Assessment of Surface Urban Heat Islands over Three Megacities in East Asia Using Land Surface Temperature Data Retrieved from COMS
<p>Location of the three megacities selected for this study.</p> ">
<p>Spatial distribution of land surface temperature (LST) on the Korean Peninsula. The white colors indicate that the pixels are contaminated by clouds.</p> ">
<p>Temporal variations of LST along the W–E cross line over Seoul. The shading in the right panel represents the topography.</p> ">
<p>The same as <a href="#f3-remotesensing-06-05852" class="html-fig">Figure 3</a>, except for Tokyo.</p> ">
<p>The same as <a href="#f3-remotesensing-06-05852" class="html-fig">Figure 3</a>, except for Beijing.</p> ">
<p>Seasonal variation of LST (red and blue lines) and SUHI (surface urban heat island) (green bars) for (<b>left pannel</b>) daytime and (<b>right pannel</b>) nighttime: (<b>a</b>) Seoul; (<b>b</b>) Tokyo and (<b>c</b>) Beijing.</p> ">
<p>Diurnal variation of the SUHI in Seoul according to the season.</p> ">
<p>The same as <a href="#f7-remotesensing-06-05852" class="html-fig">Figure 7</a>, except for Tokyo.</p> ">
<p>The same as <a href="#f8-remotesensing-06-05852" class="html-fig">Figure 8</a>, except for Beijing.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Spatial Distribution
3.2. Spatial and Temporal Variations
3.3. Seasonal Variation
3.4. Diurnal Variation
3.5. Relationship between SUHI and NDVI
4. Conclusions
Acknowledgments
Conflicts of Interest
- Author ContributionsAll authors contributed extensively to the work presented in this paper. Myoung-Seok Suh proposed the research idea. Youn-Young Choi and Ki-Hong Park designed the algorithm and analyzed the data. All authors interpreted the results and wrote the paper.
References
- Oke, T.R. City size and the urban heat island. Atmos. Environ 1973, 7, 769–779. [Google Scholar]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ 2003, 86, 370–384. [Google Scholar]
- Roth, M.; Oke, T.R.; Emery, W.J. Satellite derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens 1989, 10, 1699–1720. [Google Scholar]
- Dousset, B.; Gourmelon, F.; Laaidi, K.; Zeghnoun, A.; Giraudet, E.; Bretin, P.; Mauri, E.; Vandentorren, S. Satellite monitoring of summer heat waves in the Paris metropolitan area. Int. J. Climatol 2011, 31, 313–323. [Google Scholar]
- Li, D.; Bou-Zeid, E. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteorol. Climatol 2013, 52, 2051–2064. [Google Scholar]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F.; et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol 2010, 54, 75–84. [Google Scholar]
- Roth, M. Effect of Cities on Local Climates. Proceedings of the Workshop of IGES/APN Mega-City Project, Kitakyushu, Japan, 23–25 January 2002; pp. 1–13.
- Kim, Y.H.; Baik, J.J. Maximum urban heat island intensity in Seoul. J. Appl. Meteorol 2002, 41, 651–659. [Google Scholar]
- Kim, Y.H.; Baik, J.J. Daily maximum urban heat island intensity in large cities of Korea. Theor. Appl. Climatol 2004, 79, 151–164. [Google Scholar]
- Kim, Y.H.; Baik, J.J. Spatial and temporal structure of the urban heat island in Seoul. J. Appl. Meteorol 2005, 44, 591–605. [Google Scholar]
- Sobrino, J.A.; Romaguera, M. Land surface temperature retrieval from MSG1–SEVIRI data. Remote Sens. Environ 2004, 92, 247–254. [Google Scholar]
- Peres, L.; DaCamara, C.C. Land surface temperature and emissivity estimation based on the two-temperature method: Sensitivity analysis using simulated MSG/SEVIRI data. Remote Sens. Environ 2004, 91, 377–389. [Google Scholar]
- Wan, Z. New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens. Environ 2008, 112, 59–74. [Google Scholar]
- Neteler, M. Estimating daily land surface temperature in mountainous environments by reconstructed MODIS LST data. Remote Sens 2010, 2, 333–351. [Google Scholar]
- Cho, A.R.; Suh, M.S. Evaluation of land surface temperature operationally retrieved from Korean geostationary satellite (COMS) data. Remote Sens 2013, 5, 3951–3970. [Google Scholar]
- Tran, H.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Obs. Geoinf 2006, 8, 34–48. [Google Scholar]
- Ben-Dor, E.; Saaroni, H. Airborne video thermal radiometry as a tool for monitoring microscale structures of the urban heat island. Int. J. Remote Sens 1997, 18, 3039–3053. [Google Scholar]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface urban heat island across 419 global big cities. Environ. Sci. Technol 2011, 46, 696–703. [Google Scholar]
- Dousset, B.; Gourmelon, F. Satellite multi-sensor data analysis of urban surface temperatures and landcover. ISPRS J. Photogramm 2003, 58, 43–54. [Google Scholar]
- Weng, Q. Fractal analysis of satellite-detected urban heat island effect. Photogramm. Eng. Remote Sens 2003, 69, 555–566. [Google Scholar]
- Fabrizi, R.; Bonafoni, S.; Biondi, R. Satellite and ground-based sensors for the urban heat island analysis in the city of Rome. Remote Sens 2010, 2, 1400–1415. [Google Scholar]
- Hu, L.; Brunsell, N.A. The impact of temporal aggregation of land surface temperature data for surface urban heat island (SUHI) monitoring. Remote Sens. Environ 2013, 134, 162–174. [Google Scholar]
- Yang, P.; Ren, G.; Liu, W. Spatial and temporal characteristics of Beijing urban heat island intensity. J. Appl. Meteorol. Climatol 2013, 52, 1803–1816. [Google Scholar]
- Bohnenstengel, S.I.; Evans, S.; Clark, P.A.; Belcher, S.E. Simulations of the London urban heat island. Q. J. Roy. Meteor. Soc 2011, 137, 1625–1640. [Google Scholar]
- Pal, S.; Xueref-Remy, I.; Ammoura, L.; Chazette, P.; Gibert, F.; Royer, P.; Dieudonne, E.; Dupont, J.C.; Haeffelin, M.; Lac, C.; et al. Spatio-temporal variability of the atmospheric boundary layer depth over the Paris agglomeration: An assessment of the impact of the urban heat island intensity. Atmos. Environ 2012, 63, 261–275. [Google Scholar]
- Lac, C.; Donnelly, R.P.; Masson, V.; Pal, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project. Atmos. Chem. Phys 2013, 13, 4941–4961. [Google Scholar]
- Kang, J.H.; Suh, M.S.; Kwak, C.H. Land cover classification over East Asian region using recent MODIS NDVI data (2006–2008). Atmos. Korean Meteorol. Soc 2010, 20, 415–426. [Google Scholar]
- Korea Meteorological Administration (KMA). Available online: http://www.kma.go.kr/weather/climate/past_table.jsp?stn=108&yy=2012&obs=59&x=31&y=17 (accessed on 3 February 2014).
- Japan Meteorological Administration(JMA). Available online: http://www.data.jma.go.jp/obd/stats/etrn/view/daily_s1.php?prec_no=44&block_no=47662&year=2012&month=04&day=1&view=a3 (accessed on 3 February 2014).
- MODIS NDVI Library. Available online: https://lpdaac.usgs.gov/products/modis_products_table (accessed on 3 February 2014).
- Baik, J.J.; Kim, Y.H.; Kim, J.J.; Han, J.Y. Effects of boundary-layer stability on urban heat island-induced circulation. Theor. Appl. Climatol 2007, 89, 73–81. [Google Scholar]
- Hidalgo, J.; Masson, V.; Gimeno, L. Scaling the daytime urban heat island and urban-breeze circulation. J. Appl. Meteorol. Climatol 2010, 49, 889–901. [Google Scholar]
City | Type | Location | Lat. (°N), Lon. (°E) | Elevation (m) | Distance (km) |
---|---|---|---|---|---|
Seoul | Urban | Dongdaemun | 37.57, 127.04 | 21.46 | 41.84 |
Rural | Gapyeong | 37.62, 127.51 | 294.60 | ||
Tokyo | Urban | Ueno | 35.73, 139.73 | 25.77 | 43.12 |
Rural | Akiruno | 35.72, 139.26 | 244.11 | ||
Beijing | Urban | Wangfujing | 39.91, 116.43 | 47.31 | 42.72 |
Rural | Dachang | 39.85, 116.96 | 9.11 |
City | Type | Station | Lat. (°N), Lon. (°E) | Height | Distance |
---|---|---|---|---|---|
Seoul | Urban | 408/Dongdaemun | 37.58, 127.05 | 49 m | 46.80 km |
Rural | 326/Mt. Yongmun | 37.60, 127.58 | 197 m |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Choi, Y.-Y.; Suh, M.-S.; Park, K.-H. Assessment of Surface Urban Heat Islands over Three Megacities in East Asia Using Land Surface Temperature Data Retrieved from COMS. Remote Sens. 2014, 6, 5852-5867. https://doi.org/10.3390/rs6065852
Choi Y-Y, Suh M-S, Park K-H. Assessment of Surface Urban Heat Islands over Three Megacities in East Asia Using Land Surface Temperature Data Retrieved from COMS. Remote Sensing. 2014; 6(6):5852-5867. https://doi.org/10.3390/rs6065852
Chicago/Turabian StyleChoi, Youn-Young, Myoung-Seok Suh, and Ki-Hong Park. 2014. "Assessment of Surface Urban Heat Islands over Three Megacities in East Asia Using Land Surface Temperature Data Retrieved from COMS" Remote Sensing 6, no. 6: 5852-5867. https://doi.org/10.3390/rs6065852
APA StyleChoi, Y. -Y., Suh, M. -S., & Park, K. -H. (2014). Assessment of Surface Urban Heat Islands over Three Megacities in East Asia Using Land Surface Temperature Data Retrieved from COMS. Remote Sensing, 6(6), 5852-5867. https://doi.org/10.3390/rs6065852