Estimation of Land Surface Temperature under Cloudy Skies Using Combined Diurnal Solar Radiation and Surface Temperature Evolution
"> Figure 1
<p>Flow chart of estimated LST under cloudy skies.</p> "> Figure 2
<p>Comparison of the measured daily temperature evolution with that predicted by the DTC model for six days under various cloud conditions.</p> "> Figure 2 Cont.
<p>Comparison of the measured daily temperature evolution with that predicted by the DTC model for six days under various cloud conditions.</p> "> Figure 3
<p>Comparison of the measured daily NSSR evolution with that predicted by the DSC model for six days under various cloud cover conditions.</p> "> Figure 3 Cont.
<p>Comparison of the measured daily NSSR evolution with that predicted by the DSC model for six days under various cloud cover conditions.</p> "> Figure 4
<p>Comparison of the measured daily temperature evolution with that predicted by the proposed method for six days under various cloud conditions.</p> "> Figure 5
<p>Comparison of the measured daytime LST and the daytime LST predicted by the proposed method under cloudy skies at the Chang Wu Ecosystem experimental station in 2012 (<b>left</b>: scatter plot; <b>right</b>: histogram of errors of the measured and estimated LST).</p> "> Figure 6
<p>Histogram of errors in the measured T<sub>cloud</sub> and in the estimated T<sub>cloud</sub> based on adding biases to T<sub>clear</sub> ((<b>A</b>): add a −0.25 K bias; (<b>B</b>): add a −0.5 K bias; (<b>C</b>): add a 0.25 K bias; and (<b>D</b>): add a 0. 5 K bias).</p> "> Figure 7
<p>Histogram of errors of the measured T<sub>cloud</sub> and the estimated T<sub>cloud</sub> after adding biases to the NSSR ((<b>A</b>): add a −5 percent NSSR bias to the actual NSSR; (<b>B</b>): add a −10 percent NSSR bias to the actual NSSR; (<b>C</b>): add a 5 percent NSSR bias to the actual NSSR; and (<b>D</b>): add a 10 percent NSSR bias to the actual NSSR).</p> "> Figure 7 Cont.
<p>Histogram of errors of the measured T<sub>cloud</sub> and the estimated T<sub>cloud</sub> after adding biases to the NSSR ((<b>A</b>): add a −5 percent NSSR bias to the actual NSSR; (<b>B</b>): add a −10 percent NSSR bias to the actual NSSR; (<b>C</b>): add a 5 percent NSSR bias to the actual NSSR; and (<b>D</b>): add a 10 percent NSSR bias to the actual NSSR).</p> "> Figure 8
<p>Comparison of LST products from LSASAF, with the LST estimated by the proposed method on 1 April 2012 at 11:00 UTC (<b>left</b>: estimates from the proposed method; <b>right</b>: the LST products).</p> ">
Abstract
:1. Introduction
2. Method
3. Data
3.1. Data from Field Experiments
3.2. Satellite Data
4. Results and Discussions
4.1. LST under a Cloudy Sky
4.1.1. Determining Parameters in the DTC Model
4.1.2. Determining the Parameters in the DSC Model
4.1.3. Estimation of LST Under a Cloudy Sky
4.2. Error Analysis
4.2.1. Sensitivity to Errors of the Estimated LST Under Cloud-Free Skies
4.2.2. Sensitivity to Errors in the Estimated NSSR
5. Application to Actual MSG-SEVIRI Satellite Data
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, Z.-L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.-H.; Yan, G.; Zhang, X. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [PubMed]
- Scarino, B.; Minnis, P.; Palikonda, R.; Reichle, R.H.; Morstad, D.; Yost, C.; Shan, B.; Liu, Q. Retrieving clear-sky surface skin temperature for numerical weather prediction application from geostationary satellite data. Remote Sens. 2013, 5, 342–366. [Google Scholar] [CrossRef]
- Li, Z.-L.; Wu, H.; Wang, N.; Qiu, S.; Sobrino, J.A.; Wan, Z.; Tang, B.-H.; Yan, G. Land surface emissivity retrieval from satellite data. Int. J. Remote Sens. 2013, 34, 3084–3127. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.Z.; Yan, G.; Wan, Z.M.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Fan, W.; Yu, S.; Wu, W. Waterbody identification under semitransparent cloud in MODIS image. J. Atmos. Environ. Opt. 2007, 2, 73–77. [Google Scholar]
- Jin, M.L. Interpolation of surface radiative temperature measured from polar-orbiting satellites to a diurnal cycle 2. Cloudy-pixel treatment. J. Geophys. Res. 2000, 105, 4061–4076. [Google Scholar] [CrossRef]
- Jia, Y.-Y.; Tang, B.-H.; Zhang, X.; Li, Z.-L. Estimation of land surface temperature and emissivity from AMSR-E data. In Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2007, Barcelona, Spain, 23–28 July 2007; pp. 1849–1852.
- Lu, L.; Venus, V.; Skidmore, A.; Wang, T.; Luo, G. Estimating land-surface temperature under clouds using MSG/SEVIRI Observations. Int. J. Appl. Earth Obs. 2011, 13, 265–276. [Google Scholar] [CrossRef]
- Anne, B.K.; John, P.S.; Ronald, E.A. Sensitivity of thermal inertia: Calculations to variations in environmental factors. Remote Sens. Envion. 1984, 16, 211–232. [Google Scholar] [CrossRef]
- Jiang, G.-M.; Li, Z.-L.; Nerry, F. Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVERI. Remote Sens. Environ. 2006, 105, 326–340. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Z.-L. Sensitivity study of soil moisture on the temporal evolution of surface temperature over bare surfaces. Int. J. Remote Sens. 2013, 34, 3314–3331. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Wang, N.; Wu, H.; Tang, B.-H.; Jiang, X.; Zhou, G. Modeling of day-to-day temporal progression of clear-sky land surface temperature. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1050–1054. [Google Scholar] [CrossRef]
- Cracknell, A.P.; Xue, Y. Review article: Thermal inertia determination from space-a tutorial review. Int. J. Remote Sens. 1996, 17, 431–461. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef]
- Wan, Z.; Li, Z.-L. Radiance-based validation of the V5 MODIS land-surface temperature product. Int. J. Remote Sens. 2008, 29, 5373–5395. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L. A method to estimate land surface temperature from Meteosat Second Generation data using multi-temporal data. Opt. Express. 2013, 21, 31907–31918. [Google Scholar] [CrossRef] [PubMed]
- Manalo-Smith, N.; Smith, G.L.; Tiwari, S.N.; Staylor, W.F. Analytic forms of bi-directional reflectance functions for application to Earth radiation budget studies. J. Geophys. Res. 1998, 103, 19733–19751. [Google Scholar] [CrossRef]
- Tang, B.-H.; Li, Z.-L.; Zhang, R. A direct method for estimating net surface shortwave radiation from MODIS data. Remote Sens. Environ. 2006, 103, 115–126. [Google Scholar] [CrossRef]
- Land Surface Analysis Satellite Applications Facility (LSA SAF). Available online: http://landsaf.meteo.pt (accessed on 1 January 2014).
- Duan, S.-B.; Li, Z.-L.; Wang, N.; Wu, H.; Tang, B.-H. Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data. Remote Sens. Environ. 2012, 124, 15–25. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Tang, B.-H.; Wu, H.; Tang, R.; Bi, Y.; Zhou, G. Estimation of diurnal cycle of land surface temperature at high temporal and spatial resolution from clear-sky MODIS data. Remote Sens. 2014, 6, 3247–3262. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Tang, B.-H.; Wu, H.; Tang, R. Direct estimation of land-surface diurnal temperature cycle model parameters from MSG-SEVIRI brightness temperatures under clear sky conditions. Remote Sens. Environ. 2014, 150, 34–43. [Google Scholar] [CrossRef]
- Gautam, B.; Rafael, L. Bras estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study. Remote Sens. Environ. 2010, 114, 1522–1534. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Pang, J.; Li, L. Estimation of Land Surface Temperature under Cloudy Skies Using Combined Diurnal Solar Radiation and Surface Temperature Evolution. Remote Sens. 2015, 7, 905-921. https://doi.org/10.3390/rs70100905
Zhang X, Pang J, Li L. Estimation of Land Surface Temperature under Cloudy Skies Using Combined Diurnal Solar Radiation and Surface Temperature Evolution. Remote Sensing. 2015; 7(1):905-921. https://doi.org/10.3390/rs70100905
Chicago/Turabian StyleZhang, Xiaoyu, Jing Pang, and Lingling Li. 2015. "Estimation of Land Surface Temperature under Cloudy Skies Using Combined Diurnal Solar Radiation and Surface Temperature Evolution" Remote Sensing 7, no. 1: 905-921. https://doi.org/10.3390/rs70100905