimeng-Xinjiang arid zone; and VII = Qinghai-Xizang plateau alpine zone).</p> "> Figure 2
<p>Distribution of forest aboveground biomass of field inventory data (listed in <a href="#remotesensing-07-05534-t001" class="html-table">Table 1</a>) in six forest zones: (<b>a</b>) cold temperate zone, (<b>b</b>) temperate zone, (<b>c</b>) warm temperate zone, (<b>d</b>) subtropical zone, (<b>e</b>) tropical zone, and (<b>f</b>) Qinghai-Xizang plateau alpine zone.</p> "> Figure 3
<p>Processing flow of national biomass estimation from MODIS, GLAS, and field data.</p> "> Figure 4
<p>Comparison of biomass estimated from models using GLAS footprints on all slopes (purple crosses in model III), slopes <20° (brown squares in model I), and slopes ≥20° (green triangles in model II) with field survey biomass (blue diamonds) in forest zones II (<b>a</b>), III (<b>b</b>), IV (<b>c</b>), and VII (<b>d</b>). Models I and II were trained by GLAS waveform data on slopes <20° and ≥20°, respectively. Models III were developed from GLAS waveform data on all slopes.</p> "> Figure 5
<p>Map of aboveground biomass of Chinese forest. (The word “sheng” is spelled in Chinese Pinyin, and means “province” in English; similar to “shi” and “zizhiqu”).</p> "> Figure 6
<p>Distribution of forest AGB in seven forest zones in eight classes.</p> "> Figure 7
<p>Comparison of forest inventory biomass (measured biomass) with GLAS- and MODIS-derived national map of AGB (predicted biomass) in four forest zones. (<b>a</b>) Tahe in zone I; (<b>b</b>) Luishuihe in zone II; (<b>c</b>) Qinling in zone III; (<b>d</b>) Western Sichuan in zone VII.</p> "> Figure 7 Cont.
<p>Comparison of forest inventory biomass (measured biomass) with GLAS- and MODIS-derived national map of AGB (predicted biomass) in four forest zones. (<b>a</b>) Tahe in zone I; (<b>b</b>) Luishuihe in zone II; (<b>c</b>) Qinling in zone III; (<b>d</b>) Western Sichuan in zone VII.</p> "> Figure 8
<p>Comparison of biomass derived from field data with AGB prediction from MODIS and GLAS data using biomass of 31 provinces.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Field Data
Sample Zone | Nt | Nn | Nb | Nm | Biomass Range (Mg·ha−1) | Ns (Source, Acquisition Time) |
---|---|---|---|---|---|---|
Cold temperate zone (I) | 2415 | 1506 | 251 | 658 | 8.88–334.10 | 2355 (NFRI,2003), 60 (field work, 2006) |
Temperate zone (II) | 6357 | 1347 | 3877 | 1133 | 7.60–404.08 | 6307 (NFRI, 2004), 50 (field work, 2007) |
Warm temperate zone (III) | 2644 | 332 | 2005 | 307 | 10.60–277.94 | 2644 (NFRI, 2006) |
Subtropical zone (IV) | 4475 | 3609 | 723 | 143 | 9.21–466.67 | 4475 (NFRI, 2006) |
Tropical zone (V) | 431 | 30 | 401 | 0 | 11.16–416.10 | 391 (NFRI, 2006), 40 (field work, 2010) |
Qinghai-Xizang plateau alpine (VII) | 6359 | 3224 | 2559 | 576 | 16.14–509.42 | 6359 (NFRI, 2006) |
2.2.2. LiDAR Waveform Data
2.2.3. MODIS Data
2.3. Relating Ground-Based AGB to GLAS Waveform Parameters
GLAS Waveform Parameters | Definition |
---|---|
meanh, medh | Mean and median canopy height calculated from waveform [66]. |
wflen, centroid, h14 | Waveform length, centroid and top tree height from GLA14 product. |
fslope, eratio | Front slope and vegetation to surface energy ratio from waveform as calculated by Sun et al. [56] |
h10, h20, …, h100 | Deciles heights for waveform energy to reach 10%, 20%, …, 100% of total energy starting form signal end [56]. |
h25, h75 | Quartiles heights for waveform energy to reach 25% and 75% of total energy starting form signal end [56]. |
ht3 | Top tree height calculated from waveform with one of corrections as calculated by Sun et al. [56] |
gdpamp | Amplitude of Gaussian peaks in GLA14 product. |
lead, trail | Leading edge extent and trailing edge extent calculated from waveform [59]. |
hslope | A terrain index calculated from a function of waveform length, footprints size and slope [60]. |
2.4. Extrapolating GLAS-Derived AGB Estimates to MODIS Imagery
Vegetation Indices | Formula | Reference |
---|---|---|
SR | Band 1/band 2 | Colombo et al. [69] |
NDVI | (band 2 − band 1)/(band 2 + band 1) | Rouse et al. [70] |
EVI | 5 × (band 2 – band 1)/(band 2 + 6band 1−7.5band 3 + 1) | Huete et al. [71] |
SAVI | 1.5 × (band 2 − band 1)/(band 2 + band 1 + 0.5) | Huete. [72] |
NDIIb7 | (band 2 – band 7)/(band 2 + band 7) | Hunt et al. [73] |
ARVI | (band 2 + band 3 − 2band 1)/(band 2 + 2band 1 − band 3) | Kaufman et al. [74] |
2.5. Accuracy Assessment
3. Results
3.1. Biomass Estimates from GLAS Waveform Parameters
Forest Zones | R2-a in Case 1 (Case 2) | |||||
---|---|---|---|---|---|---|
NF | BF | MF | RP | TMF | ||
I | 0.786 (0.815) | 0.658 (0.683) | 0.671 (0.689) | |||
II | 0.662 (0.688) | 0.706 (0.723) | 0.694 (0.712) | |||
III | 0.503 (0.591) | 0.675 (0.787) | 0.508 (0.583) | |||
IV | 0.552 (0.614) | 0.611 (0.660) | 0.452 (0.518) | |||
V | 0.651 (0.762) | 0.624 (0.701) | ||||
VII | 0.527 (0.599) | 0.607 (0.693) | 0.557 (0.645) |
Zone | Forest Types | Models | R2-a | N |
---|---|---|---|---|
I | Needleaf | ln(B) = 0.7525 medh − 1.6582 meanh + 4.5879 h75 − 2.1283 h80 + 0.4522 h100 + 5.6168 | 0.821 | 1203 |
Broadleaf | ln(B) = 0.7631 medh + 0.0018 eratio − 0.3965 wflen − 1.8252 h30 + 1.4663 h75 + 2.6246 | 0.687 | 237 | |
Mixed | ln(B) = 0.0096 eratio + 1.2566 h50 − 2.1639 h60 + 1.5212 h70 − 0.4168 h80 + 0.3581 h100 + 3.9187 | 0.702 | 548 | |
II | Needleaf | ln(B) = 0.6035 meanh + 0.0856 trail – 0.9138 h20 + 1.0116 h50 + 0.2132 h100 + 4.8012 (slope <20°) | 0.711 | 716 |
ln(B) = 0.7105 medh + 0.1521 lead – 0.1292 trail – 0.7469 h25 + 1.2734 h50 + 0.2516 h100 + 4.6931 (slope ≥20°) | 0.718 | 542 | ||
Broadleaf | ln(B) = 0.3427 lead + 0.1528 h100 − 0.0637 eratio + 0.3829 h50 − 0.6614 h10 − 1.2331 ln(h100) + 4.5864 (slope <20°) | 0.784 | 1920 | |
ln(B) = 0.3861 lead + 0.3317 trail + 0.1592 h100 – 0.1173 eratio + 0.1243 h50 – 0.3724 h20 – 0.8618 ln(h100) + 4.2077 (slope ≥20°) | 0.755 | 1566 | ||
Mixed | ln(B) = 0.0842 h75 − 0.1732 wflen − 0.1574 h25 + 0.2066 h100 + 4.7751 (slope <20°) | 0.756 | 624 | |
ln(B) = 0.0614 h75 + 0.3059 lead – 0.1028 trail – 0.0952 h25 + 0.1337 h100 + 4.6832 (slope ≥20°) | 0.737 | 226 | ||
II | Needleaf | ln(B) = 0.0683 medh − 0.0355 lead − 0.0168 trail − 3.3667 wflen + 7.3146 h100 − 3.3629 ht3 − 0.0071 hslope + 0.4835 (slope <20°) | 0.694 | 133 |
ln(B) = 0.0588 meanh – 0.0517 lead – 0.0269 trail + 8.5293 h100 – 2.8243 wflen – 5.9678 h50 – 0.0124 hslope + 0.5139 (slope ≥20°) | 0.701 | 125 | ||
Broadleaf | ln(B) = 0.0082 meanh − 0.0058 medh + 0.0019 centroid + 0.0008 eratio − 0.0039 h50 + 0.0359 h75 + 0.0021 hslope − 0.0005 (ht3)2 + 2.9672 (slope <20°) | 0.898 | 1116 | |
ln(B) = 0.0078 medh + 0.0645 lead − 0.0616 trail − 0.0069 h50 + 0.0022 eratio + 0.0295 h75 + 0.0016 hslope – 0.0004 (ht3)2 + 2.658 (slope ≥20°) | 0.884 | 696 | ||
Mixed | ln(B) =0.2178 wflen + 0.1335 h50 − 0.2532 h14 + 0.0084 gdpamp − 0.0010 (h75)2 + 0.0006 (h100)2 − 0.0006 hslope + 4.7153 (slope <20°) | 0.703 | 128 | |
ln(B) = 0.1832 wflen + 0.1049 h50 − 0.2557 h14 + 0.0078 gdpamp − 0.0016 (h75)2 + 0.0005 (h100)2 − 0.0008 hslope + 4.3551 (slope ≥20°) | 0.681 | 117 | ||
IV | Needleaf | ln(B) = 0.0778 h14 − 0.0706 trail – 0.0436 h50 + 0.0551 h100 − 0.0642 hslope + 0.0010 (h75)2 + 2.3814 (slope < 20°) | 0.716 | 1582 |
ln(B) = 0.0641wflen + 0.0137lead − 0.0626trail + 0.0396h100 − 0.0845hslope + 0.0013 (h75)2 + 2.4783 (slope ≥20°) | 0.707 | 1133 | ||
Broadleaf | ln(B) = 0.0375 wflen + 0.0584 centroid − 0.0263 fslope + 0.0625 h100 − 0.0563 ht3 − 0.0405 hslope + 3.9661 (slope <20°) | 0.715 | 258 | |
ln(B) = 0.0406 h14 + 0.0818 lead − 0.0282 trail − 0.0249 fslope + 0.0588 h100 − 0.0571 ht3 − 0.0331 hslope + 3.9512 (slope ≥20°) | 0.703 | 212 | ||
Mixed | ln(B) = 0.0821 lead + 0.0563 fslope − 0.0903 trail + 0.0426 h100 − 0.0022 hslope + 4.3916 (slope <20°) | 0.624 | 215 | |
ln(B) = 0.0865 lead + 0.0556 fslope − 0.0941 trail + 0.0483 h100 − 0.0029 hslope + 4.7523 (slope ≥20°) | 0.646 | 184 | ||
V | Tropical monsoon forest | ln(B) = 0.1856 meanh + 0.0166 eratio + 0.1043 h100 − 0.096 h14 − 0.0279 lead − 0.1345 h25 + 2.3628 | 0.759 | 202 |
Rubber plantation | ln(B) = 0.8636h50 – 0.7568trail + 2.8519 | 0.708 | 75 | |
VII | Needleaf | ln(B) = 0.0525 centroid − 0.0232 wflen + 0.0221 hslope + 3.2316 (slope <20°) | 0.751 | 1303 |
ln(B) = 0.0925 lead − 0.0252 trail − 0.0237 h14 + 0.0242 hslope + 3.3106 (slope ≥20°) | 0.749 | 975 | ||
Broadleaf | ln(B) = 2.1091 meanh − 0.5753 medh + 0.1024 centroid − 1.4145 h50 + 0.3168 h100 − 0.071 ht3 − 0.040 hslope + 2.3511 (slope <20°) | 0.852 | 1011 | |
ln(B) = 2.0882 meanh − 0.5249 medh − 1.3872 h50 + 0.3455 h100 − 0.036 ht3 − 0.037 hslope + 2.2859 (slope ≥20°) | 0.846 | 948 | ||
Mixed | ln(B) = 0.0527 meanh + 0.1237 medh + 2.6855 (slope <20°) | 0.811 | 188 | |
ln(B) = 0.0487 meanh + 0.1025 medh + 0.0536 lead – 0.0174 trail + 2.6685 (slope ≥20°) | 0.802 | 181 |
Forest Zones | R2 and RMSE (Mg·ha−1) in AGB Models Validation | ||||
---|---|---|---|---|---|
NF | BF | MF | RP | TMF | |
I | 0.861 (9.38) | 0.854 (12.92) | 0.864 (13) | ||
II | 0.798 (15.64) 1 | 0.837 (12.94) 1 | 0.901 (11.25) 1 | ||
0.786 (20.82) 2 | 0.806 (19.79) 2 | 0.869 (18.18) 2 | |||
III | 0.791 (12.47) 1 | 0.725 (14.26) 1 | 0.808 (9.28) 1 | ||
0.783 (18.56) 2 | 0.739 (20.64) 2 | 0.798(22.87) 2 | |||
IV | 0.725 (23.60) 1 | 0.706 (21.91) 1 | 0.642 (25.57) 1 | ||
0.737 (21.85) 2 | 0.696 (20.18) 2 | 0.635 (23.76)2 | |||
V | 0.887 (12.08) | 0.807 (43.81) | |||
VII | 0.712 (18.76) 1 | 0.679 (25.63) 1 | 0.705 (24.08) 1 | ||
0.718 (20.63) | 0.682 (26.04) | 0.682 (25.27) |
3.2. National Forest AGB Estimation
3.3. Assessment of National AGB
Province | Relative Error (%) | Province | Relative Error (%) | Province | Relative Error (%) |
---|---|---|---|---|---|
Anhui | 6.38 | Heilongjiang | −2.86 | Qinghai | −68.53 |
Beijing | 8.08 | Henan | −48.29 | Shaanxi | 13.56 |
Chongqing | 11.13 | Hubei | 76.63 | Shandong | −88.21 |
Fujian | 6.24 | Hunan | 22.07 | Shanghai | −82.08 |
Gansu | −0.77 | Jiangsu | −70.18 | Shanxi | −13.03 |
Guangdong | 19.65 | Jiangxi | 7.43 | Sichuan | 5.72 |
Guangxi | 3.89 | Jilin | 3.75 | Tianjin | −23.72 |
Guizhou | −15.12 | Liaoning | 49.21 | Xinjiang | −31.07 |
Hainan | 32.56 | Neimenggu | −28.35 | Xizang | −15.45 |
Hebei | −27.73 | Ningxia | −48.37 | Yunnan | 21.95 |
Zhejiang | 51.84 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Houghton, R.A. Encyclopedia of Ecology, 1st ed.; Jorgensen, S.E., Fath, B.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 448–453. [Google Scholar]
- Houghton, R.A.; Hall, F.; Goetz, S.J. Importance of biomass in the global carbon cycle. Geophys. Res. Lett. 2009, 114, G00E03. [Google Scholar] [CrossRef]
- Winjum, J.K.; Dixon, R.K.; Schroeder, P.E. Forest management and carbon storage: An analysis of 12 key forest nations. Water Air Soil Pollut. 1993, 70, 239–257. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [PubMed]
- Neigh, S.R.; Nelson, R.F.; Ranson, K.J.; Margolis, H.A.; Montesano, P.M.; Sun, G.; Kharuk, V.; Næsset, E.; Wulder, M.A.; Andersen, H. Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR. Remote Sens. Environ. 2013, 137, 274–287. [Google Scholar] [CrossRef]
- Le Toan, T.; Quegan, S.; Davidson, M.J.; Balzter, H.; Paillou, P.; Papathanassiou, K.; Plummer, S.; Rocca, F.; Saatchi, S.; Shugart, H.; et al. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ. 2011, 115, 2850–2860. [Google Scholar]
- Hudak, A.T.; Strand, E.K.; Vierling, L.A.; Byrne, J.C.; Eitel, J.U.H.; Martinuzzi, S.; Falkowski, M.J. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys. Remote Sens. Environ. 2012, 123, 25–40. [Google Scholar] [CrossRef]
- Barbosa, J.M.; Melendez-Pastor, I.; Navarro-Pedreno, J.; Bitencourt, M.D. Remotely sensed biomass over steep slopes: An evaluation among successional stands of the Atlantic Forest, Brazil. ISPRS J. Photogram. 2014, 88, 91–100. [Google Scholar] [CrossRef]
- Bown, S.; Lugo, A.E. Biomass of tropical forest: A new estimate based on forest volumes. Science 1984, 223, 1290–1293. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.Y.; Chen, A.P.; Peng, C.H.; Zhao, S.Q.; Ci, L.J. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef] [PubMed]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, J.; Nelson, R.F.; Margolis, H.A.; Beaudoin, A.; Guindon, L.; Kimes, D.S. Regional aboveground forest biomass using airborne and spaceborne LiDAR in Quebec. Remote Sens. Environ. 2008, 112, 3876–3890. [Google Scholar] [CrossRef]
- Guo, Z.F.; Chi, H.; Sun, G. Estimating forest aboveground biomass using HJ-1 Satellite CCD and ICESat GLAS waveform data. Sci. China Earth Sci. 2010, 53, 16–25. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Stinson, G.; Hilker, T.; Kurz, W.A.; Coops, N.C.; St-Onge, B.; Trofymow, J.A. Implications of differing input data sources and approaches upon forest carbon stock estimation. Environ. Monit. Assess. 2010, 166, 543–561. [Google Scholar] [CrossRef] [PubMed]
- Tsui, O.W.; Coops, N.C.; Wulder, M.A.; Marshall, P.L.; McCardle, A. Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest. ISPRS J. Photogram. 2012, 69, 121–133. [Google Scholar] [CrossRef]
- Hayashi, M.; Saigusa, N.; Oguma, H.; Yamagata, Y. Forest canopy height estimation using ICESat/GLAS data and error factor analysis in Hokkaido, Japan. ISPRS J. Photogram. 2013, 81, 12–18. [Google Scholar] [CrossRef]
- Rosenqvist, A.; Milne, A.; Lucas, R.; Imhoff, M.; Dobson, C. A review of remote sensing technology in support of the Kyoto protocol. Environ. Sci. Policy 2003, 6, 441–445. [Google Scholar] [CrossRef]
- Jenson, J.R. Remote sensing of vegetation. In Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Science Press: Beijing, China, 2011; pp. 355–367. [Google Scholar]
- Avitabile, V.; Baccini, A.; Friedl, M.A.; Schmullius, C. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sens. Environ. 2012, 117, 366–380. [Google Scholar] [CrossRef]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Foody, G.M.; Boydb, D.S.; Cutlerc, M.J. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens. Environ. 2003, 85, 463–474. [Google Scholar] [CrossRef]
- Dong, J.R.; Kaufmann, R.K.; Myneni, R.B.; Tucker, C.J.; Kauppi, P.E.; Liski, J.; Buermann, W.; Alexeyev, V.; Hughes, M.K. Remote sensing estimates of boreal and temperate forest woody biomass: Carbon pools, sources, and sinks. Remote Sens. Environ. 2003, 84, 393–410. [Google Scholar] [CrossRef]
- Cartus, O.; Kellndorfer, J.; Walker, W.; Franco, C.; Bishop, J.; Santos, L.; Fuentes, J.M.M. A National, Detailed Map of Forest Aboveground Carbon Stocks in Mexico. Remote Sens. 2014, 6, 5559–5588. [Google Scholar] [CrossRef]
- Gasparri, N.I.; Parmuchi, M.G.; Bono, J.; Karszebaum, H.; Montenegro, C.L. Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry forests of Argentina. J. Arid Environ. 2010, 74, 1262–1270. [Google Scholar] [CrossRef]
- Chopping, M.; Schaaf, C.B.; Zhao, F.; Wang, Z.S.; Nolin, A.W.; Moisen, G.G.; Martonchik, J.V.; Bull, M. Forest structure and aboveground biomass in the southwestern United States from MODIS and MISR. Remote Sens. Environ. 2011, 115, 2943–2953. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett. 2007, 2, 1–13. [Google Scholar]
- Englhart, S.; Keuck, V.; Siegert, F. Aboveground biomass retrieval in tropical forests—The potential of combined X- and l-band SAR data use. Remote Sens. Environ. 2011, 115, 1260–1271. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Cohen, W.B.; Kennedy, R.E.; Yang, Z.Q. Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics. Remote Sens. Environ. 2013, 151, 124–137. [Google Scholar] [CrossRef]
- Baltsavias, E.P. Airborne laser scanning: Existing systems and firms and other resources. ISPRS J. Photogram. 1999, 54, 164–198. [Google Scholar] [CrossRef]
- Nelson, R.; Ranson, K.J.; Sun, G.; Kimes, D.S.; Kharuk, V.; Montesano, P. Estimating Siberian timber volume using MODIS and ICESat/GLAS. Remote Sens. Environ. 2009, 113, 691–701. [Google Scholar] [CrossRef]
- Dubayah, R.O.; Sheldon, S.L.; Clark, D.B.; Hofton, M.A.; Blair, J.B.; Hurtt, G.C.; Chazdon, R.L. Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica. J. Geophys. Res. 2010, 115, G00E09. [Google Scholar]
- Zhang, Y.; Liang, S.; Sun, G. Forest biomass mapping of Northeastern China using GLAS and MODIS data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 140–152. [Google Scholar] [CrossRef]
- Laurin, G.V.; Chen, Q.; Lindsell, J.A.; Coomes, D.A.; Frate, F.D.; Guerriero, L.; Pirotti, F.; Valentini, R. Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data. ISPRS J. Photogram. 2014, 89, 49–58. [Google Scholar] [CrossRef]
- Blair, J.B.; Rabine, D.L.; Hofton, M.A. The Laser Vegetation Imaging Sensor: A medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS J. Photogram. 1999, 54, 115–122. [Google Scholar] [CrossRef]
- Abshire, J.B.; Sun, X.L.; Riris, H.; Sirota, J.M.; McGarry, J.F.; Palm, S.; Yi, D.H.; Liiva, P. Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance. Geophys. Res. Lett. 2005, 32, L21S02. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Cohen, W.B.; Parker, G.G.; Harding, D.J. Lidar remote sensing for ecosystem studies. Bioscience 2002, 52, 19–30. [Google Scholar] [CrossRef]
- Means, J.E.; Acker, S.A.; Harding, D.J.; Blair, J.B.; Lefsky, M.A.; Cohen, W.B.; Harmon, M.E.; McKee, W.A. Use of large-footprint scanning airborne lidar to estimate forest stand characteristics in the western cascades of Oregon. Remote Sens. Environ. 1999, 67, 298–308. [Google Scholar] [CrossRef]
- Ni-Meister, W.; Lee, S.; Strahler, A.H.; Woodcock, C.E.; Schaaf, C.; Yao, T.; Ranson, K.J.; Sun, G.; Blair, J.B. Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing. J. Geophys. Res. 2010, 115, G00E11. [Google Scholar]
- Zolkos, S.G.; Goetz, S.J.; Dubayah, R.A. meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens. Environ. 2013, 128, 289–298. [Google Scholar] [CrossRef]
- Zwally, H.J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D.; et al. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn. 2002, 34, 405–445. [Google Scholar] [CrossRef]
- Schutz, B.E.; Zwally, H.J.; Shuman, C.A.; Hancock, D.; DiMarzio, J.P. Overview of the ICESat Mission. Geophys. Res. Lett. 2005, 32, L21S01. [Google Scholar] [CrossRef]
- Sun, G.; Ranson, K.J.; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D. Forest biomass mapping from lidar and radar synergies. Remote Sens. Environ. 2011, 115, 2906–2916. [Google Scholar] [CrossRef]
- Koch, B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for biomass assessment. ISPRS J. Photogram. 2010, 65, 581–290. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Nelson, R.F.; Næsset, E.; ørka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.; Gobakken, T. Lidar sampling for large-area forest characterization: A review. Remote Sens. Environ. 2012, 12, 196–209. [Google Scholar] [CrossRef]
- Baccini, A.; Laporte, N.; Goetz, S.J.; Sun, M.; Dong, H. A first map of tropical Africa’s aboveground biomass derived from satellite imagery. Environ. Res. Lett. 2008, 3, 1–9. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Fao Statistical Yearbook 2013: World Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Fang, J.Y.; Wang, G.G.; Liu, G.H.; Xu, S.L. Forest biomass of China: An estimate based on the biomass-volume relationship. Ecol. Appl. 1998, 8, 1084–1091. [Google Scholar]
- Goetz, S.J.; Baccini, A.; Laporte, N.T.; Johns, T.; Walker, W.; Kellndorfer, J.; Houghton, R.A.; Sun, M. Mapping and monitoring carbon stocks with satellite observations: A comparison of methods. Carbon Balance Manag. 2009. [Google Scholar] [CrossRef]
- Hou, X.Y. Chinese Vegetation Atlas; Science Press: Beijing, China, 2001; p. 30. [Google Scholar]
- Zhong, Z.C.; Miao, S.L. Chinese Vegetation and its Distribution. J. Southwest Norm. Univ. 1986, 1, 33–66. [Google Scholar]
- Wu, Z.Y. Chinese Vegetation; Science Press: Beijing, China, 1980; pp. 12–24. [Google Scholar]
- Nyland, R.D. Silviculture: Concepts and Applications, 2nd ed.; Waveland Press: Wauconda, IL, USA, 2007; pp. 35–45. [Google Scholar]
- Lefsky, M.A.; Harding, D.J.; Keller, M.; Cohen, W.B.; Carabajal, C.C.; E-Santo, F.B.; Hunter, M.O.; Oliveira, R., Jr. Estimates of forest canopy height and aboveground biomass using ICESat. Geophys. Res. Lett. 2005, 32, L22S02. [Google Scholar] [CrossRef]
- Wang, C.K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forest. For. Ecol. Manag. 2006, 222, 9–16. [Google Scholar] [CrossRef]
- Feng, Z.W.; Wang, X.K. Biomass and Productivity of Chinese Forest Ecosystems; Science Press: Beijing, China, 1999; pp. 53–97. [Google Scholar]
- Sun, G.; Ranson, K.J.; Kimes, D.S.; Blair, J.B.; Kovacs, K. Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data. Remote Sens. Environ. 2008, 112, 107–117. [Google Scholar] [CrossRef]
- Harding, D.J.; Carabaja, C.C. ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophys. Res. Lett. 2005, 32, L21S10. [Google Scholar]
- Lefsky, M.A.; Kelle, M.; Pang, Y.; de Camargo, P.B.; Hunter, M.O. Revised method for forest canopy height estimation from the Geoscience Laser Altimeter System waveforms. J. Appl. Remote Sens. 2007, 1, 013537. [Google Scholar] [CrossRef]
- Hilbert, C.; Schmullius, C. Influence of surface topography on ICESat/GLAS forest height estimation and waveform shape. Remote Sens. 2012, 4, 2210–2235. [Google Scholar] [CrossRef]
- Chi, H. Research on Forest Aboveground Biomass Estimation in China Based on ICESat/GLAS and MODIS Data. Ph.D. Thesis, Chinese Academy of Sciences, Beijing, China, 2011. [Google Scholar]
- Justice, C.O.; Vermote, E.; Townshend, J.R.G.; DeFries, R.; Roy, D.P.; Hall, D.K.; Salomonson, V.V.; Privette, J.L.; Riggs, G.; Strahler, A.; et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1228–1249. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Carroll, M.; Dimiceli, C.; Sohlberg, R.A. Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm. Earth Interact. 2003, 7, 1–15. [Google Scholar] [CrossRef]
- Anaya, J.A.; Chuvieco, E.; P-Ocueta, A. Aboveground biomass assessment in Colombia: A remote sensing approach. For. Ecol. Manag. 2009, 257, 1237–1246. [Google Scholar] [CrossRef]
- Gallaun, H.; Zanchi, G.; Nabuurs, G-J.; Hengeveld, G.; Schardt, M.; Verkerk, P.J. EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements. For. Ecol. Manag. 2010, 260, 252–261. [Google Scholar]
- Lefsky, M.A.; Harding, D.J.; Cohen, W.B.; Parker, G.; Shugart, H.H. Surface lidar remote sensing of basal area and biomass in deciduous forests of Eastern Maryland, USA. Remote Sens. Environ. 1999, 67, 83–98. [Google Scholar] [CrossRef]
- Neter, J.; Wasserman, W. Applied Linear Statistical Models: Regression, Analysis of Variance, and Experimental Designs; Richard, D., Ed.; Irwin, Inc.: Homewood, IL, USA, 1974. [Google Scholar]
- Chen, Q. Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry. Remote Sens. Environ. 2010, 114, 1610–1627. [Google Scholar] [CrossRef]
- Colombo, R.; Bellingeri, D.; Fasolini, D.; Marino, C.M. Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens. Environ. 2003, 86, 120–131. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium; NASA: Washington, DC, USA, 2007; pp. 3010–3017. [Google Scholar]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W.J. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Hunt, E.R.; Rock, B.N. Detection of changes in leaf water content using near- and middle-infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Perry, C.R.; Lautenschlager, L.F. Functional Equivalence of spectral vegetation indices. Remote Sens. Environ. 1984, 14, 169–182. [Google Scholar] [CrossRef]
- Baccini, A.; Friedl, M.; Woodcock, C.; Warbington, R. Forest biomass estimation over regional scales using multisource data. Geophys. Res. Lett. 2004, 31, L10501. [Google Scholar] [CrossRef]
- Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne lidar. Geophys. Res. Lett. 2011, 116, G04021. [Google Scholar] [CrossRef]
- Houghton, R.; Butman, D.; Bunn, A.G.; Krankina, O.N.; Schlesinger, P.; Stone, T.A. Mapping Russian forest biomass with data from satellites and forest inventories. Environ. Res. Lett. 2007, 2, 045032. [Google Scholar] [CrossRef]
- Kankare, V.; Vastaranta, M.; Holopainen, M.; Räty, M.; Yu, X.; Hyyppä, J.; Hyyppä, H.; Alho, P.; Viitala, R. Retrieval of forest aboveground biomass and stem volume with airborne scanning LiDAR. Remote Sens. 2013, 5, 2257–2274. [Google Scholar] [CrossRef] [Green Version]
- Li, H.K. Estimation and Evaluation of Forest Biomass Carbon Storage in China; China Forestry Press: Beijing, China, 2010; pp. 26–36. [Google Scholar]
- MacDicken, K.G. A Guide to Monitoring Carbon Storage in Forestry and Agroforestry Projects; Forest Carbon Monitoring Program; Winrock International Institute for Agricultural Development: Little Rock, AR, USA, 1997. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, H.; Sun, G.; Huang, J.; Guo, Z.; Ni, W.; Fu, A. National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China. Remote Sens. 2015, 7, 5534-5564. https://doi.org/10.3390/rs70505534
Chi H, Sun G, Huang J, Guo Z, Ni W, Fu A. National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China. Remote Sensing. 2015; 7(5):5534-5564. https://doi.org/10.3390/rs70505534
Chicago/Turabian StyleChi, Hong, Guoqing Sun, Jinliang Huang, Zhifeng Guo, Wenjian Ni, and Anmin Fu. 2015. "National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China" Remote Sensing 7, no. 5: 5534-5564. https://doi.org/10.3390/rs70505534
APA StyleChi, H., Sun, G., Huang, J., Guo, Z., Ni, W., & Fu, A. (2015). National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China. Remote Sensing, 7(5), 5534-5564. https://doi.org/10.3390/rs70505534