Extracting Leaf Area Index by Sunlit Foliage Component from Downward-Looking Digital Photography under Clear-Sky Conditions
"> Figure 1
<p>The flow chart of procedures to extract LAI from downward-looking digital photography under clear-sky conditions.</p> "> Figure 2
<p>The young jack pine (YJP) site located in the BOREAS southern study area situated near Candle Lake, Saskatchewan, Canada (53.975°N, 104.650°W). The projection is UTM 13 North, WGS84. The background image is a true-color composite image from Landsat8/TM that was acquired on 8 August 2014.</p> "> Figure 3
<p>The downward-looking synthetic images from constructed 3D scene of the YJP site under clear-sky conditions. The components in bright green, bright brown, dark green, and dark brown correspond to sunlit foliage, sunlit background, shaded foliage and shaded background, respectively. (<b>a</b>–<b>c</b>) correspond to synthetic images generated in the principal plane with the view zenith angle <math display="inline"> <semantics> <mrow> <msub> <mtext>θ</mtext> <mi>v</mi> </msub> </mrow> </semantics> </math> of 30°, 0° and −30°, respectively. The solar zenith angle <math display="inline"> <semantics> <mrow> <msub> <mtext>θ</mtext> <mi>s</mi> </msub> </mrow> </semantics> </math> and solar azimuth angle <math display="inline"> <semantics> <mrow> <msub> <mtext>φ</mtext> <mi>s</mi> </msub> </mrow> </semantics> </math> are −30° and 180°, respectively.</p> "> Figure 4
<p>The classification results of sunlit foliage (in black) and background (in white) by the automated LAB2 algorithm (<b>a</b>) and by the 3D software (<b>b</b>). The original RGB image was acquired at nadir view (<math display="inline"> <semantics> <mrow> <msub> <mtext>θ</mtext> <mi>v</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>°</mo> </mrow> </semantics> </math>) as in <a href="#remotesensing-07-13410-f003" class="html-fig">Figure 3</a>b.</p> "> Figure 5
<p>Comparison between the area ratio of the sunlit foliage component (<span class="html-italic">P<sub>T</sub></span>) extracted by the LAB2 algorithm (on the vertical axis) and the 3D reference values (on the horizontal axis) from 22 images in the principal plane and in the cross plane.</p> "> Figure 6
<p>The area ratio of the sunlit foliage component (<span class="html-italic">P<sub>T</sub></span>), shaded foliage component (<span class="html-italic">Z<sub>T</sub></span>) and gap fraction (GF) extracted by the LAB2 algorithm and the 3D reference values in the principal plane (<b>a</b>) and in the cross plane (<b>b</b>) with the solar zenith angle (SZA) of <math display="inline"> <semantics> <mrow> <mo>−</mo> <mn>30</mn> <mo>°</mo> </mrow> </semantics> </math>.</p> "> Figure 7
<p>The clumping index (CI) estimated by the path length distribution-based method in this study (CI_Path) and the LX method (CI_LX), compared with the 3D reference values (CI_3D) in the principal plane (<b>a</b>) and in the cross plane (<b>b</b>).</p> "> Figure 8
<p>Comparison between the clumping index (CI) estimated by the path length distribution-based method (CI_Path) or the LX method (CI_LX) with the 3D reference values (CI_3D) from 22 images in the principal plane and in the cross plane.</p> "> Figure 9
<p>The retrieved LAI and the corresponding Relative Error (RE) by four different methods in the principal plane (<b>a</b>) and in the cross plane (<b>b</b>). The LAI_True is the true LAI set in the 3D realistic structural scene, which serves as the ground reference value; LAI_Path and LAI_LX are the retrieval of LAI by the sunlit foliage component under sunny conditions with the CI estimated by the path length-based method and the LX method, respectively; LAI_Overcast and LAI_Sunny are the retrieval of LAI by the directional gap fraction model under overcast conditions and under sunny conditions, respectively.</p> "> Figure 10
<p>The actual downward-looking digital images acquired under clear-sky conditions for a corn region on 20 September 2014 (<b>a</b>) and for an aspen region on 27 July 2014 (<b>b</b>) at the Huailai site. Both of the two images were acquired at nadir view (<math display="inline"> <semantics> <mrow> <msub> <mtext>θ</mtext> <mi>v</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>°</mo> </mrow> </semantics> </math>). The classification results of sunlit foliage (in black) and background (in white) by the automated LAB2 algorithm for the corn region and the aspen region are shown in (<b>c</b>,<b>d</b>), respectively.</p> "> Figure 11
<p>Comparison between retrieved LAI and the corresponding Relative Error (RE) by 18 images acquired on sunny days with field measured true LAI by LAI-2000 and TRAC at the Huailai site in 2014. LAI_Path is the retrieval of LAI by the sunlit foliage component under sunny conditions with the clumping index estimated by the path length-based method, and LAI_Sunny is the retrieval of LAI by the directional gap fraction model under sunny conditions with the clumping index estimated by the widely used Lang and Xiang (LX) method.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Theory
- Estimate the area ratio of the sunlit foliage component PT from digital images by an automated image classification algorithm.
- Extract the clumping index from digital images by a path length distribution-based method [37].
- Characterize the leaf angle distribution (LAD) and calculate the leaf projection function (G).
- Acquire the canopy height H, the foliage diameter and the solar/view geometric information by field measurements.
- Derive LAI by Equation (4) with the above variables estimated.
2.2. Sunlit Foliage Component
2.3. Clumping Index
2.4. Leaf Angle Distribution and Leaf Projection Function
3. Materials
3.1. Field Data Collection at the YJP Site
Tree Density | Ha | Hb | R | Ws | G | |||
---|---|---|---|---|---|---|---|---|
4000 trees/ha | 2.7 | 0.72 | 1.43 | 0.5 | 2.5 | 0.85 m | 0.17 m | 0.5 |
3.2. 3D Reference Scene Construction
3.3. In Situ Measurements at the Huailai Site
4. Results and Analysis
4.1. Scene Component Extraction
4.2. Clumping Index Estimation
4.3. Comparison of LAI Retrievals with Other Methods
LAI_Path | LAI_LX | LAI_Overcast | LAI_Sunny | |
---|---|---|---|---|
RMSE | 0.35 | 0.40 | 0.32 | 1.61 |
Relative Error (RE) | 11.4% | 12.1% | 9.0% | 55.9% |
4.4. Applications at the Huailai Site
5. Discussion
6. Conclusions
- (1)
- The LAB2 algorithm makes it possible for the automated image processing and the accurate sunlit foliage component extraction with the minimum overall accuracy of 91.4%.
- (2)
- The widely used LX method tends to underestimate the clumping index, while the path length distribution-based method can reduce the RE from 7.8% to 6.6%.
- (3)
- Using the current directional gap fraction model under sunny conditions can lead to an underestimation of LAI by (1.61; 55.9%), which was significantly outside the accuracy requirement (0.5; 20%) by the GCOS.
- (4)
- The proposed LAI extraction method has an RMSE of 0.35 and an RE of 11.4% under sunny conditions, which can meet the accuracy requirement of the GCOS.
Acknowledgments
Author Contributions
Nomenclature
CC | The gap size distribution-based method to estimate CI by Chen and Cihlar |
CI | Clumping index |
CP | The cross plane |
DHP | Digital Hemispherical Photography |
GCOS | Global Climate Observation System |
GF | Gap fraction |
GLA | Green leaf algorithm |
GO | Geometric-optical model |
LAD | Leaf angle distribution |
LAI | Leaf area index |
LAI_Path | The retrieval of LAI by the sunlit foliage component under sunny conditions with the CI estimated by the path length-based method |
LAI_LX | The retrieval of LAI by the sunlit foliage component under sunny conditions with the CI estimated by the LX method |
LAI_Overcast | The retrieval of LAI by the directional gap fraction model under overcast conditions with the CI estimated by the LX method |
LAI_Sunny | The retrieval of LAI by the directional gap fraction model under sunny conditions with the CI estimated by the LX method |
LX | The finite-length logarithmic gap averaging method to estimate CI by Lang and Xiang |
PCA | Plant Canopy Analyzer |
PP | The principal plane |
PG | Sunlit background component |
PT | Sunlit foliage component |
RE | Relative Error |
SZA | Solar zenith angle |
TRAC | Tracing Radiation and Architecture of Canopies |
YJP | The young jack pine site |
ZG | Shaded background component |
ZT | Shaded foliage component |
Conflicts of Interest
References
- Bonan, G.B. Land-atmosphere interactions for climate system models: Coupling biophysical, biogeochemical, and ecosystem dynamical processes. Remote Sens. Environ. 1995, 51, 57–73. [Google Scholar] [CrossRef]
- Myneni, R.; Hoffman, S.; Knyazikhin, Y.; Privette, J.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T. Defining leaf area index for non‐flat leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, J.; Liu, Q.; Qu, Y.; Huete, A.R.; Xu, B.; Yin, G.; Zhao, J. An optimal sampling design for observing and validating long-term leaf area index with temporal variations in spatial heterogeneities. Remote Sens. 2015, 7, 1300–1319. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, J.; Liu, Q.; Li, L.; Xu, B.; Yin, G.; Peng, J. A sampling strategy for remotely sensed lai product validation over heterogeneous land surfaces. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3128–3142. [Google Scholar] [CrossRef]
- Yang, W.; Tan, B.; Huang, D.; Rautiainen, M.; Shabanov, N.V.; Wang, Y.; Privette, J.L.; Huemmrich, K.F.; Fensholt, R.; Sandholt, I. Modis leaf area index products: From validation to algorithm improvement. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1885–1898. [Google Scholar] [CrossRef]
- Yin, G.; Li, J.; Liu, Q.; Fan, W.; Xu, B.; Zeng, Y.; Zhao, J. Regional leaf area index retrieval based on remote sensing: The role of radiative transfer model selection. Remote Sens. 2015, 7, 4604–4625. [Google Scholar] [CrossRef]
- Yin, G.; Li, J.; Liu, Q.; Li, L.; Zeng, Y.; Xu, B.; Yang, L.; Zhao, J. Improving leaf area index retrieval over heterogeneous surface by integrating textural and contextual information: A case study in the Heihe River Basin. IEEE Geosci. Remote Sens. Lett. 2015, 12, 359–363. [Google Scholar]
- Jonckheere, I.; Fleck, S.; Nackaerts, K.; Muys, B.; Coppin, P.; Weiss, M.; Baret, F. Review of methods for in situ leaf area index determination. Agric. For. Meteorol. 2004, 121, 19–35. [Google Scholar] [CrossRef]
- Gower, S.T.; Norman, J.M. Rapid estimation of leaf area index in conifer and broad-leaf plantations. Ecology 1991, 1896–1900. [Google Scholar] [CrossRef]
- Marshall, J.; Waring, R. Comparison of methods of estimating leaf-area index in old-growth Douglas-fir. Ecology 1986, 975–979. [Google Scholar] [CrossRef]
- Chen, J.M. Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agric. For. Meteorol. 1996, 80, 135–163. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Chen, J.M.; Fernandes, R.; Deering, D.W.; Conley, A. Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agric. For. Meteorol. 2005, 129, 187–207. [Google Scholar] [CrossRef]
- Chen, J.M.; Rich, P.M.; Gower, S.T.; Norman, J.M.; Plummer, S. Leaf area index of boreal forests: Theory, techniques, and measurements. J. Geophys. Res.: Atmos. (1984–2012) 1997, 102, 29429–29443. [Google Scholar] [CrossRef]
- Ryu, Y.; Verfaillie, J.; Macfarlane, C.; Kobayashi, H.; Sonnentag, O.; Vargas, R.; Ma, S.; Baldocchi, D.D. Continuous observation of tree leaf area index at ecosystem scale using upward-pointing digital cameras. Remote Sens. Environ. 2012, 126, 116–125. [Google Scholar] [CrossRef]
- Richardson, A.D.; Braswell, B.H.; Hollinger, D.Y.; Jenkins, J.P.; Ollinger, S.V. Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecol. Appl. 2009, 19, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Sonnentag, O.; Hufkens, K.; Teshera-Sterne, C.; Young, A.M.; Friedl, M.; Braswell, B.H.; Milliman, T.; O’Keefe, J.; Richardson, A.D. Digital repeat photography for phenological research in forest ecosystems. Agric. For. Meteorol. 2012, 152, 159–177. [Google Scholar] [CrossRef]
- Qu, Y.; Han, W.; Fu, L.; Li, C.; Song, J.; Zhou, H.; Bo, Y.; Wang, J. LAINet—A wireless sensor network for coniferous forest leaf area index measurement: Design, algorithm and validation. Comput. Electron. Agric. 2014, 108, 200–208. [Google Scholar] [CrossRef]
- Ryu, Y.; Baldocchi, D.D.; Verfaillie, J.; Ma, S.; Falk, M.; Ruiz-Mercado, I.; Hehn, T.; Sonnentag, O. Testing the performance of a novel spectral reflectance sensor, built with light emitting diodes (LEDs), to monitor ecosystem metabolism, structure and function. Agric. For. Meteorol. 2010, 150, 1597–1606. [Google Scholar] [CrossRef]
- Hufkens, K.; Friedl, M.; Sonnentag, O.; Braswell, B.H.; Milliman, T.; Richardson, A.D. Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sens. Environ. 2012, 117, 307–321. [Google Scholar]
- Verhoef, W.; Bach, H. Coupled soil-leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sens. Environ. 2007, 109, 166–182. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hall, F.G. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. [Google Scholar] [CrossRef]
- Morton, D.C.; Nagol, J.; Carabajal, C.C.; Rosette, J.; Palace, M.; Cook, B.D.; Vermote, E.F.; Harding, D.J.; North, P.R. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 2014, 506, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Guan, K.; Medvigy, D.; Wood, E.F.; Caylor, K.K.; Li, S.; Jeong, S.J. Deriving vegetation phenological time and trajectory information over Africa using SEVIRI daily LAI. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1113–1130. [Google Scholar] [CrossRef]
- Garrity, S.R.; Bohrer, G.; Maurer, K.D.; Mueller, K.L.; Vogel, C.S.; Curtis, P.S. A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange. Agric. For. Meteorol. 2011, 151, 1741–1752. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B. Global vegetation phenology from moderate resolution imaging spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements. J. Geophys. Res.: Biogeosci. 2006, 111, G04017. [Google Scholar] [CrossRef]
- Jonckheere, I.; Nackaerts, K.; Muys, B.; Coppin, P. Assessment of automatic gap fraction estimation of forests from digital hemispherical photography. Agric. For. Meteorol. 2005, 132, 96–114. [Google Scholar] [CrossRef]
- Baret, F.; De Solan, B.; Lopez-Lozano, R.; Ma, K.; Weiss, M. Gai estimates of row crops from downward looking digital photos taken perpendicular to rows at 57.5 zenith angle: Theoretical considerations based on 3D architecture models and application to wheat crops. Agric. For. Meteorol. 2010, 150, 1393–1401. [Google Scholar] [CrossRef]
- Demarez, V.; Duthoit, S.; Baret, F.; Weiss, M.; Dedieu, G. Estimation of leaf area and clumping indexes of crops with hemispherical photographs. Agric. For. Meteorol. 2008, 148, 644–655. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Pattey, E. Retrieval of leaf area index from top-of-canopy digital photography over agricultural crops. Agric. For. Meteorol. 2010, 150, 1485–1490. [Google Scholar] [CrossRef]
- Li, X.; Strahler, A.H. Geometric-optical modeling of a conifer forest canopy. IEEE Trans. Geosci. Remote Sens. 1985. [Google Scholar] [CrossRef]
- Chen, J.M.; Leblanc, S.G. A four-scale bidirectional reflectance model based on canopy architecture. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1316–1337. [Google Scholar] [CrossRef]
- Fan, W.; Gai, Y.; Xu, X.; Yan, B. The spatial scaling effect of the discrete-canopy effective leaf area index retrieved by remote sensing. Sci. China Earth Sci. 2013, 56, 1548–1554. [Google Scholar] [CrossRef]
- Ross, J. The Radiation Regime and Architecture of Plants Stands; Tasks for Vegetation Science; Springer Netherlands: The Hague, The Netherlands, 1981; Volume 3. [Google Scholar]
- Kuusk, A. The hot spot effect of a uniform vegetative cover. Sov. J. Remote Sens. 1985, 3, 645–658. [Google Scholar]
- Kuusk, A. The hot spot effect in plant canopy reflectance. In Photon-Vegetation Interactions; Springer: Berlin, Germany, 1991; pp. 139–159. [Google Scholar]
- Hu, R.; Yan, G.; Mu, X.; Luo, J. Indirect measurement of leaf area index on the basis of path length distribution. Remote Sens. Environ. 2014, 155, 239–247. [Google Scholar] [CrossRef]
- Macfarlane, C.; Ogden, G.N. Automated estimation of foliage cover in forest understorey from digital NADIR images. Methods Ecol. Evol. 2012, 3, 405–415. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Liu, Y.; Mu, X.; Wang, H.; Yan, G. A novel method for extracting green fractional vegetation cover from digital images. J. Veg. Sci. 2012, 23, 406–418. [Google Scholar] [CrossRef]
- Lang, A.; Xiang, Y. Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies. Agric. For. Meteorol. 1986, 37, 229–243. [Google Scholar] [CrossRef]
- Chen, J.M.; Cihlar, J. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index. Appl. Opt. 1995, 34, 6211–6222. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.W. Inclined point quadrats. New Phytol. 1960, 59, 1–7. [Google Scholar] [CrossRef]
- Goel, N.S.; Strebel, D.E. Simple beta distribution representation of leaf orientation in vegetation canopies. Agron. J. 1984, 76, 800–802. [Google Scholar] [CrossRef]
- Wang, W.-M.; Li, Z.-L.; Su, H.-B. Comparison of leaf angle distribution functions: Effects on extinction coefficient and fraction of sunlit foliage. Agric. For. Meteorol. 2007, 143, 106–122. [Google Scholar] [CrossRef]
- Zou, X.; Mõttus, M.; Tammeorg, P.; Torres, C.L.; Takala, T.; Pisek, J.; Mäkelä, P.; Stoddard, F.; Pellikka, P. Photographic measurement of leaf angles in field crops. Agric. For. Meteorol. 2014, 184, 137–146. [Google Scholar] [CrossRef]
- Ryu, Y.; Sonnentag, O.; Nilson, T.; Vargas, R.; Kobayashi, H.; Wenk, R.; Baldocchi, D.D. How to quantify tree leaf area index in an open savanna ecosystem: A multi-instrument and multi-model approach. Agric. For. Meteorol. 2010, 150, 63–76. [Google Scholar] [CrossRef]
- Pisek, J.; Sonnentag, O.; Richardson, A.D.; Mõttus, M. Is the spherical leaf inclination angle distribution a valid assumption for temperate and boreal broadleaf tree species? Agric. For. Meteorol. 2013, 169, 186–194. [Google Scholar] [CrossRef]
- Pisek, J.; Ryu, Y.; Alikas, K. Estimating leaf inclination and G-function from leveled digital camera photography in broadleaf canopies. Trees 2011, 25, 919–924. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Bicheron, P.; Chen, J.M.; Leroy, M.; Cihlar, J. Investigation of directional reflectance in boreal forests with an improved four-scale model and airborne POLDER data. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1396–1414. [Google Scholar] [CrossRef]
- Yin, T.; Lauret, N.; Gastellu-Etchegorry, J.-P. Simulating images of passive sensors with finite field of view by coupling 3-D radiative transfer model and sensor perspective projection. Remote Sens. Environ. 2015, 162, 169–185. [Google Scholar] [CrossRef]
- Widlowski, J.L.; Pinty, B.; Lopatka, M.; Atzberger, C.; Buzica, D.; Chelle, M.; Disney, M.; Gastellu‐Etchegorry, J.P.; Gerboles, M.; Gobron, N. The fourth radiation transfer model intercomparison (RAMI‐IV): Proficiency testing of canopy reflectance models with ISO‐13528. J. Geophys. Res. Atmos. 2013, 118, 6869–6890. [Google Scholar] [CrossRef]
- Fan, W.; Li, J.; Liu, Q. GOST2: The improvement of the canopy reflectance model gost in separating the sunlit and shaded leaves. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1423–1431. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.M.; Miller, J.R. Determining digital hemispherical photograph exposure for leaf area index estimation. Agric. For. Meteorol. 2005, 133, 166–181. [Google Scholar] [CrossRef]
- Pisek, J.; Lang, M.; Nilson, T.; Korhonen, L.; Karu, H. Comparison of methods for measuring gap size distribution and canopy nonrandomness at Järvselja RAMI (radiation transfer model intercomparison) test sites. Agric. For. Meteorol. 2011, 151, 365–377. [Google Scholar] [CrossRef]
- Gonsamo, A.; Pellikka, P. The computation of foliage clumping index using hemispherical photography. Agric. For. Meteorol. 2009, 149, 1781–1787. [Google Scholar]
- Macfarlane, C.; Hoffman, M.; Eamus, D.; Kerp, N.; Higginson, S.; McMurtrie, R.; Adams, M. Estimation of leaf area index in eucalypt forest using digital photography. Agric. For. Meteorol. 2007, 143, 176–188. [Google Scholar]
- Ryu, Y.; Nilson, T.; Kobayashi, H.; Sonnentag, O.; Law, B.E.; Baldocchi, D.D. On the correct estimation of effective leaf area index: Does it reveal information on clumping effects? Agric. For. Meteorol. 2010, 150, 463–472. [Google Scholar] [CrossRef]
- Kobayashi, H.; Ryu, Y.; Baldocchi, D.D.; Welles, J.M.; Norman, J.M. On the correct estimation of gap fraction: How to remove scattered radiation in gap fraction measurements? Agric. For. Meteorol. 2013, 174–175, 170–183. [Google Scholar] [CrossRef]
- Kuusk, A.; Kuusk, J.; Lang, M. Modeling directional forest reflectance with the hybrid type forest reflectance model FRT. Remote Sens. Environ. 2014, 149, 196–204. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Li, J.; Liu, Q.; Hu, R.; Mu, X.; Fan, W.; Xu, B.; Yin, G.; Wu, S. Extracting Leaf Area Index by Sunlit Foliage Component from Downward-Looking Digital Photography under Clear-Sky Conditions. Remote Sens. 2015, 7, 13410-13435. https://doi.org/10.3390/rs71013410
Zeng Y, Li J, Liu Q, Hu R, Mu X, Fan W, Xu B, Yin G, Wu S. Extracting Leaf Area Index by Sunlit Foliage Component from Downward-Looking Digital Photography under Clear-Sky Conditions. Remote Sensing. 2015; 7(10):13410-13435. https://doi.org/10.3390/rs71013410
Chicago/Turabian StyleZeng, Yelu, Jing Li, Qinhuo Liu, Ronghai Hu, Xihan Mu, Weiliang Fan, Baodong Xu, Gaofei Yin, and Shengbiao Wu. 2015. "Extracting Leaf Area Index by Sunlit Foliage Component from Downward-Looking Digital Photography under Clear-Sky Conditions" Remote Sensing 7, no. 10: 13410-13435. https://doi.org/10.3390/rs71013410
APA StyleZeng, Y., Li, J., Liu, Q., Hu, R., Mu, X., Fan, W., Xu, B., Yin, G., & Wu, S. (2015). Extracting Leaf Area Index by Sunlit Foliage Component from Downward-Looking Digital Photography under Clear-Sky Conditions. Remote Sensing, 7(10), 13410-13435. https://doi.org/10.3390/rs71013410